
C
om

puter A
rchitecture and S

ystem
 L

aboratory

處理器設計與實作

實習講義

編撰者

助教：黃冠霖、蘇郁翔、鄭基漢、曾微中、金育涵

暨成大電通所計算機架構與系統研究室CASLAB

國立成功大學電機系與電腦與通信工程研究所



C
om

puter A
rchitecture and S

ystem
 L

aboratory

LAB 9 
Simulation Of  I-Cache

&
Set-Associative D-cache



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

實驗目的

1. 認識CPU的Memory Hierarchy

2. 了解cache的運作原理、特性與架構

3. 了解cache之write policies

4. 練習ARMV7A CPU Simulator中icache的實
作與應用

5. 實作簡易Set-Associative Cache修改操作



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Levels of Memory Hierarchy

Upper Level
(Faster)

Lower Level
(larger)

Registers

Main Memory (RAM)

Secondary Storage (Hard Disk)

Cache

CPU



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

The Principle of Locality

Temporal Locality (Locality in Time):

If an item is referenced, it will tend to be referenced again 

soon.

( Example: loop, reuse )

Spatial Locality (Locality in space):

If an item is referenced, items whose addresses are close  

by tend to be referenced soon.

( Example: array access, straight line code )



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Introduction to Cache(1/2)

A smaller, faster memory which stores copies of the data 

from frequently used main memory locations.

(Temporal Locality)
CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Introduction to Cache(2/2)

In a Harvard architecture of caches, instruction and data 

are stored separately.

 Instructions (I-Cache)

Data (D-Cache) addr. data

CPU

icache

addr.data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

dcache

inst.

addr.data



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Performance

Hit Rate:  Fraction of hits in Cache

Miss Rate : 1 – (Hit Rate)

Hit Time: Time to access Cache

Miss Penalty: Time to replace a block from lower level

Average memory-access time ( AMAT )

= Hit Time + Miss rate x Miss penalty 



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Hit vs. Misses

Read hits
 this is what we want!

Read misses
 stall the CPU, fetch block from memory, deliver to cache, restart

Write hits
 can replace data in cache and memory (write-through) 

 write the data only into the cache (write-back)

Write misses
 data at the missed-write location is loaded to cache, followed by a 

write-hit operation.(write-allocate)

 data at the missed-write location is not loaded to cache, and is 
written directly to the backing store.(write-around)

9



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

D-cache vs. I-cache

CPU has the demand for writing and reading data 

memory, while it has no requirement for writing 

instruction memory. (Modifying instruction memory is 

prohibited)

As a result , d-cache will be writed and read by CPU and 

i-cache will be only read.

10



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(1/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Hit



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

data

Cache Read Operation(2/5)

CPU

addr.

addr.data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Hit



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(3/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(4/5)

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

CPU

addr.

addr.

data

data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

CPU sends an address to Cache

Hit : Data in Cache (no penalty)

Miss: Data not in Cache 

(miss penalty)

data

data

Cache Read Operation(5/5)

CPU

addr.

addr.

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

Cache Miss !

Delay

Cache Hit



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Line

Cache Line: unit of memory transfer between two levels in 
a memory hierarchy. Also called a block.

Rather than reading a single word or byte from main memo
ry at a time ,each cache entry is holds a certain number of w
ords.(Spatial Locality)

For example:
 Line size = 1 word: one entry, one word.

 Line size = N words: one entry, N words.



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Associativity

Associativity: The replacement policy decides where a copy 
of a particular entry of main memory will go.

For example:
 Direct mapped: each cache line has only one way to go.

 4-way set associative: each cache line has 4 ways to go.



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1

Main MemoryCache

00
04

08
0c

10
14

18
1c

20

24

28

2c
30

34

38
3c

*0

*4

*8
*c

Index
0
4
8
c

Data

Example 1:
Line size = 1 word

= 32bits
= 4bytes

Address



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(1/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss Index

0

4

8

c



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(2/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

Index

0

4

8

c



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(3/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss Mem[00]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(4/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

Mem[00]

Index

0

4

8

c



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(5/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

Mem[00]

Mem[04]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(6/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

Mem[00]

Mem[04]

Mem[08]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(7/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

0c Miss

Mem[00]

Mem[04]

Mem[08]

Mem[0c]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(8/8)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Memory Block Hit/Miss

00 Miss

04 Miss

08 Miss

0c Miss

10 Miss

Mem[10]

Mem[04]

Mem[08]

Mem[0c]

Index

0

4

8

c

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2

Main MemoryCache

00
04

08
0c

10
14

18
1c

20

24

28

2c
30

34

38
3c

index

0*
1*
2*
3*

00

10

20
30

04

14

24
34

08

18

28
38

0c

1c

2c
3c

Example 2:
Line size = 4 words

= 32 x 4 = 128 bits
= 16 bytes



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(1/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss Index

