Lecture 10 FlipFlops/Latches

- Sequential switching network
- Output depends on present input and past sequence of inputs.
- Need to remember past history.
- Flip-flop (latch) is a memory that has a pair of complementary outputs.

Gate Delay

- Propagation delay
 - Timing diagram

Figure 11-1
Propagation Delay in an Inverter

Network with Feedback

- Inverter with feedback.
- Propagation delay ($\mathrm{d}=1 / 2$ period of CK)
- Oscillate between 1 and 0 .

(a) Inverter with feedback

(b) Oscillation at inverter output
- Stable state

S-R Latch

- Set-reset latch
- Use NOR gate to construct a stable state network

S-R Latch (comt)

- When $\mathrm{S}=\mathrm{R}=1$, the $\mathrm{S}-\mathrm{R}$ latch will not operate properly. (Is it a stable state, if $\mathrm{S}=\mathrm{R}=1$?)
- Q an P are not complementary.
- If $S=R=1$ changed to $S=R=0$, then the network will oscillate assuming both gates have the same delay. (Critical race occurs)

S-R Latch Timing and State

- S duration $>$ delay time

- S-R latch behavior
- Present state
- The state of Q output at the time the input signals are applied.
- Next state
- The state of Q output after the latch has reacted to the input signals.
$\left.\begin{array}{ccc|cl}S(t) & R(t) & Q(t) & Q(t+\epsilon) & \\ \hline 0 & 0 & 0 & 0 & \\ 0 & 0 & 1 & 1 & \\ 0 & 1 & 0 & 0 & \\ 0 & 1 & 1 & 0 & \\ 1 & 0 & 0 & 1 & \\ 1 & 0 & 1 & 1 & \\ 1 & 1 & 0 & - \\ 1 & 1 & 1 & -\end{array}\right\}$ inputs not allowed \quad C H 6

S R latch Analysis

- Total state table
- If next state $=$ present state, stable

Current input $(S(t), R(t))$

$$
(0,0)(0,1)(1,1)(1,1)
$$

(0,0)	$(1,1)(1,0)(0,1)(0,0)$	
Presents tata (1.1)	$(0,1)(0,0)$ (11.1.1) $(0,0)$	Nextstate
$\left(y_{0}(t), y_{1}(t)(1,1)\right.$	$(1,0)(1,0)(0,0)(0,0)$	$\left(y_{0}\left(t+t_{\text {d }}\right) y_{1}\left(t+t_{\text {c }}\right)\right.$
(1, 1)	$(0,0)(0,0)(0,0)(0,0)$	

K-map for $\mathrm{Q}(\mathrm{t}+\varepsilon)$

- $\mathrm{Q}^{+}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}$
($\mathrm{SR}=0$)
- S and R can not be 1 at the same time.
- Q: present state
- Q^{+}: next state
- Next state equation or characteristic equation.

Chap 11
CH8

Debouncing Circuit

- Use S-R latch for debouncing.
- Pull-down resistors
- a switch to b.
$\mathrm{S}=1 \operatorname{set} \mathrm{Q}$
$\mathrm{S}=0,(\mathrm{R}=0)$
Q remained

S-R Latch using NAND
 gates

- S\#-R\# Latch, when $\mathrm{S} \#=0$ sets $\mathrm{Q}=1$ and $\mathrm{R} \#=0$ resets $\mathrm{Q}=0$

(a)

(b)

Chap 11
CH 10

Gated D Latch

- Gate input G
- Transparent latch (when $\mathrm{G}=1, \mathrm{Q}=\mathrm{D}$)

(a)

(b)

G	D	Q	$\mathrm{Q}+$
0	0	0	0

$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$
0
100

$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$

Chap 11	1	1	1	1	CH 11

Edge-Triggered D FlipFlop

- Output changes in response to clock edge

Chap 11
CH 12

D Flip-Flop

- Using two gated D latches
- Output changes occur at the rising edge
- $\mathrm{CK}=\mathrm{H}$, output follows input.
- $\mathrm{CK}=\mathrm{L}$, output remains

D Flip-Flop

- Output changes occur at the rising edge

(a) Construction from two gated D latches

Chap 11
C H 14

Setup and Hold Time

- Edge-Triggered D FF
- Propagation delay of a FF is the time btw the active edge of the clock and resulting change in the output

Minimum Clock Period

- tp
- inverter $=2 \mathrm{~ns}$,
$-\mathrm{FF}=5 \mathrm{~ns}$
- Setup time 3 ns

(a) Simple flip-flop circuit

Master-Slave S-R Flip-Flop

- FF has a clock input.
- Change state after rising edge
- This figure shows a case that (\mathbf{S}, \mathbf{R}) are changed at $\mathbf{C L K}=\mathbf{H}(\mathbf{A}, \mathrm{B})$, then at CLK=L for C .
- What if (S,R) becomes ($\mathbf{1 , 0}$) nears $\mathbf{1 5 ?}$ (OK)

