ot5 %
j?’ri—’;‘f%ﬁ gt~ BOAE S B AT~ £V E
T & R 8 % e 4 2 g 3 CASLAB

®
@)
=
(@]
(-
=
D
—
>
—
(@)
=
;-
(@)
(@)
t—f
(-
=
(@)
oo
)
(@
@9
<
%%
t—r
=
£
on
@)
=
ad
=
@)
=
<

EIRESEENE Sl SRR T R B <y

LAB 9

Simulation Of |I-Cache
&
Set-Associative D-cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
Q
(-
=
(@)
oo
)
(@
@9
<
%%
Z
(@)
=
£
on
@)
=
od
=
@)
=
<

B E B

s CPURIMemory Hierarchy
[#EcacheRVEIEIRIE ~ 1142815
7 ##cachezwrite policies

> wh =

2 ARMV7A CPU Simulator®icachefy &
EEAfE

5. EfEfS55Set-Associative CachelEiiE1E

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
=
od
=
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Levels of Memory Hierarchy

Secondary Storage (Hard Disk)

Lower Level
(larger)

®

O

=

(@]

=1

@ CPU 1+ Upper Level
-

> ; (Faster)
- Registers

= 3

=3

—

g Cache

=

(-5 I

[ab)

=

Q‘ .

W Main Memory (RAM)
Z

D

: !

5

on

Q

&5

O

—

<

The Institute of Computer and Communication Engineering, NCKU

The Principle of Locality

¢ Temporal Locality (Locality in Time):
If an item is referenced, it will tend to be referenced again
soon.
(Example: loop, reuse)

¢ Spatial Locality (Locality in space):
If an item is referenced, items whose addresses are close

by tend to be referenced soon.
(Example: array access, straight line code)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Introduction to Cache(1/2)

4 A smaller, faster memory which stores copies of the data

from frequently used main memory locations.

®!
@)
=
(®)
=1
9
-
>
S
=
%.
O []
& (Temporal Locality) CPU | Processor
@)
% data t y_addr.
Q.
@)
§ Cache Memory
2 (K Bytes)
=
g data 1 y addr.
o
o
&
Main Memory
(G Bytes)

The Institute of Computer and Communication Engineering, NCKU

are stored separately.

Introduction to Cache(2/2)

» Instructions (I-Cache)

CPU

A

» Data (D-Cache) inst.

1cache

addr.

a

data
A 4

dcache

data t laddr.

data § |addr.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

4 In a Harvard architecture of caches, instruction and data

Processor

Cache Memory
(K Bytes)

Main Memory
(G Bytes)

The Institute of Computer and Communication Engineering, NCKU

Cache Performance

4 Hit Rate: Fraction of hits in Cache
4 Miss Rate : 1 — (Hit Rate)
4 Hit Time: Time to access Cache
4 Miss Penalty: Time to replace a block from lower level
€ Average memory-access time (AMAT)
= Hit Time + Miss rate x Miss penalty

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Hit vs. Misses

& Read hits

> this is what we want!

4 Read misses

» stall the CPU, fetch block from memory, deliver to cache, restart
4 Write hits

» can replace data in cache and memory (write-through)

» write the data only into the cache (write-back)
4 Write misses

» data at the missed-write location is loaded to cache, followed by a
write-hit operation.(write-allocate)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

» data at the missed-write location is not loaded to cache, and is
written directly to the backing store.(write-around)

The Institute of Computer and Communication Engineering, NCKU

D-cache vs. |-cache

4 CPU has the demand for writing and reading data
memory, while it has no requirement for writing
instruction memory. (Modifying instruction memory is

prohibited)

4 As a result, d-cache will be writed and read by CPU and

i-cache will be only read.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

10

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(1/5)

4 CPU sends an address to Cache

CPU Processor

€ Hit : Data in Cache (no penalty)

Cache Hit oy
T.
¥ Miss: Data not in Cache
. Cache Memory
(miss penalty) (K Bytes)

data t y_addr.

