Lecture 12 Analysis of Clocked Sequential Network

- Given a sequential network and input sequence, analyze the network to determine the FF state sequence and output sequence.
 - First by tracing the 1 and 0 signals through the network.
 - Next by constructing a state graph or state table to represent the behavior of the network.

A Sequential Parity Checker

- Parity
 - Odd parity and even parity.
 - Add 1or 0 to a datum so that the total number of 1's is odd (odd parity) or even (even parity).
 - Error detection.
- Example
 - Serial data input, one bit at a time.
 - Output Z = 1 if total number of 1 inputs received is odd.
 - If the input is odd parity, and the final output Z = 1. This is correct.
 - A final output Z = 0 indicates that an error in transmission has occurred.

С-Н2

A Sequential Parity Checker (cont.)

- Assume that X is synchronized with the clock and changes only between clock pluses.
- X is determined at the active clock edge.
- Clock input is used to distinguish consecutive 0's or 1's.

A Sequential Parity Checker (cont.)

- A state graph
 - S0: even number of 1's received
 - S1: odd number of 1's received.

• State table

Table 13–1 ______ State Table for Parity Checker

(,	a)			
Next $X = 0$	State $X = 1$	Present Output		
S ₀ S	$\frac{S_1}{S_2}$	0		
	Next X = 0 S_0 S_1	(a) Next State X = 0 $X = 1S_0 S_1S_1 S_2$		

Chap 13

С-Н4

A Sequential Parity Checker (cont.)

- Two states are required. We can use a FF.
 - A T FF can be used. When Q and Q⁺ differs, T = 1. Note that T is input to FF. Both Q and Q⁺ are outputs of the FF. (Homework: Use a D FF)
 - In the table, when X = 1, T = 1, so T = X.

(Clock)

Analysis by Signal Tracing and Timing Charts

- Given a clocked sequential network, procedure for analysis is as follows:
 - Assume initial state (0) for FF.
 - For the first input in the given sequence, determine the network output and the FF inputs.
 - Apply clock to the FFs and determine the new FF states after the next active clock edge.
 - Determine the outputs due to the new state.
 - Repeat for each input in the given sequence sequence.
 - This is a timing chart.

Moore Machine

- Output depends on only the present state of FF. This network is referred to as a Moore machine. (Output displaces w.r.t. input in Moore network)
- $X = 0 \ 1 \ 1 \ 0 \ 1$

•
$$A = 0 \ 1 \ 0 \ 1 \ 0 \ 1$$

•
$$B = 0 \ 0 \ 1 \ 1 \ 1 \ 1$$

• Z=(0)1 1 0 1 0

Moore Machine (cont.)

- Assume X = 01101
 - Initially, X = 0, $D_A = 1$, $D_B = 0$. So after rising clock edge, A = 1, and B = 0.

Mealy Machine

- Output depends on the input and the FF states. That is, Z may change either when input changes or the FF state changes.
- Example: Output does not displace w.r.t input. Input dominates.

Mealy Machine (cont.)

Figure 13–8 Timing Chart for Network of Fig. 13–7

State table and graph constructions

- State table constructions
 - Network inputs, present state, and next state.
 - Determine the FF input equation and output equations.
 - Derive the next-state equations for each FF from its input equations using

$$- Q^+ = D$$

$$- Q^+ = T \oplus Q$$

$$- Q^+ = S + R'Q$$

$$- Q^+ = JQ' + K'Q$$

- Plot a next-state map
- Combine these maps to form state table. (This is also called a transition table.)

Example: State Table

• Step (Moore machine)

- Input equations and output equation
 - $D_A = X \oplus B', D_B = X + A, Z = A \oplus B$
- Next state equations
 - $A^+ = X \oplus B'$
 - $B^+ = X + A$
- Next state K map: A⁺ = f(A, B, X). A next state = function of present states and inputs

Chap 13

Example: State Table (cont.)

