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An Instruction Set Simulator with GDB Support

and its Full System Simulation Virtual Platform

Student : Shin-Ying Lee Advisor : Chung-Ho Chen

Institute of Computer and Communication Engineering
National Cheng Kung University
Tainan, Taiwan

Abstract

When developing a system-on-a-chip (SoC) embedded system, how to develop
the system software as well as co-verify the hardware and software before all

hardware modules are available is usually a big challenge for engineers.

In this thesis, we have implemented a virtual platform with an ARM-based
instruction set simulator in SystemC. This virtual platform provides a functional
and/or approximate-timed accurate full system simulation environment. By this
SystemC virtual platform, SoC developers are able to co-simulate, co-verify, evaluate,
and analyze the whole SoC system including hardware devices, OS kernel, device
drivers, and application programs...etc., in a simple way. Also, we have provided a
GDB RDP communication channel to connect the virtual platform and GDB debugger
directly. Through this virtual platform and the naked GDB debugger which we modify
from GDB, software engineers can easily develop and debug the system programs in
the early development stage. Thus, the time-to-market of a new SoC design can be

reduced significantly.

Keywords: virtual platform, full system simulation, co-simulation, system debugging
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Chapter 1 - Introduction

1.1 Motivation

As the improvement of the process technology of very large scale integrated
(VLSI) circuit, in recent years, a system-on-a-chip (SoC) design becomes more and
more complicated. The task of algorithm validation, system evaluation, hardware
verification, and software debugging also becomes a big effort for engineers to design
a vast computing system. How to make this heavy job easier is a very important issue

for SoC developers.
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Fig. 1-1: Project schedule of traditional SoC design flow
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Fig. 1-2: Project schedule of ESL design flow



In traditional SoC design flow, to develop, verify, and debug the software
programs before all hardware devices are available is a very difficult work when
building a new SoC design. This is because the hardware modules don’t have a robust
and suitable testbench to validate until their corresponding software systems are ready
to use. That is, the development of software and hardware are hard to advance and the
time-to-market will be delayed as Fig. 1-1 shows [11].

Nowadays, as Fig. 1-2 shows [11], the electronic system level (ESL) design
methodology becomes a popular way to reduce the complexity of system
development and decrease the time-to-market. Following the ESL design flow,
developers can co-verify both hardware and software easily. Nevertheless, it is still a
difficult job to do full system simulation involving in the operating system (OS),
hardware device and its corresponding device driver, as well as the application
programs in the early development stage, i.e. before the synthesizable register-transfer
level (RTL) code is ready.

In short, to achieve verifying and evaluating the entire SoC system in the early
development stage, an efficient and robust full system simulation instruction set
simulator (ISS) supporting of bare-level program (a program runs without any OS

sustaining) debugging is intensely required for ESL design methodology.

1.2 Contribution

In this thesis, we have built a robust ARM-based ISS and SystemC virtual
platform which has the following features:
® supporting full system simulation in approximate-timed/functional accuracy with

unmodified OS kernels



® supporting debugging for bare-level programs, e.g., OS kernel and bootloader,
with the GNU debugger (GDB)
® supporting system profiling, evaluating, analyzing, and validating of an SoC

design with the proposed ESL mechanism

1.3 Scope and Organization

The rest of this thesis is organized as follows: Chapter 2 takes a brief
introduction to the concepts and issues about the instruction set simulators and GDB
debugger; Chapter 3 presents the system framework of our ISS and SystemC virtual
platform design; Chapter 4 discusses how to validate this full system simulation
virtual platform; Chapter 5 shows the experimental results. Finally, Chapter 6 gives

the conclusions of this thesis.



Chapter 2 - Background and Related Works

2.1 Instruction Set Simulator

An instruction set simulator (ISS) is a tool that runs on a host machine to mimic
the behavior of running a program on a target CPU, that is, it can execute the target
binary code as a real CPU does [28][29][30]. Through the ISS, engineers can explore
the CPU architecture and validate the compiler design easily. Moreover, the ISS is
also the pivotal component for a full system simulation virtual platform. Thus, how to
design and implement a powerful and robust ISS is a significant theme we have to
explore in this thesis.

Basically, there are three types of ISS simulation method which are interpretive
simulation, static compiled simulation, and dynamic compiled simulation. First we

give an introduction of these ISS simulation frameworks.

2.1.1 Interpretive Simulation

target memory . .
. run time execution decode
binary module

Fig. 2-1: Interpretive simulation framework



Fig. 2-1 shows the interpretive simulation framework of an ISS. Similarly as a
real processor’s datapath, an interpretive simulation ISS regularly works in sequence
with three stages: fetching, decoding, and executing for every input target instructions
as Fig. 2-1 illustrates. Because all input target instructions have to be decoded
repeatedly in run time as routine, the throughput of an ISS designed in interpretive
simulation is usually pretty poor. Regardless, an interpretive simulation ISS allows the
developers to investigate the system design and can show up many details of program

executing in run time, e.g., the timing information.

2.1.2 Static Compiled Simulation

host
machine

compile time run time

Fig. 2-2: Static compiled simulation framework

Static compiled simulation uses a translator or a specific compiler to interpret the
entire target binary code as the host machine code by a one-to-one mapping technique
before simulation. In this way, no matter how many times we want to do the
simulating task, the ISS only has to translate the target binary once. Because the ISS
doesn’t need to decode the target instructions in run time, the simulation performance
can be improved substantially. Fig. 2-2 shows the mechanism of a static compiled

simulation ISS.



Because a static compiled simulation ISS translates the entire target binary
before run time, the behavior of the simulated program must be predictable. That is, it
cannot involve to a complex OS kernel if it will dynamically mount and manage lots
of device drivers and application programs into memory at run time, e.g., Linux. A

static compiled simulation ISS can be only used for application program simulations.

2.1.3 Dynamic Compiled Simulation

update
» translate translating
buffer

Fig. 2-3: Dynamic compiled simulation framework

Like the static compiled simulation framework, dynamic compiled simulation
which is also known as dynamic binary translation interprets the target binary code as
host machine binary to improve the performance of the ISS. The difference to static
compiled simulation is that it translates the target binary by the unit of block (which is
composed by a few of target instructions) in the run time dynamically and stores the

translation result temporarily into a local translating buffer rather than in pre-run time.



Through its dynamical property, a dynamic compiled simulation ISS can be applied to
simulate not only application programs but also OS kernels.

As Fig. 2-3 shows, for dynamic compiled simulation framework, the ISS doesn’t
fetch the target instruction after executing an instruction. In fact, it fetches, translates,
and executes a block of instructions once a time instead of one by one. In this way, the
executing overhead will be reduced when repeatedly executions occurring in the same
translation block.

In theory, the performance of a dynamic compiled simulation ISS is usually
worse than a static compiled simulation one because of the translation overhead. Note
that, the static compiled simulation framework doesn’t have to translate the target

instructions in the run time.