Main Memory
(G Bytes)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(2/5)

4 CPU sends an address to Cache

CPU Processor

€ Hit : Data in Cache (no penalty)

Cache Hit oy
T.
¥ Miss: Data not in Cache
. Cache Memory
(miss penalty) (K Bytes)

data t y_addr.

Main Memory
(G Bytes)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(3/5)

4 CPU sends an address to Cache

@ Hit : Data in Cache (no penalty) . .uer | U | e

data ¥ addr.

€ Miss: Data not in Cache
. Cache Memory
(miss penalty) \: (K Bytes)

data t y_addr.

Main Memory
(G Bytes)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Cache Read Operation(4/5)

4 CPU sends an address to Cache

@ Hit : Data in Cache (no penalty) . .uer | U | e

data ¥ addr.

€ Miss: Data not in Cache
. Cache Memory
(miss penalty) \: (K Bytes)

data t y_addr.

Main Memory
(G Bytes)

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

4 CPU sends an address to Cache

4 Hit : Data in Cache (no penalty)

& Miss: Data not in Cache
(miss penalty)

Cache Read Operation(5/5)

CPU

Processor

Cache Hit
data

\

y addr.

Cache Miss !
Cache Memory
\ (K Bytes)

Delay data T

A

L addr.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Main Memory
(G Bytes)

The Institute of Computer and Communication Engineering, NCKU

Cache Line

4 Cache Line: unit of memory transfer between two levels in
a memory hierarchy. Also called a block.

4 Rather than reading a single word or byte from main memo
ry at a time ,each cache entry is holds a certain number of w
ords.(Spatial Locality)

4 For example:
» Line size = 1 word: one entry, one word.
» Line size = N words: one entry, N words.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
Z
(@)
=
£
on
@)
=
od
=
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Associativity

4 Associativity: The replacement policy decides where a copy
of a particular entry of main memory will go.
4 For example:

» Direct mapped: each cache line has only one way to go.
» 4-way set associative: each cache line has 4 ways to go.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Direct Mapped Example 1

00 » Address
04

08

Oc

10

14

18

1c

20

24

Example 1:
Line size = 1 word
= 32bits
= 4bytes
Index Data
0 *()
4 4
8 8
Cache

28

2C

30

34

38

3c

Main Memory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(1/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(2/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index
00 Miss > ()
4
8
c

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Memory Block

Hit/Miss

00

Miss

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Direct Mapped Example 1(3/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Index
From main memory
0 Mem[00] D
4
8
C

Cache

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(4/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index
00 Miss 0 Mem[00]
04 Miss > 4
8
c

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(5/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index
D Miss 0 bERY From main memory
04 Miss 4 Mem[04] —
8
c

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(6/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index
00 Miss 0 Mem[00]
X Miss 4) From main memory
U8 Miss > g Mem[08] | +———
c
Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(7/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index
00 Miss 0 Mem[00]
04 Miss 4 Mem[04]
= Miss 8 Mem[08] From main memory
Oc Miss c Mem([Oc] —
Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 1(8/8)

The sequence of memory access: 00, 04, 08, Oc, 10

Memory Block Hit/Miss Index From main memory
00 Miss 0 Mem[10] —
04 Miss 4 Mem[04]
08 Miss] Mem[08]
Oc Miss c Mem([Oc]
10 Miss

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2

®

@)

= Example 2:

S xample 2:

& Line size = 4 words

> i

el =32 x4 =128 bits i

o = 16 bytes v

% index }2

= 0% 00 04 08 Oc 13

. 1* 10 14 18 I Lo

P 0 20 24 28 2 20

= 3 30 34 38 3 2

8 \ 28
)¢

E 30

& 34

= 38

§ 3c

@)

Z Cache Main Memory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(1/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss Index

0+
1+
»
3

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(2/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss Index
00 Miss >0+ |

1

D%

3

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Direct Mapped Example 2(3/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block

Hit/Miss

00

Miss

v

Index

O*
1*
i
3

| Mem[00] | Mem[04] | Mem[08] | Mem[Oc]

a

Cache

From main memory

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(4/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss Index
00 Miss / 0% | Mem[00] | Mem[04] | Mem[08] | Mem0c]

04 Hit -

D%

3

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(5/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss Index