• Moore State table

State Graph

• Moore State graph

TABLE 13-2 Moore State Tables for Figure 13-5

(a)				(b)						
AB	$\begin{array}{c} A^+B^+ \\ X = 0 X = 1 \end{array}$		Ζ	Present State	Next State X = 0 $X = 1$		Present Output (Z)			
00	10	01	0	So	S ₃	<i>S</i> ₁	0			
01	00	11	1	S ₁	S ₀	S2	1			
11	01	11	0	S2	S ₁	S2	0			
10	11	01	1	S_3	S2	S ₁	1			

Mealy Machine Example

• Next state equation

- $A^+ = J_A A' + K_A'A = XBA' + X'A$
- $B^+ = J_B B' + K_B'B = XB' + (AX)'B = XB'$ + X'B + A'B
- Z = X'A'B + XB' + XA

Mealy Machine Example

• State table

С-Н 16

Example: Mealy Machine (cont.)

Mealy state graph

Me

If present input changes, the output will changes immediately. But the present state will not change until after the clock edge.

TABLE 13-3	(a)					(b)					
Mealy State Tables for Figure 13-7	AB	A+B X = 0	+ 1	Z X = 0	1	Present State	Next Stat X = 0	te 1	Prese Outpu X = 0	nt ut 1	
riguie is i	00	00	01	0	1	So	S ₀	S ₁	0	1	
	01	01	11	1	0	S ₁	S ₁	S2	1	0	
	11	11	00	0	1	S ₂	52	So	0	1	
	10	10	01	0	1	S ₃	S3	S ₁	0	1	

A Serial Adder

• Two operands are fed in serially beginning at x₀, y₀ (store carry)

Serial Adder

• Mealy machine $(S_0 c_i = 0, S_1: c_i = 1)$

Multiple Inputs/Outputs

00,01/00 means if X₁ = X₂ = 0 or X₁ = 0 and X₂ =1, then Z₁ = 0 and Z₂ = 0.

TABLE 13-4	Present	Nex	Present Output (Z_1Z_2)						
A State Table with Multiple Inputs and Outputs	State	$X_1 X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11
	So	S ₃	S ₂	S ₁	S ₀	00	10	11	01
	S1	So	S ₁	S2	S ₃	10	10	11	11
	S2	S3	S ₀	<i>S</i> ₁	S ₁	00	10	11	01
	S ₃	S ₂	S2	S ₁	S ₀	00	00	01	01

Timing Chart

- State change occurs after the falling (rising) edge of the clock.
- Input will normally be stable immediately before and after the active clock edge.
- For a Moore circuit, the output changes only when the state changes.
- For a Mealy circuit, the output can change when the input changes and when the state changes.

Timing Charts (cont.)

- For a Mealy circuit, a false output may occur between the time the state changes and the time the input is changed.
 - If the state has changed to its next value, but the old input is still present, the output may be temporarily incorrect.
 - False outputs are difficult to determine from the state graph.
 - Use signal tracing or
 - Use the state table.

Timing Chart Constructions

- Procedures: using a Mealy state table to construct a timing chart (given an input sequence).
 - For the first input, read the present output and plot it.
 - Read the next state and plot it (following the active edge of the clock).
 - Go to the row in the table which corresponds to the next state and read output under the old input column and plot it. (This may be a false output.)
 - Change to the next input and repeat
- For a Mealy circuit, the best time to read the output is just before the active edge of the clock.

Interpretation of Timing Chart

• Read output before the rising edge of the clock.

General Model

• Mealy network using D FF

Clock

 $Z_1 = f_1(X_1, X_2, \ldots, X_m, Q_1, Q_2, \ldots, Q_k)$ $Z_2 = f_2(X_1, X_2, \dots, X_m, Q_1, Q_2, \dots, Q_k) \Big|_{n \text{ output functions}}$ $Z_n = f_n(X_1, X_2, \ldots, X_m, Q_1, Q_2, \ldots, Q_k)$ $Q_1^+ = D_1 = g_1(X_1, X_2, \dots, X_m, Q_1, Q_2, \dots, Q_k)$ $Q_2^+ = D_2 = g_2(X_1, X_2, \dots, X_m, Q_1, Q_2, \dots, Q_k) | k \text{ next-state}$ functions $Q_{k}^{+} = D_{k} = g_{k}(X_{1}, X_{2}, \ldots, X_{m}, Q_{1}, Q_{2}, \ldots, Q_{k})$

Clock Period

• Minimum clock period for Mealy circuit = $t_p + t_c + t_{su}$ (if inputs stable before $t_c + t_{su}$)

General Model

- Moore network using D FF
 - Outputs are only a function of the present state of the FFs and not a function of the inputs.