2.2 GNU Debugger

2.2.1 Introduction to GDB

A debugger is a software tool that helps software engineers to find out bugs
resided in a program. A debugger might allow the programmers to examine the
executing sequence of the debugged program.

GNU debugger (GDB) [17][33] is a well-known and widespread open source
debugger for software debugging within GNU POSIX development environment.
Since it’s flexible to cross fit on many types of processor architecture, GDB is popularly
used for embedded system developing.

Current GDB has already provided the functions of break point and step

execution to control the program executing flow. Also, it has the watch point

7



functionality, general registers’ values probing, and calling stack inspecting (or called
as backtrace) to monitor the memory system. Unfortunately, the memory space which
GDB sees is virtual address space only and GDB has no mechanism to change the
setting of the memory management unit (MMU) and/or co-processors, so that it is
difficult to apply GDB to debug a bare-level program which might control and
manage the system resources through the MMU. Indeed, the original GDB program is

designed for debugging application programs only instead of bare-level programs.

2.2.2 Remote Debugging Protocol

GDB
- Host Machine Host Machine
RDP RDP
TCP/TP Serial Port
[j Inter Network ICE
TCP/IP JTAG Probe
gdbserver adbserver
I : : Target CPU
o Target Machine o
(a) (b)

Fig. 2-4: RDP connection

(a)via Inter Network (b)via JTAG and ICE

For cross developing an embedded system, the debugged program is usually
executed on a remote machine, e.g., a development board. The remote debugging
protocol (RDP) defined by GDB is a protocol for communicating with target programs

inside a remote machine. Through RDP, the host machine (where the GDB executed on)

8



and the target machine (which the debugged program runs on) have the ability to
connect each other via TCP/IP network as Fig. 2-4(a) shows. Furthermore, the
debugged target program requires an extra module, called gdbserver or gdbstub, to
parse and pack up the RDP data packet. In most cases, both the TCP/IP protocol stack
and gdbstub are furnished by an OS, i.e., it’s difficult to debug bare-level programs
such as bootloader and OS kernel itself. Again, GDB is originally concerned to debug
only application programs running on an OS, Linux, for example. This remote

debugging scheme is not useful for embedded system development at the early stages.

— Scommand/data #checksum

«— +

Fig. 2-5: RDP packet format

In some cases, as Fig. 2-4(b) shows, GDB uses serial port to link with the target
CPU directly by means of JTAG (joint test action group) probe and ICE (in-circuit
emulator) for bare-level software debugging and hardware circuit testing. In this way, it
is easy to scan and monitor the register file and memory system of the target CPU;
nonetheless this scenario has a disadvantage, that is, the target system has to carry out
the gdbstub by some additional hardware circuit. However, in this way, the cost of the
target system is increased significantly.

Fig. 2-5 describes the RDP data packet format. Each data packet of RDP starts
with a ‘§” sign and finishes by a ‘# symbol following an 8-bit checksum value. No
matter the GDB or gdbserver, after receiving a RDP packet with correct checksum
value, they ought to immediately response a ‘+’ symbol for acknowledgement. Again,
all RDP packets are transferred by TCP/IP or the serial port.

9



2.3 Related Works
2.3.1 Simplescalar

Simplescalar [13] is an open source and very famous (be cited by nearly 2000
times) interpretive ISS that is extensively used in areas of computer architecture
research and compiler designing. It provides the developers a CPU prototype to
examine a new processor architecture design as well as to evaluate its performance.

Simplescalar executes target programs in cycle accurate model, but simulates at a
very low speed. Besides, because Simplescalar doesn’t have any I/O peripheral
interface, it can only simulate with specific applications but an OS kernel which is
necessary to run with peripheral device, e.g., timers, interrupt controllers, and

keyboard interfaces...etc.

2.3.2 FaCSim

target decode 10
binary
object ||
cache

Fig. 2-6: Object cache methodology

In [22], it improved and accelerated the decoder module of interpretive ISS by an
object cache technique. Similarly like the dynamic binary translation framework, it

records some of the instructions that have been decoded and executed. Hence, it can

10



reduce a great amount of instruction decoding overheads during simulation time. The
difference to dynamic binary translation in this framework is that it interprets the
target binary instruction one by one rather than block by block. Fig. 2-6 shows the
concept of the object cache methodology.

FaCSim is a full system simulation virtual platform established in pure C/C++
language and optimized for multi-core host machines with the object cache ISS
mechanism. The ISS of FaCSim is time accurate but the I/O peripherals are modeled
with only functional accuracy. Consequently, because it is implemented by native
C/C++, the developers are difficult to attach new hardware devices with the virtual

platform.

2.3.3 Dynamic Binary Translation

In [31], the work proposed the concept of dynamic binary translation. Nowadays,
there are many ISSs and virtual machines by means of the dynamic binary translation
methodology in order to obtain a better simulation throughput.

QEMU [14][26] is a famous virtual machine which is implemented by dynamic
binary translation in pure C/C++. In QEMU, it applies the core of gcc compiler to
re-generate and optimize the target binary code.

Recently, QEMU is popularly applied to develop and emulate OS kernels of
embedded systems from its high performance. Unfortunately, like most of binary
translation frameworks, QEMU is functional accurate but timed accurate. The system
developers cannot examine the interaction between the hardware and software with
the QEMU virtual machine. Moreover, it is implemented in pure C/C++ language; the

developers are hard to bind a new hardware device with QEMU as well. For the above

11



reasons, we don’t attempt to apply QEMU to do full system simulation in ESL design

methodology.
2.3.4 SimIt-ARM

In [20], the work proposed a virtual machine called SimIt-ARM implemented by
both interpretive model and dynamic binary translation. SimIt-ARM has already
supported an instruction count metric. Even though it has an instruction count metric,
developers still cannot probe the timing information like a common dynamic binary
translation framework. Again, it is not powerful enough to be used as a virtual

platform in an ESL design flow.

2.3.5 Hybrid Compiled Simulation

compile time

target
‘
es . no
i e (o
binary

run time

update
translating
buffer

Fig. 2-7: Hybrid compiled simulation framework
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In [28][29][30], they have proposed a hybrid compiled simulation framework to
associate the advantages of both static compiled simulation and dynamic compiled
simulation. Fig. 2-7 shows the framework of hybrid compiled simulation.

The hybrid compiled simulation framework translates the target binary before
run time the same as a static compiled simulation framework. Yet, during run time, it
will monitor whether the code segment in the memory is modified or not. If modified,
the ISS will re-generate and update the host machine code. This framework is more
flexible than a static compiled simulation ISS and more efficient than dynamic
compiled simulation one, but it still cannot show up the timing information for system
engineers.

In practice, to save the cost of storage devices, a lot of embedded systems,
especially for portable devices, store the OS kernel image in a compressed form and
decompress the image at boot up time. To simulate system like this case, the hybrid
compiled simulation mechanism will not gain much benefit because it probably
cannot translate the compressed image. It is not good enough for doing full system

simulation with ESL design methodology.