00 Miss 0% | Mem[00] | Mem[04] | Memf08] | Mem[Oc]
04 Hit / 5
08 Hit o
3%

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Direct Mapped Example 2(6/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss
00 Miss
04 Hit
08 Hit
Oc Hit

Index
O*
1%
o
3

| Mem[00] Mem[04] Mem[08] | Mem[10]

Cache

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Example 2(7/7)

The sequence of memory access: 00, 04, 08, Oc, 10

Mem Block Hit/Miss Index
00 Miss 0* | Mem[00] | Mem[04] [Mem[08] | Mem[Oc]
04 Hit 1% | Mem[10] | Mem[14] | Mem[18] | Mem[lc]
08 Hit % 1
Oc Hit 3%
10 Miss

Cache

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

From main memory

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Cache Architecture(1/4)

Cache Addressing mode (aligned to a word for instruction):

Block Address (32-bit)
Tag Index word 00

Index : Decide which entry of cache should be accessed

Tag : Check if the cache access is a hit or not

Word(offset) : Decide which data of entry to output

How do we decide number of bits in each part?

The Institute of Computer and Communication Engineering, NCKU

Cache Architecture(2/4)

Q This 1s a Cache with 8 entries, and each line (entry) has 4 words (data).
% 3bit [6:4] \2 bit [3:2]
§ Address [31:0] Index Word
E 0000 0000 0000 0000 0000 0000 0O 100 10 00
% 31 l 76 43 21 0 l
=
(@)
aQ
CED, 32-3-2-2=25-bit [31:7] 2-bit [1:0]
jab)
= Index Valid I Data |
ff Tag Word=0 Word=1 Word=2 Word=3
%} 000 1 0008--- 0x00001c0 0x00001c4 0x00001c8 0x00001cc
= 001 0
- 010 0
g 011 1 00c0--- 0x0024000 0x0024004 0x0024008 0x002400c
a 100 1 0000--- 0x1c00000 0x1x00004 0x1c00008 0x1c0000c
O
3 101 |0

110 0

111 0

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
Z
(@)
=
£
on
@)
=
od
=
@)
=
<

Cache Architecture(3/4)

If a Cache with 256 entries, and each line (entry) has 4 words (data) ---

Address [31:0] Tag Index Word
0000 0000 0000 0000 0000 0000 0010 10 00
3] 1211 3 211 0
2-bit [3:2]
32-8-2-2=20-bit [31:12] 8-bit [11:4] 2-bit [1:0]
Index Valid Tag Word=0 Word=1 Word=2 Word=3
0000 0000 1 0008+ 0x00001¢0 0x00001c4 0x00001c8 0x00001cc
0000 0001 0
0
1 00c0-+ 0x0024000 0x0024004 0x0024008 0x002400c
1 0000--- 0x1c00000 0x1x00004 0x1c00008 0x1c0000c
0
0
1111 1111 0

The Institute of Computer and Communication Engineering, NCKU

Address

Cache Architecture(4/4)

(tag 1n =tag out) & valid out =1

®

@)

.% Tag Index Word

g 0x0000 100 10 | 00

& Data Output =
> 0x1c00008
— A

@

% [Data

a Index Valid Tag Word=00 Word=01 Word=10 Word=11
E 000 1| 0x0008 0x00001c0 0x00001c4 0x00001c8 0x00001cc
@)

= 001 L

O, 010 0

§</3 011 1| 0x00c0 0x0024000 0x0024004 0x0024008 0x002400c
(«@Dr —> 100 1‘ 0x0000 0x1c00000 0x1x00004 0x1c00008 0x1c0000c
E 101 [of

& O

=5 110

S 111 |9

g tag out

Q tag 1n =

o

Hit=1 (Cache Hit)

The Institute of Computer and Communication Engineering, NCKU

Write Policy

¢ Write hit
» Write-through (WT)
» Write —back (WB)
4 Write miss

» Write-allocate (or write allocation)
» Write around

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

39

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

Write Policy

4 Write-hit policies
» Write-through (also called store-through)

® Write to main memory whenever a write is performed to the
cache.

