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Simulation Of  I-Cache

&
Set-Associative D-cache
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實驗目的

1. 認識CPU的Memory Hierarchy

2. 了解cache的運作原理、特性與架構

3. 了解cache之write policies

4. 練習ARMV7A CPU Simulator中icache的實
作與應用

5. 實作簡易Set-Associative Cache修改操作
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Levels of Memory Hierarchy

Upper Level
(Faster)

Lower Level
(larger)

Registers

Main Memory (RAM)

Secondary Storage (Hard Disk)

Cache

CPU
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The Principle of Locality

Temporal Locality (Locality in Time):

If an item is referenced, it will tend to be referenced again 

soon.

( Example: loop, reuse )

Spatial Locality (Locality in space):

If an item is referenced, items whose addresses are close  

by tend to be referenced soon.

( Example: array access, straight line code )
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Introduction to Cache(1/2)

A smaller, faster memory which stores copies of the data 

from frequently used main memory locations.

(Temporal Locality)
CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)
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Introduction to Cache(2/2)

In a Harvard architecture of caches, instruction and data 

are stored separately.

 Instructions (I-Cache)

Data (D-Cache) addr. data

CPU

icache

addr.data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

dcache

inst.

addr.data
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Cache Performance

Hit Rate:  Fraction of hits in Cache

Miss Rate : 1 – (Hit Rate)

Hit Time: Time to access Cache

Miss Penalty: Time to replace a block from lower level

Average memory-access time ( AMAT )

= Hit Time + Miss rate x Miss penalty 
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Hit vs. Misses

Read hits
 this is what we want!

Read misses
 stall the CPU, fetch block from memory, deliver to cache, restart

Write hits
 can replace data in cache and memory (write-through) 

 write the data only into the cache (write-back)

Write misses
 data at the missed-write location is loaded to cache, followed by a 

write-hit operation.(write-allocate)

 data at the missed-write location is not loaded to cache, and is 
written directly to the backing store.(write-around)

9
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D-cache vs. I-cache

CPU has the demand for writing and reading data 

memory, while it has no requirement for writing 

instruction memory. (Modifying instruction memory is 

prohibited)

As a result , d-cache will be writed and read by CPU and 

i-cache will be only read.

10
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Cache Read Operation(1/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Hit
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CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

data

Cache Read Operation(2/5)

CPU

addr.

addr.data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Hit
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Cache Read Operation(3/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !
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Cache Read Operation(4/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !
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CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

data

data

Cache Read Operation(5/5)

CPU

addr.

addr.

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !

Delay

Cache Hit
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Cache Line

Cache Line: unit of memory transfer between two levels in 
a memory hierarchy. Also called a block.

Rather than reading a single word or byte from main memo
ry at a time ,each cache entry is holds a certain number of w
ords.(Spatial Locality)

For example:
 Line size = 1 word: one entry, one word.

 Line size = N words: one entry, N words.
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Associativity

Associativity: The replacement policy decides where a copy 
of a particular entry of main memory will go.

For example:
 Direct mapped: each cache line has only one way to go.

 4-way set associative: each cache line has 4 ways to go.
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Direct Mapped Example 1

Main MemoryCache

00
04

08
0c

10
14

18
1c

20

24

28

2c
30

34

38
3c

*0

*4

*8
*c

Index
0
4
8
c

Data

Example 1:
Line size = 1 word

= 32bits
= 4bytes

Address
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Direct Mapped Example 1(1/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss Index

0

4

8

c
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Direct Mapped Example 1(2/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

Index

0

4

8

c
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Direct Mapped Example 1(3/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss Mem[00]

Index

0

4

8

c

From main memory
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Direct Mapped Example 1(4/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

Mem[00]

Index

0

4

8

c
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Direct Mapped Example 1(5/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

Mem[00]

Mem[04]

Index

0

4

8

c

From main memory
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Direct Mapped Example 1(6/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

Mem[00]

Mem[04]

Mem[08]

Index

0

4

8

c

From main memory
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Direct Mapped Example 1(7/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

0c Miss

Mem[00]

Mem[04]

Mem[08]

Mem[0c]

Index

0

4

8

c

From main memory
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Direct Mapped Example 1(8/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

0c Miss

10 Miss

Mem[10]

Mem[04]

Mem[08]

Mem[0c]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2

Main MemoryCache

00
04

08
0c

10
14

18
1c

20

24

28

2c
30

34

38
3c

index

0*
1*
2*
3*

00

10

20
30

04

14

24
34

08

18

28
38

0c

1c

2c
3c

Example 2:
Line size = 4 words

= 32 x 4 = 128 bits
= 16 bytes
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Direct Mapped Example 2(1/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss Index