2.3.6 Simics

Simics [10][23] is a commercial ESL tool for doing full system simulation.
Recently, it goes popular in system design domain, but it is not open source and free
for using. Therefore, the developers cannot easily investigate and modify the whole
system design. Namely, it might not be flexible enough to explore the entire system

for system developers.

13



Chapter 3 - System Framework

3.1 Emulation Methodology

In this thesis, the main goal we aim to and look forward is to design a full system
simulation environment which can co-simulate and co-verify hardware devices as
well as software programs including OS kernel (Linux for our example) for ESL
design methodology. To design a full system simulation virtual platform and its
corresponding ISS which can emulate the OS kernel with acceptable time duration,
there are two major issues we have to trade off first, that is, the simulation accuracy

and the simulation performance.

3.1.1 The Accurate Model

As Fig. 3-1 shows, the relationship between the accurate model and the
simulation performance is that higher simulation accuracy usually makes lower

simulation speed and vice versa.

- e c——
Accurate | -~ : Real
{Cycle accurate)

TLM

|{Timing Accurate)

Accuracy

C-code
(Function Accurate)

Inaccurate

High

Low Performance

Fig. 3-1: Trading off between accuracy and performance
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TABLE— 3-1: Abstract level of simulation accuracy

Abstract level Features Throughput
functional (untimed) only mimic the functional behavior very high
approximate-timed  simulate the action during a specific period high
timed
cycle simulate the actions for each clock cycle slow
pin simulate the signal transferring on the wires for each clock cycle very slow

TABLE— 3-1 shows the characteristics of different abstract models of
simulation accuracy [18].

For the functional accurate model, e.g., binary translation scenario, it normally
has the best simulation performance comparing with the other abstract models, but it
is difficult to verify and investigate the interactions between software and hardware
by means of a functional accurate virtual platform. On the other hand, a pin accurate
virtual platform, such as RTL models, always simulates at a very low speed which is
not suitable for running with an OS kernel.

To develop the proposed full system simulation virtual platform and its ISS, the
policy of approximate-timed accurate model in SystemC [8][11][18] is chosen to
achieve for the following reasons:

(1) First of all, timed accurate hardware models can be applied to profile the entire
system including both hardware and software easily.

(2) Secondly, an approximate-timed accurate virtual platform can be simulated at a
much higher speed than cycle accurate and pin accurate models, so that the
amount of time to emulate booting up an OS is acceptable.

(3) The system developers can try, adjust, and determine the system parameters

simply within SystemC simulation framework.
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(4) Finally, SystemC is an IEEE standard used for building hardware modules; as a
result, the hardware developers are able to modify and build up this virtual
platform with additional hardware devices painlessly. Moreover it also allows

developers to advance the hardware modules to become cycle accurate if needed.

3.1.2 SystemC Simulation Methodologies

TABLE— 3-2: Comparison of SystemC simulation scheme

SC_CTHREAD | SC_THREAD | SC_METHOD

executing trigger clock edge signal events signal events
executing suspend yes yes no
infinite loop yes yes no
wait() wait() N/A

resume from suspending
wait_until()

According to the IEEE 1666 standard [8], there are three categories of simulation
process which are SC CTHREAD, SC THREAD, and SC METHOD in SystemC
simulation kernel. TABLE— 3-2 lists the comparison of these three kinds of
simulation scheme.

The main difference between SC_ CTHREAD/SC THREAD and SC METHOD is
SC CTHREAD/SC THREAD support executing suspending and resuming. In practice,
this property makes the developers easy to implement a virtual hardware module
especially for circuits which have the pipeline scheme. Moreover, the
transaction-level modeling (TLM) standard is also defined based on SC CTHREAD
simulation process. Although applying SC CTHREAD or SC THREAD to model the
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behavior of hardware modules is more convenient and easier since they support

executing suspending and resuming by the assigned SystemC events, their simulation

performance is not as good as SC_ METHOD [15].

SC_CTHREAD/SC_THREAD SC_METHOD
counter::counter(sc_module name): counter::counter(sc_module name):
sc_module(name) sc_module(name)

{ {
SC CTHREAD(run_thread, clk.pos()) SC METHOD(run_method),
} sensitive << clk.pos();
counter: :thread(void) }
{ counter: :method(void)
do {
{ count++;
count++; }
wait();
Jwhile(1),
/

Fig. 3-2: SystemC simple counter module

Here we utilize a simple counter module in SystemC v2.2.0 to exam the upper
bound of the simulation performance for each scheme on an Intel Core 2 Q9500
machine as Fig. 3-2 shows. From TABLE— 3-3, we see the upper bound of
simulation performance is about 4.4 million clock cycles per second by SC METHOD.
In contrast, using the SC CTHREAD scheme only reaches 3.0 million clock cycles
per second. Here we observe that using SC METHOD will gain a speedup of around
1.5 times faster than using SC_ CTHREAD. This result implies SC METHOD 1is a

better option to implement the SystemC virtual platform.

17



TABLE— 3-3: Performance of SystemC v2.2.0 on Intel Q9500

Speedup
Scheme Million cycles / sec
comparing with SC_CTHREAD
SC_CTHREAD 3.0 1.00x
SC_THREAD 3.3 1.10x
SC_METHOD 4.4 1.47x

3.2 ARM-Based Instruction Set Simulator

In this work, we model the interpretive ISS founded on ARMvS5 architecture [5]
in SystemC. This SystemC ISS design involves in datapath, MMU, and exception
handlers. Now we are going to take a brief introduction to the SystemC ISS in the

following Sections.

3.2.1 Datapath

As a general interpretive ISS, the SystemC ISS has three stages to perform when
executing a target instruction like we described in Section 2.1.1.

For using the approximate-timed model to improve the throughput, we don’t
precisely model the pipeline architecture. The actions of fetching, decoding, and
executing are accomplished at a time instead of step by step for each clock cycle. The
ISS will calculate the total time spent and decide how many clock cycles to rest after
executing one target instruction. In fact, the SystemC ISS has totally four states
including an extra rest state as Fig. 3-3 shows. The rest state indicates that the ISS has
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to add delays for an appropriate period to model the execution time. Fig. 3-4 describes

the pseudo code of this ISS mechanism.

delay

rest

Fig. 3-3: State machine of the SystemC ISS

18S::1SS(sc_module name): sc_module(name)
{
SC_METHOD(datapath);
sensitive << clk.pos()
/
1S8S::datapath()
{
ifrest)
fetch()
decode()
execute()
rest = cycles in execution
else
pause()
rest--
/

Fig. 3-4: Pseudo code of the datapath state machine
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3.2.2 Memory System

The SystemC ISS has a complete MMU/co-processor system in compatible with
the ARMvS architecture. This MMU module involves in translating the virtual
memory address into physical address and check the memory permission for every
instruction fetching and data access.

The MMU module also has a separate I-cache and D-cache within round robin
replacement policy. Like the datapath module, we don’t actually access instruction
and data through the cache model to simplify the ISS design for better simulation
throughput. These two “virtual cache” here are used only for system profiling and
making the timing information more precisely.