» Write —back (also called store-in or copy-back)

® Write to the main memory when the modified data in
cache is evicted.

40

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
(@]
(-
ﬁ
D
—
>
—
(@)
=
;-
@
(@)
t—f
(-
=
(@)
oo
)
(@
@9
<
%%
t—r
=
£
on
@)
—
ad
ﬁ
@)
=
<

Write Policy

Write-Through

Data written to cache block

Write-Back
Write data to the cache

Policy also written to lower-level only, copy back when
memory replacing a dirty copy
Debug Easy Hard
Do read misses produce No Yes
writes?
Do repeated writes make it Yes No

to lower level?

41

The Institute of Computer and Communication Engineering, NCKU

Write Policy

4 Write-miss policies
» Write-allocate (or write allocation)

® Read the missing block from the lower level memory into
cache, and then work as write hit (WT or WB).

» Write-around

® Write the data into the next level memory.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

42

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

N-way set associative

4 N direct mapped caches in parallel
4 An index gets N blocks

Way 0 Way | Way 2 Way 3

index 0 Set 0
1 N
2 | I | |
| | [|
| | [| Set 199
| | | |
| | | |
43

The Institute of Computer and Communication Engineering, NCKU

Direct Mapped Cache

Address (showing bit positions)
3130.-+-131211---210

Byte
offset
> 4 20 10
Hit N~ ~ Data
= Tag ;
Index
Index Valid Tag Data
(¢]
1
2

1021
1022
1023
20 432
v
sl -

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

44

The Institute of Computer and Communication Engineering, NCKU

Set-Associative Cache

Address
3130---12111098---3210

Index V Tag Data V Tag Data V Tag Data V Tag Data

:/440-1 multiplexor
—

Hit Data

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
Z
(@)
=
£
on
@)
=
od
=
@)
=
<

45

The Institute of Computer and Communication Engineering, NCKU

Associativity

4 Associativity is a trade-off.

¢ Cache operations with more associativity takes more
power, chip area, and potentially time.

¢ However, caches with more associativity suffer fewer
misses, so that CPU wastes less time reading from main
memory.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
Z
(@)
=
£
on
@)
=
od
=
@)
=
<

46

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block

Hit/Miss

Main Memory

Index

Cache

47

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block

Hit/Miss

00

Miss

Main Memory

Index

0 == Mem[00]

Cache

48

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss Indéx
00 Miss
0 =~ Mem|[00] Mem[20]
20 Miss
1
2
3

Cache
Main Memory

49

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss Indéx
00 Miss
0 Y= Mem|[00] Mem[20]
20 Miss
1
00 Hit
2
3

Cache
Main Memory

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

50

The Institute of Computer and Communication Engineering, NCKU

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss Index
00 Miss
0 Mem[00] Mem|[20]
20 Miss
1
00 Hit
2
Ic Miss
3 Y= Mem|[Ic]

Cache
Main Memory

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

51

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
(-
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(-
=
(@)
oo
)
(@
@9
<
%%
(—r
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

2-Way Associative Example

The sequence of memory access: 00, 20, 00, 1c, 00

Mem Block Hit/Miss
00 Miss
20 Miss
00 Hit
lc Miss
00 Hit

Main Memory

Hit Rate = 40%

Index

0 === Mem[00] Mem[20]

3 Mem[l1c]

Cache

52

The Institute of Computer and Communication Engineering, NCKU

®!
@)
=
(@]
(-
ﬁ
D
—
>
—
O
=
;0
@
(@)
t—f
(-
=
Q)
oo
)
(@
w2
<
%%
t—r
5
£
o
O
—
ad
ﬁ
@)
=
<

Set-Associative Cache

Direct Mapped

. Tag Index Offset

A cache block can only go in one spot in the
cache. Tt makes a cache block very easy to
find, but it's not very flexible about where
to put the blocks.

2-Way Set Associative

Tag Index Offset

This cache is made up of sets that can fit
two blocks each. The index i= now used to
find the set. and the tag helps find the
block within the set.

4-Way Set AssociatTive

Tag Tndex Offset

Each set here fits four blocks, so there are
fewer sets. As such, fewer index bits are

needed.