- Actually (\mathbf{S}, R) should be set to change (for set or reset) at the time near the end of M on and before S on. (to avoid missinterpretation at t5)

(a) Implementation with two latches

M on ${ }^{t_{1}} \mathrm{~S}$ on ${ }^{t_{2}} \mathbf{M}$ on ${ }^{t_{3}} \mathrm{~S}$ on ${ }^{t_{4}} \mathrm{M}$ on ${ }^{t_{5}} \mathbf{S}$ on

Input
changed at CLK low to $(0,0)$ has no effect to P due to S-R latch feature.

Toggle FF

- T flip-flop

- Single input
- When $\mathrm{T}=1$, at clock edge, T FF
changes state. If $\mathrm{T}=0$, no state changes.

(a)

Chap 11
CH 18

T FF

- T flip-flop
- Converted from D to T
$-\mathrm{Q}^{+}=\mathrm{D}=\mathrm{Q}$ xor $\mathrm{T}=\mathrm{T} \mathrm{Q}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}$

(a) Conversion of J-K to T
(b) Conversion of D to T

Chap 11
CH 19

J-K Flip Flop

- $\mathrm{J}-\mathrm{K} \mathrm{FF}=\mathrm{S}-\mathrm{RFF}+\mathrm{T}$ FF.
- Allow $\mathrm{J}=\mathrm{K}=1$. This case works like a T FF.
- Split T to J and K 0000
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
0100
01110
1001

(a) J-K flip-flop

(c) J-K flip-flop timing

J-K Flip Flop

- J-K FF rising edge trigger

(a) J-K flip-flop
$J \mathrm{KQ} \mathrm{Q}^{+}=\mathrm{JQ}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}$
$\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}$
0100
0110
1001
1011
1101
1110

Chap 11
C H 21

Master-Slave J-K FlipFlop

- Clocked J-K FF (falling edge)

 - Realization using two S-R latches - Note where J and K change.
(a) Master-slave J-K flip-flop

(b) Internal timing diagram for master-slave J-K flip-flop

T Flip-Flop Implementation

- Conversion
- Using a J-K FF
- Using a D FF

T
(a) Conversion of J-K to T
(b) Conversion of D to T

D FF Register

- Register $=$ many clocked D FFs - $\mathrm{Q}^{+}=\mathrm{D}$

Chap 11
CH24

Clear and Presets

- Active low inputs

- Asynchronous clear and preset

Clock Enable

- D-CE flip-flop
- Hold existing data even input changes.
- $\mathrm{Q}^{+}=\mathrm{Q} \cdot \mathrm{CE}^{\prime}+\mathrm{D} \cdot \mathrm{CE}$
- In Fig. $\mathrm{c}, \mathrm{Q}^{+}=\mathrm{D}=\mathrm{Q} . C E^{\prime}+\mathrm{D}_{\text {in }} \cdot \mathrm{CE}$
- No gating in clock line, no synchronization problem.

Clocked Latches

Clocked latch:

The state changed whenever the inputs change and the clock is asserted.
A D latch with NOR gates and clock (level trigger)

Chap 11
C H 27

Unclocked Latch

- SR latch

\author{

- State may change if input changes.
}

S R latch Analysis

- Total state table
- Next internal state

Current input $(S t), R(t)$)
$(0,0)(0,1)(1,1)(1,1)$
$(0,0)(1,1)(1,0)(0,1)(0,0)$
Present satat (0,1)
$(0,1) \quad(0,0)(0,1)$
$(0,0)$
Nexs state $\left(y_{0}(t), y_{1}(t)\right)(1,1)$
(10) (10) (0)
$(0,0)\left(y_{0}\left(t+t_{\text {pl }}\right), y_{1}\left(t+t_{\text {pl }}\right)\right)$
$(1,1) \quad(0,0) \quad(0,0) \quad(0,0) \quad(0,0)$
C H 29

D Flip Flop

- Master latch with a slave latch - State changes only at clock edge. - Falling edge.

Chap 11
CH30

Timing Requirement

- Falling edge trigger
- Set up time
- Hold time
- Hold time requirement is either 0 or very small.

Clock Period Requirement

- Clock period requirement
- t_propagation + t_combinational + t_setup + t_skew
- t_propagation is the time for FF inputs to FF outputs.
- t _skew is the time difference when two state elements see a clock edge.

Asynchronous inputs

- Why makes it a synchronous input?
- Used to change state of a system
- If not synchronized, the signals may violate the setup time or hold time of a receiving device.
- Metastable behavior
- State in the middle of 1 and 0 .