For ARM processors, the I/O architecture is memory mapped 1/O. All I/O
peripherals are abstract to the ISS. On the virtual platform, the SystemC ISS treats
these I/O devices as a universal memory module. This framework let the developers
design the I/O peripheral devices without any need to concern with the ISS structure

abstractly.

3.2.3 Exception Handlers

The SystemC ISS supports exceptions generated by internal and external sources
consisting with all of the seven exception types of an ARM processor. The ISS will
check the exception state at every clock cycle. As an exception occurs, the ISS
switches to the corresponding executing mode and forces the program counter

(register 15) pointing to the address of exception table automatically.
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3.3 Naked GDB

One of our main goals is to debug both bare-level programs and application
programs by the virtual platform and GDB in this thesis.

Because GDB is designed for debugging with only application programs
originally as we have mentioned in Section 2.2, it has no available scheme to explore
the MMU and/or co-processors of an ARM processor. Furthermore, the supervisor
mode operations are not allowed to be performed by GDB. Consequently, it’s
apparently not fit for debugging a bare-level program, especially for an OS kernel
which has to access the co-processors and perform supervisor mode operations
frequently. For the above reason, the original GDB design requires fixing and

enhancing to be adequate for the use in debugging bare-level programs.

3.3.1 The Virtual Platform with GDB

To use GDB, a gdbstub/gdbserver program embedded in the ISS is definitely
necessary. The purpose of this embedded gdbstub is to work as an RDP parser and a
JTAG scanner virtually. We use the embedded gdbstub to replace a real ICE/JTAG
circuit, so that the debugged program has no need to run upon an OS. Namely,
developers can debug bare-level programs on the virtual platform without an
embedded scan chain circuit support.

Fig. 3-5 is the scenario of the gdbstub residing in the ISS. The gdbstub has two
components, the RDP parser/packer (which is used to parse and pack up the RDP
command packet) and the scanner (which is used to fetch the registers’ values and

data stored in the memory system). The connection between gdbstub and GDB is
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TCP/IP socket as the figure shows, so that the GDB and the virtual platform can run

on different host machines and make the debugging job more flexible.

GDB
A
Network
(TCP/TP)
CPU Simulator/ISS
A 4
RDP parser/packer
A
edbstub
v
scanner
4
v v
register file CO-Processors
A

e

Fig. 3-5: gdbstub scenario with the ISS

3.3.2 Co-processor Probing

A bare-level program often manages system resources by MMU/co-processors. If
there is any error existing in the MMU setting, it might cause the system going to
crash quickly even if it’s just a minute bug. Unfortunately, this kind of programming
bugs is very difficult to find out and always makes software developers puzzled.

To solve this critical problem, we have to propose a method for developers
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reviewing the MMU setting. We add the co-processor specific registers of ARM
processor into the architecture descriptor of the GDB program as TABLE— 3-4 lists.
By the new modified GDB program named as the naked GDB and the embedded
gdbstub in the ISS, developers are able to monitor the system status during simulation
time. Thus, the software designers can investigate the MMU/co-processors settings

and repair the system program when a system failure occurs.

TABLE— 3-4: List of co-processor registers of ARM

Register Description

pid (context) | stores the process ID of current executed process

sys the system control register of the co-processor 15 (MMU)

ttbr the page table base address

domain | the memory access domain control register

dfsr stores the data access abort status
ifsr stores the instruction pre-fetch abort status
far contains the data/instruction abort address

3.4 Power Estimation of the Memory System

Another issue we are interesting in when developing a new SoC design is the
energy consumption, especially to design a portable device, e.g., a smart phone.
According to [25], the energy consumption of the memory system is about 17% to
20% for an ARM-based embedded system. Therefore, the memory system is one of

the major parts of energy consumption for an ARM SoC. In this section, we focus on
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discussing how to estimate and calculate the energy consumption of the memory
system by the SystemC virtual machine.

Typically, the energy consumption of the memory system has three major parts
which are:
(1) leakage power

the static operating power of the transistors and capacitors
(2) refreshing power

the power dissipation during the DRAM memory cell performs data refreshing
(3) switching energy

the energy consumption when the logic level switching

For a memory module, in general, almost of the logic level switching occurs at data
storing and loading, that is, the total amount of switching energy dissipation

extremely depends on the numbers of data access.

(o}
LE = th, +thg +agyEser + aiarBiar = £ (PL + PR) + astrEser + a1arErar - Equ. 3-1

If we sum up the leakage power, refreshing power, and load/store switching
energy, we can get to estimate the energy consumption of the memory module of an
SoC design. Equ 3-1 is the approximate formula of total energy consumption for a
memory module where
® P, is the leakage power
® [, represents the refreshing power
® [, and Ey,; are the switching energy of data store and load

® 4..and q are the numbers of access of data store and load
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® s the total cycle count during executing

® fis the operating clock rate

Note that, the refreshing power (£,) of a SRAM module, e.g., I-cache and D-cache,
are nearly none that we can omit it.

Since P;, Pr, Eg,and Ej;, are constant value depend on process technology, we
can estimate the energy consumption of the memory system just by recording the total
executing time/cycles and numbers of data accessing including I-cache, D-cache, and
DRAM module through the SystemC virtual platform.

This power estimation methodology gives the system engineers an elementary
way to predict the energy consumption of an algorithm in the early development stage.
It can help the developers to decide and choose which algorithm or policy to be used

for an SoC design appropriately.

3.5 The SystemC Virtual Platform

3.5.1 Platform Overview

Using SystemC SC METHOD, we have established a full system simulation
virtual platform in compliance with the ARM Versatile-PB [7]. TABLE— 3-5 lists the
components on the virtual platform we have implemented. Fig. 3-6 shows the diagram
of the full system simulation environment.

On the virtual platform, we have already provided some virtual I/O interfaces,
e.g., keyboard, console, and LCD panel. Therefore, the program developers can

emulate and verify the user interface on this virtual platform. In addition, since the
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virtual platform is implemented by IEEE SystemC standard, the hardware developers

are able to attach new intellectual property (IP) modules and their corresponding

device drivers for the virtual platform to co-simulation.

TABLE— 3-5: Components of the virtual platform

Module Description
ARM926 Processor [3]
® ALU

®  register file
®  MMU/co-processors
®  gdbstub

an ARM v5 compatible ISS which includes arithmetic and logic unit

(ALU), register file, MMU/co-processors, and the embedded gdbstub

DRAM module

the main memory module

PLO11 UART [6]
®  keyboard interface

(] virtual console

the UART controller with a console emulator and a keyboard interface

PL110 VGA controller [1]
®  virtual LCD panel

the LCD device with an LCD panel emulator

PL190 VIC [4]

the vector controller module with totally 32 interrupt channels

SP804 dual timer [2]

a 32-bits wide system counter/timer
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File
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Fig. 3-6: Overview of the SystemC virtual platform

3.5.2 Full System Simulation

The main purpose of hardware and software co-verification is to verify if the
software program executes correctly and efficiently on the hardware design. The job
of full system simulation co-simulates the hardware and software at the same time to
provide system developers a useful co-verification methodology. For a new SoC
design, there are two primary benefits of applying full system simulation to
co-verification [9]:

(1) First, it allows the system software to be tested and debugged before the
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2

hardware devices are available to use. Therefore, this significantly shortens the
development time of the intended design.
Secondly, the system software itself which co-simulates with the hardware

designs is an excellent and useful testbench.