Fully Associative

Tag Offset

Mo index is needed, since a cache block can
go anywhere in the cache. Every tag must be
compared when finding a block in the cache,
but block placement is very flexible!

53

The Institute of Computer and Communication Engineering, NCKU

Type of cache misses

¢ Compulsory misses:

The block must be brought into the cache on the
first access to a block; also called code start misses
¢ Capacity misses:

Blocks are being discarded from cache because
cache can’t contain all block needed for program
execution

& Conflict misses:

Conflict misses occur when multiple blocks are
mapped to the same set, and it could not happen
in case of fully set associative cache

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
=
od
=
@)
=
<

54

The Institute of Computer and Communication Engineering, NCKU

Type of cache misses

4 Cache optimization

. . Possible negative
Design change Effect on miss rate g
performance effect
. . . . possibly increase access
Increase cache size reduce capacity misses ime
: S . . possibly increase access
ncrease associativity reduce conflict misses fime
increase block size reduce compulsory misses increase miss penalty

®!
@)
=
(]
(-
ﬁ
D
—
>
—
O
=
:o
(@)
(@)
{—f
(-
=
(@)
o
-
(@
w2
S
v
r—r
Q)
=
9
o
O
=
ad
ﬁ
@)
—=
<

55

The Institute of Computer and Communication Engineering, NCKU

Replacement policy

When a line must be evicted from a cache to make
room for incoming data, the replacement policy
determines which line is evicted.

4 The general goal of the replacement policy is to
minimize future cache misses by evicting a line that will
not be referenced often in the future.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

56

The Institute of Computer and Communication Engineering, NCKU

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—f
(e
=
(@)
oo
)
(@
@9
<
(@9}
f—f
(@)
=
£
on
@)
=
od
=
@)
=
<

Replacement policy

4 Least recently used (LRU)

The cache ranks each the lines in a set according to
how recently they have been accessed.

Evicts the least-recently used line from a set when an
eviction is necessary.

Random

A randomly selected line from the appropriate set is
evited to make room for incoming data.

Studies have shown that LRU replacement generally
gives slightly higher hit rates than random replacement,
but that the differences are very small for caches of

reasonable size.
57

The Institute of Computer and Communication Engineering, NCKU

Cache in CPU system

4 In most systems, caches are meant to be transparent.

4 CPU must stalls while cache fetches blocks from memory,
and CPU leaves the stall state when cache finished fetching.

®
@)
=
o
—
ﬁ
D
—
>
—
(@)
=
;-
(@)
(@)
f—r
(e
=
(@)
oo
)
(@
@9
<
(@9}
(—f
(@)
=
£
on
@)
—
od
ﬁ
@)
=
<

58

The Institute of Computer and Communication Engineering, NCKU

LAB 9

Simulation Of I-Cache
&
Set-Associative D-cache

®
@)
=
(@]
(-
=
D
—
>
—
(@)
=
;-
@
(@)
t—f
(-
=
(@)
oo
)
(@
@9
<
%%
t—r
=
£
on
@)
=
ad
=
@)
=
<

The Institute of Computer and Communication Engineering, NCKU

Tool used

1. Linux

2. CASLab ARM ISS (Instruction Set Simulator)
« The virtual platform support ARMvS ISA

3. ARM Toolchain

K] FHarm-none-eabi- Zcross-compileff ARM code

4. SystemC
TEULEESE &6 A SystemC FRAZ% 2.2.0
5. C

s
3
=
@
>
S
2
@
-
o
@
2}
3
3
2
Q
o
<

- FEAFEENLICHRE

The Ingtitute of Computer and Communication Engineering, NCKU

@,
o)
=)
T
-
—+
)
-
>
)
o
-
=.
9)
Q
—~
c
-
®
Q
=
o
0p)
<
%
—+
@
=
—
Q
o
o
-
)
[ongl
o
p |
<

it

¢ KR E /A5, mvp-NCKU/armv5/cache.cpp 815
> EViF offset, index, tag Z1&
> (2% mvp-NCKU/armv5/include/cache_defs.h)
> E1F read_miss Z policy
> E1F write_miss Z policy