0*

1*

2*

3*



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(2/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

Index

0*

1*

2*

3*



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(3/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(4/7)

Cache

The sequence of memory access:  00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(5/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[0c]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(6/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

0c Hit

Mem[00]

Index

0*

1*

2*

3*

Mem[04] Mem[08] Mem[10]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(7/7)

Cache

The sequence of memory access: 00, 04, 08, 0c, 10

Mem Block Hit/Miss

00 Miss

04 Hit

08 Hit

0c Hit

10 Miss

Mem[00]

Mem[10]

Index

0*

1*

2*

3*

Mem[04]

Mem[14]

Mem[08]

Mem[18]

Mem[0c]

Mem[1c]

From main memory



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache Architecture(1/4)

Block Address (32-bit)

Tag Index word 00

Index : Decide which entry of cache should be accessed

Tag : Check if the cache access is a hit or not

Word(offset) : Decide which data of entry to output

How do we decide number of bits in each part?

Cache Addressing mode (aligned to a word for instruction):



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

1 0008… 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 00c0… 0x0024000 0x0024004 0x0024008 0x002400c

1 0000… 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(2/4)

Valid

Tag

Data

Tag IndexAddress [31:0]

000

001

010

011

100

101

110

0000 0000 0000 0000 0000 0000 0 100 10 00

Word

Word=0 Word=1 Word=2 Word=3

111

Index

31                                                                                                           7 6           4 3  2 1        0

2-bit [1:0]

2-bit [3:2]3-bit [6:4]

32-3-2-2=25-bit [31:7]

This is a Cache with 8 entries, and each line (entry) has 4 words (data). 



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

1 0008… 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 00c0… 0x0024000 0x0024004 0x0024008 0x002400c

1 0000… 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(3/4)

Valid Tag

Tag IndexAddress [31:0]

0000 0000

0000 0001

0000 0000 0000 0000 0000 0000 0010 10 00

Word

Word=0 Word=1 Word=2 Word=3

1111 1111

Index

31                                                                                       12 11                           4 3 2 1        0

2-bit [1:0]

2-bit [3:2]

8-bit [11:4]32-8-2-2=20-bit [31:12]

If a Cache with 256 entries, and each line (entry) has 4 words (data) …  

.

.

.

.

.

.



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

1 0x0008 0x00001c0 0x00001c4 0x00001c8 0x00001cc

0

0

1 0x00c0 0x0024000 0x0024004 0x0024008 0x002400c

1 0x0000 0x1c00000 0x1x00004 0x1c00008 0x1c0000c

0

0

0

Cache Architecture(4/4)

Valid Tag

Data

Tag Index
Address

000

001

010

011

100

101

110

=
tag_in

tag_out

Hit = 1  ( Cache Hit )

(tag_in = tag_out) & valid_out =1

0x0000 100 10 00

Word

Word=00 Word=01 Word=10 Word=11

Data Output = 
0x1c00008

111

Index



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Write Policy

Write hit

Write-through (WT)

Write –back (WB)

Write miss 

Write-allocate (or write allocation)

Write around

39



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Write Policy

Write-hit policies

Write-through (also called store-through)
Write to main memory whenever a write is performed to the 

cache.

Write –back (also called store-in or copy-back)
Write to the main memory when the modified data in 

cache is evicted.

40



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Write Policy

41

Write-Through Write-Back

Policy
Data written to cache block 
also written to lower-level 

memory

Write data to the cache 
only, copy back when 
replacing a dirty copy

Debug Easy Hard

Do read misses produce 
writes?

No Yes

Do repeated writes make it 
to lower level?

Yes No



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Write Policy

Write-miss policies

Write-allocate (or write allocation)
Read the missing block from the lower level memory into 

cache, and then work as write hit (WT or WB).

Write-around 
Write the data into the next level memory.

42



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

N-way set associative

N direct mapped caches in parallel

An index gets N blocks

43



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Cache

44



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Set-Associative Cache

45



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Associativity

Associativity is a trade-off.

Cache operations with more associativity takes more 
power, chip area, and potentially time.

However, caches with more associativity suffer fewer 
misses, so that CPU wastes less time reading from main 
memory.