For the above two reasons, to co-verify a complex SoC design, performing full system

simulation is always an important job for system developers in ESL design

methodology.

In this work, we use the Linux OS as an example, which is emulated on our

SystemC virtual platform for full system simulation. Fig. 3-7 exhibits the structure of

the full system simulation framework. This framework commonly has four echelons:

(1)

2

)

(4)

hardware devices

The first echelon is the hardware devices consisting of some customized
hardware designs in SystemC, that is, the hardware side.

OS kernel

The second echelon is the place where the Linux OS kernel resides. This echelon
involves the interrupt service routine (ISR), task scheduler, inter-process
communication (IPC) module, and device drivers. This part is also the core
component in our full system simulation platform.

system libraries

The third echelon contains all of the dynamic linking shared libraries, system
application programming interfaces (API), and some specific middleware
including the C/C++ standard library.

user mode apps

The highest echelon is the user mode programs. All apps including the console
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terminal and shell program reside in here.

Through this full system simulation framework, all components in these four
echelons involving both hardware devices and software programs can be simulated at
the same time. Also, all of the system software and application programs can run upon
the simulation platform without any modification, so that the programmers are able to

design, test, and debug before the corresponding RTL code designs are synthesized.

a System(C Virtual Platfrom R

users

system libraries

OS kernel

devices

- /

Fig. 3-7: Architecture of the full system simulation virtual platform
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System Design

SW Design

HW Design
(RTL, SystemC...etc)

(drivers, apps...etc)

Full System
Simulation

A\ 4

HW Verification
SW Debugging

product

Fig. 3-8: System design flow

Fig. 3-8 is the system design flow of an SoC project. In the design flow, the first
step is to sketch the system algorithm, and then implement the hardware and software
design. Then, the SystemC virtual platform and the ISS can be applied to involve in
the task of full system simulation to co-verify and validate the system algorithm,

hardware devices, as well as software programs.
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In traditional SoC design flow, the hardware engineers and software
programmers are very difficult to start developing at the same time. Following this
ESL system design methodology, developers can easily leap across the big hurdle.
Because both the hardware and software can be developed and verified in parallel, the

total time-to-market of a new SoC will be shortened.

3.5.3 Evaluation Methodology

1
1
1
1
1
naked GDB :
|
b : PID
|
v l
ISS i analysis

it

access
y additional
P e VCD information

tracker

Fig. 3-9: System profiler scheme

The value change dump (VCD) file format is an IEEE standard to record the
status of data change and signal waveform for hardware description languages (HDL)
in simulation time. Current SystemC standard had already provided an sc_trace() API

to collect and dump the information for hardware engineers. So that, for our full
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system simulation platform, we can simply add the sc frace() function into the
SystemC hardware model to capture and evaluate the signal waveform if necessary.

For software side, to get the profile we want, we log the information through the
PID number of the process. As TABLE— 3-4 shows, the PID number will be
registered into the co-processor in run time and our naked GDB scheme has the
support to fetch this value.

Fig. 3-9 is the scenario of our profiler that is used to evaluate and log information
we need. There are three kinds of traced information we can retrieve after system
simulation, that is, the VCD file generated by hardware modules, PID number from
the naked GDB, and the program profiles from the ISS. Besides, we might also have
some additional information of the target program dumped by the cross toolchain in
compiled time, e.g., the system map. These four records can be used to analyze the
system algorithm, verify the hardware designs, and check the correctness of the

software programs.
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Chapter 4 - Platform Verification

4.1 Verification Methodology

After implementing the ARM-based ISS and SystemC full system simulation
virtual platform, in this chapter, we are going to test and verify the behavior of the
whole virtual platform and see whether it is correct or not.

To verify the virtual platform, running a bare-level program on it to check is
necessary. A bare-level program has the ability to directly operate and access the
system with
® user mode instructions
® privileged mode instructions
® cxception handlers
® the MMU/co-processor of the CPU

® [/O peripherals

that the user mode application programs cannot freely do. In short, a bare-level
program can go over the entire system smoothly without any privilege violations.
Therefore, general application programs are not suitable for verifying the virtual
platform because they cannot cover all the aspects of these system operations.

Since Linux is a very popular OS in embedded systems, the Linux kernel is a

good selection to be the testbench for our full system simulation framework.
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4.2 Linux Booting Sequence

Fig. 4-1 is the Linux booting sequence [12]. Generally speaking, the booting
sequence of an embedded Linux can be separated into the following five steps:
(1) loads the kernel image into the main memory by the bootloader
(2) decompresses the kernel images and setups the MMU
(3) creates the PID 0 process, setups scheduler, and setups the exception handlers
(4) the PID 0 process forks the PID I process, and then the PID [ process goes to
setup all device drivers and the initial root file system

(5) starts to load and run user mode apps

In conclusion, during the boot up time, Linux will visit and access the MMU
system, I/O peripheral devices, and exception handlers by both user mode and
privileged mode instructions. Consequently, all of the five parts we want to test and
verify will be visited during Linux booting.

In accordance with [21], it had proposed a methodology to verify an ARM-based
embedded system by Linux kernel and proved that we can guarantee the action of all
privileged mode instructions, exception handler, and MMU are working correct if an
ARM Linux kernel can be booted up and performed on the virtual platform and the

ISS successfully.
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Fig. 4-1: Linux boot up sequence
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4.3.1 Verification by Linux Booting
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Fig. 4-2 and Fig. 4-3 are the snapshots of the console terminal and the LCD panel

respectively at Linux booting on our virtual platform. Fig. 4-2 shows the Linux kernel

goes to get the system information of our CASLab SystemC virtual platform, and then

to initialize the memory system, file system, and I/O peripheral devices. In Fig. 4-3, it

presents the Linux kernel drawing the color penguin logo on the LCD panel and

shows up the information of the initial root file system.
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Uncompressing Linwe. . ......c.oovieiienianianianiaarassanssassssasssassansaasas, done, booting the kernel.
Linux version 2.6.28 (sing@SmartLinux) {(gcc version 4.3.2 (GCC) ) #58 Mon May 10 18:00:42 CST 2010
CPU: ARM926E]-5 [41069265] revision 5 (ARMvSTED), cr=00093177

CPU: VIVT data cache, VIVT instruction cache

Machine: NCKU CASLab SystemC Virtual Platform for ARM-Versatile PB
Memory policy: ECC disabled, Data cache writeback