¢ StAlcache.cppf® + FAmvp-NCKUE KK N make#x
EIRiE

¢ ETEmvp-NCKU/prog/ B & Fmake #R:Z test.c

¢ Ex#& N Jrunvp iR EILE

61

The Institute of Computer and Communication Engineering, NCKU

Finish the following code

4 /S 2 cache defs.h - #F1IFHEREEA
¢ P.S. : offset, index, tag TEE ftifunction®F 5B - 7%
INIE A

bool CACHE::cache read(bool policy, uint32 t phy, uint32 t addr,
{

bool success = true:
bool hit = false;

uint32 t offset = ?277;

uint32 t index = 2?7?77,
uint32 t tag = 7777;

@,
o)
=)
T
-
—+
)
-
>
)
o
-
=.
9)
Q
—~
c
-
®
Q
=
o
0p)
<
%
—+
@
=
—
Q
o
o
-
)
[ongl
o
p |
<

62

The Institute of Computer and Communication Engineering, NCKU

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

Read Miss Policy

Read-miss &4

fit cache® [Elphysical memory

fitphysical memory i#F &5 Acache

B itlE[Clcachef® - #EEdirty bit & validik&x

H RS

CPU#& data £ cache ¢

63

The Institute of Computer and Communication Engineering, NCKU

Read Miss Policy

(cache[way] [index].dirty)

{
phy base = cache[way][index].phy tag | ((index & 0x00ff) << 5);

printd(d armv5 cache, "%s write back @ Ox%x index = %d!!", moduleName, phy b

0; 1 < CACHE LINE; i++)

(larm->bus write(????, 7777, 4))

printb(d armv5 cache, "%s write failed!!", moduleName);

}
phy base+=4;

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

64

The Institute of Computer and Communication Engineering, NCKU

Read Miss Policy

i = SHE physical memorys& Abuffer(inst[]) =

0; 1 < CACHE LINE; i++)

(tarm->bus read(&?7?7?, 7277, 4))

printb(d armv5 cache "%s read failed!!", moduleName);

}
phy base+=4;

cache[way] [index].dirty = ??77;
— FA%dirty bit & validAk £&

cache[way] [index].phy tag = tag;

77?

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

cache[way] [index].valid

65

The Institute of Computer and Communication Engineering, NCKU

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

Read Miss Policy

TH1EE A cache

1 buffer o

(1 =0; 1 <
cache[way] [

success = read/(

SUCCEeSS;

CPUj& data &£ cache iE[E] —

CACHE LINE; 1++)
index].data[1] = inst[i];

72727, 27722, vir; size):

66

The Institute of Computer and Communication Engineering, NCKU

Write Miss Policy

1. Write-miss 4

2. fitcacheX[olphysical memory

3. fiphysical memory & i}5E Acached

4. ElZF[Clcache’® - #EEdirty bit & validii &

5. CPUEB¥fcacheE A

@,
o)
=)
T
-
—+
)
-
>
)
o
-
=.
9)
Q
—~
c
-
®
Q
=
o
0p)
<
%
—+
@
=
—
Q
o
o
-
)
[ongl
o
p |
<

67

The Institute of Computer and Communication Engineering, NCKU

Write Miss Policy

(cache[way] [index].dirty)

{
phy base = cache[way][index].phy tag | ((index & 0x00ff) << 5);

printd(d armv5 cache, "%s write back @ Ox%x index = %d!!", moduleName, phy b

0; 1 < CACHE LINE; i++)

(larm->bus write(????, 7777, 4))

printb(d armv5 cache, "%s write failed!!", moduleName);

}
phy base+=4;

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

68

The Institute of Computer and Communication Engineering, NCKU

Write Miss Policy

18 & ki physical memory:& A Zlbuffer (inst[])

0; 1 < CACHE LINE; i++)

(tarm->bus read(&?7?7?, 7277, 4))

1

success = false;

printb(d armv5 cache, "%s read failed!!", moduleName);
}
phy base+=4;

success = write(&(?22?), 22?2, vir, size); CPUB ¥fcache®Z= A

a . . . NN
cache[way] [index].phy tag = tag; a5 22 dirty bit & validii 25
T &

cache[way] [index].valid =
cache[way] [index].dirty = ??2?77;

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

69

The Institute of Computer and Communication Engineering, NCKU

Hint!!!]