46



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

47

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss Index

0

1

2

3



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

48

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss
Mem[00]

Index

0

1

2

3



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

49

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss
Mem[00]

Index

0

1

2

3

Mem[20]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

50

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

Mem[00]

Index

0

1

2

3

Mem[20]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

51

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

1c Miss

Mem[00]

Mem[1c]

Index

0

1

2

3

Mem[20]



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

52

Main Memory
Cache

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss

00 Miss

20 Miss

00 Hit

1c Miss

00 Hit

Mem[00]

Mem[1c]

Index

0

1

2

3

Mem[20]

Hit Rate = 40%



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Set-Associative Cache

53



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Type of cache misses

Compulsory misses:

The block must be brought into the cache on the 
first access to a block; also called code start misses

Capacity misses:

Blocks are being discarded from cache because 
cache can’t contain all block needed for program 
execution

Conflict misses:

Conflict misses occur when multiple blocks are 
mapped to the same set, and it could not happen 
in case of fully set associative cache

54



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Type of cache misses

Cache optimization

55

Design change Effect on miss rate
Possible negative 

performance effect

increase cache size reduce capacity misses
possibly increase access 

time

increase associativity reduce conflict misses
possibly increase access 

time

increase block size reduce compulsory misses increase miss penalty



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Replacement policy

When a line must be evicted from a cache to make 
room for incoming data, the replacement policy 
determines which line is evicted.

The general goal of the replacement policy is to 
minimize future cache misses by evicting a line that will 
not be referenced often in the future.

56



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Replacement policy

Least recently used (LRU)

The cache ranks each the lines in a set according to  
how recently they have been accessed.

Evicts the least-recently used line from a set when an 
eviction is necessary.

Random

A randomly selected line from the appropriate set is 
evited to make room for incoming data.

Studies have shown that LRU replacement generally 
gives slightly higher hit rates than random replacement, 
but that the differences are very small for caches of 
reasonable size.

57



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Cache in CPU system

In most systems, caches are meant to be transparent.

CPU must stalls while cache fetches blocks from memory, 
and CPU leaves the stall state when cache finished fetching.

58



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

LAB 9
Simulation Of I-Cache

&
Set-Associative D-cache



C
om

puter A
rchitecture and S

ystem
 L

aboratory

The Institute of Computer and Communication Engineering, NCKU

Tool used

1. Linux 

2. CASLab ARM ISS (Instruction Set Simulator)

• The virtual platform support ARMv5 ISA

3. ARM Toolchain

• 利用arm-none-eabi- 去cross-compile成 ARM code

4. SystemC

• 在此模擬平台使用 SystemC 版本為 2.2.0

5. C

• 主要測試程式以C為主



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

實作

本次實驗須完成 mvp-NCKU/armv5/cache.cpp 包含:
 取得 offset, index, tag 之值

 (參考 mvp-NCKU/armv5/include/cache_defs.h)

 實作 read_miss 之 policy

 實作 write_miss 之 policy

完成cache.cpp後，於mvp-NCKU資料夾下make編
譯環境

需在mvp-NCKU/prog/ 目錄下make 編譯 test.c

最後下 ./run vp 驗證是否正確

61



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

請參考 cache_defs.h ，將正確的值填入

P.S. : offset, index, tag 在其他function中也有，務
必填入

Finish the following code

62



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

1. Read-miss 發生

2. 從cache寫回physical memory

3. 從physical memory 將資料寫入cache中

4. 資料寫回cache後，調整dirty bit 及 valid狀態

5. CPU將 data 從 cache 中讀回

Read Miss Policy

63



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Read Miss Policy

64

將cache中資料寫回physical memory



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Read Miss Policy

65

將資料從physical memory讀入buffer(inst[])中

調整dirty bit 及 valid狀態



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Read Miss Policy

66

CPU將 data 從 cache 中讀回

將 buffer 中的值寫入 cache



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

1. Write-miss 發生

2. 從cache寫回physical memory

3. 從physical memory 將資料寫入cache中

4. 資料寫回cache後，調整dirty bit 及 valid狀態

5. CPU再對cache寫入

Write Miss Policy

67



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Write Miss Policy

68

將cache中資料寫回physical memory



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Write Miss Policy

69

將資料從physical memory讀入到buffer (inst[])

CPU再對cache寫入

調整dirty bit 及 valid狀態



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

Hint!!!!

bus_read(*data, addr, length)

 *data : 從memory讀回來要存放之地址

 addr : memory讀取的地址

 length: 讀取長度(byte)

bus_write(data, addr, length)

 data : 須要寫入memory的資料

 addr :寫入memory的地址

 length:寫入長度(byte)

Type of “valid” and “dirty” is boolean

70



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

驗證

71



C
o

m
p

u
te

r A
rc

h
ite

c
tu

re
 a

n
d

 S
y
s
te

m
 L

a
b

o
ra

to
ry

The Institute of Computer and Communication Engineering, NCKU

實驗結報

結報格式(每組一份)
 封面 (第幾組+組員)

 實驗內容(程式碼註解、結果截圖)

 實驗心得

繳交位置
 ftp : 140.116.164.225

 帳號/密碼 : coco2016 / coco2016

TA Contact Information:
 助教信箱 : lance91633@gmail.com

 Rm 92617

 Office hour : (Wed.)09:00~12:00

72