Built 1 zonelists in Zone order, mobility grouping en. Total pages: 32512
Kernel command line: root=1f03 mem=128M console=ttyAMAD

PID hash table entries: 512 {order: 9. 2048 bytes)

Console: colour dummy device B0x30

Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)

Memory: 128MB = 128ME total

Memory: 124912KB available (1584K code, 332K data, BOK init)

SLUB: Genslabs=12, HWalign=32, Order=0-3, MinObjects=0, CPUs=1l, Nodes=l
Calibrating delay loop... 24.83 BogoMIPS (lpj=124160)

Mount-cache hash table entries: 512

CPU: Testing write buffer coherency: ok

Unpacking initramfs... done

Freeing initrd memory: 2842K

JFS: nTxBlock = 999, nTxLock = 7994

msgmni has been set to 249

io scheduler noop registered

io scheduler anticipatory registered (default)

io scheduler deadline registered

io scheduler cfq registered

CLCD: unknown LCD panel ID 0x00001000, using VGA

CLCD: Versatile hardware, VGA display

Clock CLCDCLK: setting VOO reg params: S=1 R=99 V=08

Console: switching to colour frame buffer device BOx30

Serial: AMBA PLOL1l UART driver

dev:fl: ttyAMAD at MMID 0x101f1080 (irg = 12) is a AMBA/PLO11

console [ttyAMAD] enabled

dev:f2: ttyAMAl at MMID 0x101f2000 (irq = 13) is a AMBA/PLO11

dev:f3: ttyAMAZ at MMIO 0x101f3000 (irg = 14) is a AMBA/PLOL1

mice: P5/2 mouse device common for all mice

Freeing init memory: BOK

Please press Enter to activate this console.

Fig. 4-2: Snapshot of Linux booting

Cimplemented with b

proc/c

Fig. 4-3: Snapshot of the virtual LCD panel
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dev:f3: ttyAMA2 at MMID Ox101f3000 (irq = 14) is a AMBA/PLO11
mice: P5/2 mouse device common for all mice
Freeing init memory: BOK
Please press Enter to activate this console.
BusyBox v1.16.0 (2010-03-25 12:508:13 CST) built-in shell (ash}
Enter ‘help' for a list of built-in commands.
# 1s
bin re
calculator.ko L
@ initrd
# ps -A
PID USER VSZ STAT COMMAND
le@ 1828 5 init
20 0 SW< [kthreadd]
30 0 SW< [ksoftirqd/0]
40 @ SW<= [watchdog/0]
50 0 SW< [events/0]
60 @ SW< [khelper]
56 0 0 SW< [kblockd/0]
60 0 0 SW< [kseriod]
80 0 0 SW  [pdflush]
810 9 SW  [pdflush]
820 0 SW<  [kswapdd]
119 0 0 SW< [aio/0]
124 0 0 SW< [jfsI0]
125 0 0 SW< [jfsCommit]
126 0 0 SW< [jfsSync]
245 0 1832 R -/bin/sh
250 0 1828 5 fsbinfgetty -L 38400 ttyl
252 0 1828 5 fsbinfgetty -L 38400 tty2
253 0 1828 5 fsbinfgetty -L 38400 tty3
255 0 1828 5 fsbinfgetty -L 38400 ttyd
256 0 1828 S fsbin/getty -L ttyAMAO 115200 xterm
258 0 1832 R ps -A
i | w
]

Fig. 4-4: Snapshot of the PS command

Fig. 4-4 shows the processes information after entering the Linux ps command.
We can discover that there are already more than 20 kernel mode and user mode
processes running at the same time upon Linux kernel. Namely, the multitasking
system including the scheduler and the timer device are active successfully.

As we have said in Section 4.2, if the Linux kernel can boot up on the virtual

platform as normally, we can almost believe it to be correctly implemented.
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4.3.2 Verification by Device Driver under Linux

We are going to try to attach a customized hardware device—a specific
calculator module onto the virtual machine and hang on the corresponding AMBA
(advanced microcontroller bus architecture) device driver [16] into the Linux kernel.

Fig. 4-5 shows using Linux insmod command to load the device driver of a
calculator module into Linux kernel. Comparing with before and after entering the
Linux insmod command, we can see there is an extra kernel module called
sc_calculator recorded in the file of /proc/device after the command finished
executing in this figure.

This work demonstrates that the virtual platform is able to co-work with
customized hardware devices. Moreover, the programmers can examine and verify the

device driver on this virtual platform by co-simulating with the hardware module.

2 pty
3 ttyp
4 fdev/ve/0
4 tty
5 fdev/tty
5 fdev/console
5 fdev/ptmx
T ves

18 misc

13 input

29 fb

128 ptm

136 pts

204 ttyAMA

Block devices:
259 blkext
(# insmod calculater.ko
AMBA Virtual Calculator driver init...
physical address: 0x14000000
ioremap to: 0xCBI26000
request IRQ 30, ..
# cat /proc/devices
/devices
Character devices:
1 mem
2 pty
3 ttyp
4 [fdev/ve/0
4 tty
5 fdev/tty
5 /dev/console
5 fdev/ptmx
7 ves
10 misc
13 input
29 fb
128 ptm
136 pts [l
204 ttyAMA
254 sc_calculator

Fig. 4-5: Snapshot of loading a device driver
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4.3.3 Verification by User Mode Applications under Linux

TABLE— 4-1: List of application programs we used

Category | Program Operations

loop branches

Hanoi branches/recursion

thread | multi-threading/multi-tasking

ours bSort | branches/recursion/integer arithmetic

hSort

factorial

gcd branches

SHA recursion

dijkstra | integer arithmetic

gSort

MiBench | = string

susan
integer arithmetic
jpeg
floating arithmetic
math

Undoubtedly, the full system simulation virtual platform can also be applied to
emulate the user mode application programs the same way as the device drivers. Here
we take several ARM Linux apps [32][34] to run on the virtual platform with Linux

OS kernel.
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TABLE— 4-1 lists the apps we used to verify the ISS and the virtual platform.
There are two classes of our testbenches; one is our own basic program design and the
other comes from MiBench [19] which is a famous benchmark suite in computer
system exploration. This demonstration is used to confirm that the shared libraries and
the user mode application programs run well on our full system simulation framework.
Through these testbenches, we can check and verify operations of the ISS design as
well. In TABLE— 4-1, it also shows the operations in coverage for these testbenches.

Fig. 4-6 presents an example that some ARM Linux apps run on the virtual
platform. It shows an application program of calculating Fibonacci series and a

multi-threading program within pthread library.