4 bus_read(*data, addr, length)
> *data : iEmemory:E 21 2R 217 J 2 3h it
> addr : memory:g EY A i3t
> length: BBV E (byte)
4 bus_write(data, addr, length)
> data : ZRZE AmemoryHyE i
> addr :E Amemoryfithilt
> length: 52 A K (byte)

4 Type of “valid” and “dirty” is boolean

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

70

The Institute of Computer and Communication Engineering, NCKU

<peripherals.h=
<isr.h>
<stdio.h>
<stdlib.h>

oW

[address]
[address]
[address]
[address]
[address]

Read
Read
Read
Read
Read

ncku@ncku-VirtualBox: ~/Desktop/2015_lab8/mvp-NCKU

ad4=e3c550ff:
a8=e3855010:
ac=el121fP6O5:
be=ebope7fe:
20bB=e52db8e4:

Hit
Hit
Hit
Hit
Miss

int fibonacci_iterative(){ [address] 7ffdc7c= B: Write Miss

}

{

Aiojeloge] walsAg pue ainjoaliyoly Jaindwo)

int main(int argc, char *argv[])

int *a = Oxvffdc7c, *b = Ox7ffdc8o;

0x32;
*a - 2;

return 0;

Laddress |
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[address]
[addeacze]
[address]
[address]
[address]
[address]
[address]
Laudress |
[address]
[address]
[address]
| address]
|address |
[address]
[address]
[address]
[address]
[address |
[address]

20D4=e28dDBOO:
20b8=e24ddoi14:
20bc=e50beB10:
7ffdcéc= 246¢C:
20cB=e50b1014:
7ffdceg=Fffffffc:
20c4=e59f303c:
2108= 7ffdcvc:
20cB=e50b3008:
7ffdc74= 7ffdcvc:
20cc=e59f3038:
210c= 7ffdc8o:
20de=e50b3006cC:
7ffdc7e= 7ffdc8o:
20d4=e51b3008:
7ffdc74= 7ffdcvc:
20d8=e3a02032:

Read H1t
Read Hit
Read Hit
Write Hit
Read Miss
Write Hit
Read Hit
Read Miss
Read Hit
Write Hit
Read Hit
Read Hit
Read Hit
Write Hit
Read Hit
Read Hit

FAAd-r—aCRIIAARM -

7ffdc7c= 32:
20eB=e51b3008:
7ffdc74= 7ffdcvc:
20e4=e5933000:
7ffdc7c= 32:
LUBB=2L953.004 0
20ec=e51b300cC:
7ffdc7o= 7ffdc8o:
20fB=e5832000:
7ffdc8e= 30:
ZUT4=e33v3000:
20f8=e1a00003:
20fc=e28bdoen:
2100=e8bd0oB0A:
7ffdc7c= 32:
2104=el127TT1e:
b4=efffffff:

Read
Read
GEL
Read
Hedd
Read
Read
Read

Kead
Read
Read
Read
Read
Read
Read

Read Hit

Write Hit

Miss
Hit
Hit
Hit
ALL
Hit
Hit
Hit

Write Miss

HLT
Hit
Hit
Miss
Hit
HLT
Hit

71

The Institute of Computer and Communication Engineering, NCKU

& B RN(F -
> o (5 SmtwE)
> BN RS AEEE S B AR
> FEhu
&\ R
> ftp : 140.116.164. 225

> tRE./%IE : coco2016 / coco2016

¢ TA Contact Information:
> BAaris 4 @ lance91633@gmail. com
> Rm 92617
» Office hour : (Wed.)09:00~12:00

Q
o
3
©
C
—
®
=
>
=
)
=
=
@
)
—
-
=
@
o))
-
o
92
<
n
—
®
3
—
Q
o
o
~
Q
—
O
=
<

72

The Institute of Computer and Communication Engineering, NCKU