0*

1*

2*

3*
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Direct Mapped Example 2(2/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

Index

0*

1*

2*

3*
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Direct Mapped Example 2(3/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]

From main memory
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Direct Mapped Example 2(4/7)

Cache

The sequence of memory access:  00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]
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Direct Mapped Example 2(5/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]
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Direct Mapped Example 2(6/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

0c Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[10]
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Direct Mapped Example 2(7/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

0c Hit

10 Miss

Mem[00]

Mem[10]

Index

0*

1*

2*

3*

Mem[04]

Mem[14]

Mem[08]

Mem[18]

Mem[0c]

Mem[1c]

From main memory
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Cache Architecture(1/4)

Block Address (32-bit)

Tag Index word 00

Index : Decide which entry of cache should be accessed

Tag : Check if the cache access is a hit or not

Word(offset) : Decide which data of entry to output

How do we decide number of bits in each part?

Cache Addressing mode (aligned to a word for instruction):
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1 0008… 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 00c0… 0x0024000 0x0024004 0x0024008 0x002400c

1 0000… 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(2/4)

Valid

Tag

Data

Tag IndexAddress [31:0]

000

001

010

011

100

101

110

0000 0000 0000 0000 0000 0000 0 100 10 00

Word

Word=0 Word=1 Word=2 Word=3

111

Index

31                                                                                                           7 6           4 3  2 1        0

2-bit [1:0]

2-bit [3:2]3-bit [6:4]

32-3-2-2=25-bit [31:7]

This is a Cache with 8 entries, and each line (entry) has 4 words (data). 
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1 0008… 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 00c0… 0x0024000 0x0024004 0x0024008 0x002400c

1 0000… 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(3/4)

Valid Tag

Tag IndexAddress [31:0]

0000 0000

0000 0001

0000 0000 0000 0000 0000 0000 0010 10 00

Word

Word=0 Word=1 Word=2 Word=3

1111 1111

Index

31                                                                                       12 11                           4 3 2 1        0

2-bit [1:0]

2-bit [3:2]

8-bit [11:4]32-8-2-2=20-bit [31:12]

If a Cache with 256 entries, and each line (entry) has 4 words (data) …  

.

.

.

.

.

.
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1 0x0008 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 0x00c0 0x0024000 0x0024004 0x0024008 0x002400c

1 0x0000 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(4/4)

Valid Tag

Data

Tag Index
Address

000

001

010

011

100

101

110

=
tag_in

tag_out

Hit = 1  ( Cache Hit )

(tag_in = tag_out) & valid_out =1

0x0000 100 10 00

Word

Word=00 Word=01 Word=10 Word=11

Data Output = 
0x1c00008

111

Index
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Write Policy

Write hit

Write-through (WT)

Write –back (WB)

Write miss 

Write-allocate (or write allocation)

Write around

39
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Write Policy

Write-hit policies

Write-through (also called store-through)
Write to main memory whenever a write is performed to the 

cache.

Write –back (also called store-in or copy-back)
Write to the main memory when the modified data in 

cache is evicted.

40
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Write Policy

41

Write-Through Write-Back

Policy
Data written to cache block 
also written to lower-level 

memory

Write data to the cache 
only, copy back when 
replacing a dirty copy

Debug Easy Hard

Do read misses produce 
writes?

No Yes

Do repeated writes make it 
to lower level?

Yes No
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Write Policy

Write-miss policies

Write-allocate (or write allocation)
Read the missing block from the lower level memory into 

cache, and then work as write hit (WT or WB).

Write-around 
Write the data into the next level memory.

42



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

N-way set associative

N direct mapped caches in parallel

An index gets N blocks

43
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Direct Mapped Cache

44
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Set-Associative Cache

45
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Associativity

Associativity is a trade-off.

Cache operations with more associativity takes more 
power, chip area, and potentially time.

However, caches with more associativity suffer fewer 
misses, so that CPU wastes less time reading from main 
memory.