Freeing initrd memory: 2B47K

JFS: nTxBlock = 999, nTxLock = 7994

msgmni has been set to 249

io scheduler noop registered

io scheduler anticipatory registered (default)

io scheduler deadline registered

io scheduler cfg registered

CLCD: unknown LCD panel ID 0x00001000, using VGA

CLCD: Versatile hardware, VGA display

Clock CLCDCLK: setting VOO reg params: 5=1 R=99 V=98

Console: switching to colour frame buffer device 80x30

Serial: AMBA PLO1l UART driver

dev:fl: ttyAMAD at MMIO 0x101f1000 (irg = 12) is a AMBA/PLOL1
le [ttyAMAO] enabled

dev:f2: ttyAMAl at MMIO 0x101f2080 (irg = 13) is a AMBA/PLO11
dev:f3: ttyAMA2 at MMID 0x101f3080 (irg = 14) is a AMBA/PLO11
mice: P5/2 mouse device common for all mice

Freeing init memory: BOK

Please press Enter to activate this console.

BusyBox v1.16.0 (2010-03-25 12:508:13 CST) built-in shell (ash})
Enter "help' for a list of built-in commands.

# 1s

o initrd ot

# ./fib
input num:5

fib(5) = 8

# .ffib

input num:12

fib(12) = 233

[# ./fib

input num:15

fib(15) = 987

[# ./fthread

create thread...

thread © )
thread 1

Fig. 4-6: Snapshot of executing apps
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4.3.4 Co-Work with the Naked GDB

Fig. 4-7 is the snapshot of the naked GDB. In this figure, we notice that the
naked GDB goes to probe and fetch the general registers and the specific co-processor
registers of ARM processor.

The naked GDB absolutely helps and allows the programmers to observe and
monitor not only the general registers but the MMU/co-processor system in the
program debugging stage. Through this naked scheme, the software developers can
debug the bare-level programs and recognize these system programs like a common

application program without any additional hardware circuit support.

<http://www.gnu.org/software/gdb/bugs/=>. ..
Reading symbols from /home/sing/Desktop/vp/linux-2.6.28/vmlinux...done.
(gdb) target remote localhost:1234
Remote debugging using localhest:1234
in 77 ()
(gdb) b start_kernel
Breakpoint 1 at Oxc000B8cd: file init/main.c, line 547,
{gdb) ¢
Continuing.
Breakpoint 1, start_kernel () at init/main.c:547
547 smp_setup_processor_id();
(gdb) info reg
ro 0x93177 602487
rl 0x183 387
r2 0x100 256
r3 Oxc000B130 3221258544
rd 0x93175 602485
5 1bad5d 5
r6 Oxc00192dc 3221328604
r7 OxcOlac3ed 3222979560
r8 0x17614 95764
r9 0x41069265 1098949732
rlg 0x175e0 95712
rll OxcO0ladffd 3222970356
rl2 Oxc0ladffs 3222970360
sp OxcOladfcl OxcOladfcd
ir 0x8034 32820
pe 4 OxcO0088cd <start_kernel+l6>
fps 0x0 o
cpsr 0x600001d3 1610613202
pid Ox@ o
sys 0x93177 602487
ttbr 0x4000 16384
domain Ox1f 31
dfsr Ox0 o
ifsr 0x0 o
far 020 ]
(gdo) I B
'

Fig. 4-7: Snapshot of the naked GDB
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4.3.5 Summary of System Verification

In summary, as we have emphasized in Section 4.2, we believe and have
confidence that the functions of our ISS and the SystemC virtual platform are
implemented accurately and correctly since it can successfully boot up the ARM
Linux kernel and execute user mode applications. That is, the system developers can
trust and rely on the simulation result from this full system simulation virtual platform

and its ARM-based ISS.
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Chapter 5 - Evaluation and Results

5.1 Experimental Environment and Parameters

TABLE— 5-1 lists the experimental environment of our simulation framework.
The experimental environment can be separated into two parts, the host machine side
and the target machine side.

The host machine is an Intel x86 based computer with Linux OS where the
virtual platform runs on. All programs on the host machine are compiled by gcc
v4.2.4 and the SystemC library in used is v2.2.0.

The target machine is the SystemC full system simulation virtual platform which
emulates and executes an ARM Linux kernel here. On the target virtual platform, the
ARM Linux kernel is compiled by arm-elf-gcc v4.3.2 and all apps including the
busybox tool set are compiled by arm-linux-gcc v4.4.3. Yet, the initial RAM disk and

all dynamic liking libraries of Linux are made by busybox v1.16.0.

TABLE— 5-1: Experimental environment

Host machine Target machine
®  Intel Core 2 Q9500 ®  arm-elf-gcc v4.3.2
® 2GB DDRII SDRAM ®  arm-linux-gcc v4.4.3
®  kUbuntu v8.04 with 32-bits kernel v2.6.24 ®  Linux kernel v2.6.28 for AEM Versatile-PB
® gccvd24 ®  busybox v1.16.0
®  arm-elf-gdb v7.1
® SystemC v2.2.0
® SDLvl2
® HP CACTIv6.5
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TABLE— 5-2: Parameters of the virtual platform

Name Settings
CPU model ARMO926 (ARMv5)
D-cache 32kB, 4-ways, 256-sets, round-robin
I-cache 32kB, 4-ways, 256-sets, round-robin
Bus model perfect (no latency)
DRAM model perfect (no latency)
DRAM size 128MB, 2 banks
clock rate of CPU 200MHz
clock rate of peripherals 4MHz

TABLE— 5-3: Average executing cycle(s) of CPU emulator

cycles
arithmetic & logic instructions 1
32-bits multiply instructions 2
64-bits multiply instructions 4

load/store instructions

N + 1 (N =number of words to transfer)

COProcessor access 2
branch penalty 3
swi instruction 3

D-cache miss penalty 16
I-cache miss penalty 8
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TABLE— 5-2 lists the parameters of the ISS and the SystemC virtual platform in
assumption. Both of the I-cache and D-cache in the ISS are size of 32 KB, 4 way set
associative with 256 sets, and the replacement policy is round robin. In addition, here
we assume the DRAM and bus model are perfect, i.e., no access latency, though other
models can also be explored . Also, the clock rate of the CPU (ISS) is assumed to be
200 MHz as well as all of the I/O peripherals are running at 4 MHz.

TABLE— 5-3 is the timing setting of the ISS referring to [3][5][32]. The average
executing time of all arithmetic and logic instructions (except the multiply
instructions) are one clock cycle. The time to perform load/store instructions is N + 1
clock cycles where N is the number of words (4 bytes width here) to be transferred.
The total time to access the co-processors is assumed as two clock cycles. The branch
and exception penalty are three clock cycles. Finally, the penalty of D-cache miss and

I-cache miss are set to be 16 and 8 clock cycles respectively.

5.2 Simulation Performance

5.2.1 The Throughput

In this section, we are going to evaluate the throughput of our ARM-based
interpretive ISS and the SystemC virtual platform. TABLE— 5-4 shows the
throughput of a few of ARM-based ISSs and their comparisons.

In Section 3.1.2, we have shown the simulation upper bound of SystemC kernel
v2.2.0 is about 4.4 million clock cycles per second on our Intel Q9800 experimental
machine. For our SystemC virtual platform, the simulation throughput is around 2.1

million instructions per second (MIPS) with 2.9 million clock cycles per second.
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Comparing between the value 2.9 and 4.4, the simulation speed of our SystemC
virtual platform has a 65.9% drop.