46
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2-Way Associative Example

47

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss Index

0

1

2

3
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2-Way Associative Example

48

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss
Mem[00]

Index

0

1

2

3
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2-Way Associative Example

49

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss
Mem[00]

Index

0

1

2

3

Mem[20]
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2-Way Associative Example

50

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

Mem[00]

Index

0

1

2

3

Mem[20]
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2-Way Associative Example

51

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

1c Miss

Mem[00]

Mem[1c]

Index

0

1

2

3

Mem[20]
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2-Way Associative Example

52

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

1c Miss

00 Hit

Mem[00]

Mem[1c]

Index

0

1

2

3

Mem[20]

Hit Rate = 40%
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Set-Associative Cache

53
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Type of cache misses

Compulsory misses:

The block must be brought into the cache on the 
first access to a block; also called code start misses

Capacity misses:

Blocks are being discarded from cache because 
cache can’t contain all block needed for program 
execution

Conflict misses:

Conflict misses occur when multiple blocks are 
mapped to the same set, and it could not happen 
in case of fully set associative cache

54
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Type of cache misses

Cache optimization

55

Design change Effect on miss rate
Possible negative 

performance effect

increase cache size reduce capacity misses
possibly increase access 

time

increase associativity reduce conflict misses
possibly increase access 

time

increase block size reduce compulsory misses increase miss penalty
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Replacement policy

When a line must be evicted from a cache to make 
room for incoming data, the replacement policy 
determines which line is evicted.

The general goal of the replacement policy is to 
minimize future cache misses by evicting a line that will 
not be referenced often in the future.

56
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Replacement policy

Least recently used (LRU)

The cache ranks each the lines in a set according to  
how recently they have been accessed.

Evicts the least-recently used line from a set when an 
eviction is necessary.

Random

A randomly selected line from the appropriate set is 
evited to make room for incoming data.

Studies have shown that LRU replacement generally 
gives slightly higher hit rates than random replacement, 
but that the differences are very small for caches of 
reasonable size.

57
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Cache in CPU system

In most systems, caches are meant to be transparent.

CPU must stalls while cache fetches blocks from memory, 
and CPU leaves the stall state when cache finished fetching.

58
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LAB 9
Simulation Of I-Cache

&
Set-Associative D-cache
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Tool used

1. Linux 

2. CASLab ARM ISS (Instruction Set Simulator)

• The virtual platform support ARMv5 ISA

3. ARM Toolchain

• 利用arm-none-eabi- 去cross-compile成 ARM code

4. SystemC

• 在此模擬平台使用 SystemC 版本為 2.2.0

5. C

• 主要測試程式以C為主
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實作

本次實驗須完成 mvp-NCKU/armv5/cache.cpp 包含:
 取得 offset, index, tag 之值

 (參考 mvp-NCKU/armv5/include/cache_defs.h)

 實作 read_miss 之 policy

 實作 write_miss 之 policy

完成cache.cpp後，於mvp-NCKU資料夾下make編
譯環境

需在mvp-NCKU/prog/ 目錄下make 編譯 test.c

最後下 ./run vp 驗證是否正確

61
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請參考 cache_defs.h ，將正確的值填入

P.S. : offset, index, tag 在其他function中也有，務
必填入

Finish the following code
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1. Read-miss 發生

2. 從cache寫回physical memory

3. 從physical memory 將資料寫入cache中

4. 資料寫回cache後，調整dirty bit 及 valid狀態

5. CPU將 data 從 cache 中讀回

Read Miss Policy
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Read Miss Policy
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將cache中資料寫回physical memory
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Read Miss Policy
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將資料從physical memory讀入buffer(inst[])中

調整dirty bit 及 valid狀態
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Read Miss Policy
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CPU將 data 從 cache 中讀回

將 buffer 中的值寫入 cache
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1. Write-miss 發生

2. 從cache寫回physical memory

3. 從physical memory 將資料寫入cache中

4. 資料寫回cache後，調整dirty bit 及 valid狀態

5. CPU再對cache寫入

Write Miss Policy
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Write Miss Policy
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將cache中資料寫回physical memory
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Write Miss Policy
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將資料從physical memory讀入到buffer (inst[])

CPU再對cache寫入

調整dirty bit 及 valid狀態
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Hint!!!!

bus_read(*data, addr, length)

 *data : 從memory讀回來要存放之地址

 addr : memory讀取的地址

 length: 讀取長度(byte)

bus_write(data, addr, length)

 data : 須要寫入memory的資料

 addr :寫入memory的地址

 length:寫入長度(byte)

Type of “valid” and “dirty” is boolean
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驗證
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實驗結報

結報格式(每組一份)
 封面 (第幾組+組員)

 實驗內容(程式碼註解、結果截圖)

 實驗心得

繳交位置
 ftp : 140.116.164.225

 帳號/密碼 : coco2016 / coco2016

TA Contact Information:
 助教信箱 : lance91633@gmail.com

 Rm 92617

 Office hour : (Wed.)09:00~12:00
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