As TABLE— 5-4 shows, not unexpectedly, the QEMU and SimIt-ARM obtain
much higher throughput because both of them are designed within dynamic binary
translation technique which cannot explore the timing information in system design
space. Meanwhile, the GDB ARMulator is a functional accurate ISS model and the
FaCSim is implemented in pure C/C++ language that is hard to attach new hardware
devices. Though they have gained much higher performance than ours, all of these
ISS frameworks are not suitable for ESL design methodology. Finally, the throughput
of Simplescalar and the synthesizable RTL ISS module are much poorer than our

virtual platform; both cannot run an OS kernel in acceptable time duration.

TABLE— 5-4: Throughput of different ARM ISSs

Model Scheme | MIPS Features
real hardware Versatile-PB 77.1
QEMU > 100
dynamic binary translation
SimIt-ARM 30.0 with instruction metric
GDB ARMulator 8.2
functional accurate in pure C/C++
FaCSim 43 optimized for MP
SystemC VP 2.1 approximate-timed accurate in SystemC
approximate-timed/cycle accurate Simplescalar 0.9 cycle accurate
RTL <0.1 pin accurate, synthesizable
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5.2.2 SystemC Speedup

TABLE— 5-5: Performance of different SystemC schemes

SC_CTHREAD SC_THREAD SC_METHOD

Million cycles / sec 22 25 29

Speedup(SC_CTHREAD) 100.00% 113.64% 131.81%

speedup

140%
135%
130%
125% —
120% —
115% —
110% - —
105% — —
100% — —
95% +— — — —
90% +— — - —
85% - — —
80% : : .
SC_CTHREAD SC_THREAD SC_METHOD

Fig. 5-1: Speedup of different SystemC scheme

We have implemented the SystemC virtual machine and the ISS in all of the
three different SystemC simulation processes. Here we are going to measure and
compare the performance of these SystemC simulation methodologies.

TABLE— 5-5 shows the simulation performance of our SystemC virtual
platform in each implementation methodology of SystemC process. From the table,
the simulation speed of our virtual platform is near to 2.9 million clock cycles per
second in SC METHOD. Instead, if it is implemented in SC CTHREAD, the
simulation speed is only 2.2 million clock cycles per second. Also, the virtual

47




platform in SC_THREAD will run at 2.5 million cycles per second.

Fig. 5-1 is the bar chart of the speedup comparing with SC CTHREAD. This
figure illustrates that using SC_ METHOD will have a speedup of more than 130% and
the speedup of using SC THREAD 1is about 114%. Using SC METHOD to build the
ISS and the SystemC virtual platform has obtained the best simulation performance as

we have expected.

5.3 Cycles per Instruction

TABLE— 5-6: CPI of the ISS

jpeg | susan | SHA | dijkstra | gSort | string [ math total

CyCleS 18519389 | 28130600 | 13964233 76008446 96078007 | 25559581 | 536300593 | 794560849

Inst. 13614684 | 22361502 | 11426232 54258552 53904386 | 15721040 | 355114001 | 526400397

CPI 1.36 1.26 1.22 1.40 1.78 1.63 1.51 1.51

total cycle count

average CPI = Equ. 5-1

total instruction count

From ARM Spec. [3] [5], the average clock per instruction (CPI) is 1.5 within
MiBench [19] for ARMv5 architecture. Here we use MiBench and apply Equ. 5-1 to
evaluate the average CPI of our ISS.

TABLE— 5-6 shows the results of the CPI evaluation for each test program in
MiBench on our SystemC ISS. The CPI of our ISS is in the range from 1.22 to 1.78
for all test programs. Overall, the CPI of our ARM-based ISS is around 1.51 which

tightly couples with the value of 1.5. Through this experiment, we believe that the
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timing setting in assumption is reasonable and trustworthy for our ARM-based ISS.

Note that, these timing parameters are freely adjustable for SystemC modules.

5.4 Power Metric

TABLE— 5-7: Power model of ARM Versatile-PB

Model I-cache & D-cache DRAM
Power (32kB, 4 ways associative) | (128MB, 2 banks)
leakage power (mW) 1.1601 34.9812
refreshing power (mW) 0 1.0107
read operation (nJ) 0.3394 3.6097
write operation (nJ) 0.1637 3.6241

To do the task of memory power estimating, at first, we use and look for HP
CACTI [27] program (be cited over 2000 times) to figure out the power/energy model
of I-cache, D-cache, and the DRAM module of ARM Versatile-PB platform.
TABLE— 5-7 lists the leakage power, refreshing power, and switching energy of the
ARM Versatile-PB memory system based on CACTI. Again, we ignore the refreshing
power of I-cache and D-cache because they are SRAMs. Note that, to evaluate the
power model, we assume both the cache and DRAM module are manufactured by the
90nm processing technology.

By recording the total executing time and number of memory access including
read operations, write operations, and cache misses, we can easily figure out the total
energy dissipation of a program by Equ. 3-1. TABLE— 5-8 is the results of power

evaluation for MiBench on our SystemC virtual platform.
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TABLE— 5-8: Power estimation of memory system

Program
jpeg susan SHA | dijkstra | gSort | string math
Energy(mJ)
- No. 13614684 22361502 11426232 54258552 53904386 15721040 355114001
@D
— D
(L“ o energy 4621.232 7590.165 3878.406 18416.98 18296.766 5336.193 120536.345
S
g 3 No. 98821 88372 77454 89886 151992 83803 5937845
=
@ energy 268339.334 239966.036 210319.211 244077.163 412720.293 227559.337 16123671.82
- No. 4506274 7973216 3301398 16290791 20523885 5806617 7262554
@D
QD
=k energy 1529429.396 2706109.51 1120494.481 5529094.465 6965806.569 1970765.81 2464910.828
|D E No. 2518749 1517741 1996887 5556542 14664336 3871841 50798426
8 3
(@] —+
> @ energy 412243.649 248408.669 326830.495 909439.229 2400111.873 633704.216 8314178.383
(1]
3 No. 42647 27993 20685 156033 284938 21496 149274
=
@ energy 171645.646 112666.226 83252.988 628001.618 1146818.462 86517.101 600797.995
- No. 1131744 930920 785112 1967352 3495440 842392 48696952
@D
QD
;DU o energy | 4085256317 3360341.924 2834018.786 7101550.514 12617489.77 3040782.402 175781387.6
>
g E No. 341176 223944 165480 1248264 2279504 171968 1194192
S,
—+
@ energy 1236455.942 811595.45 599716.068 4523833.562 8261150.446 623229.229 4327871.227
|eakage cycles 18519389 28130600 13964233 76008446 96078007 25559581 536300593
+
energy 2.752 4.181 2.075 11.296 14.278 3.798 79.7
refreshing
total 7707994.268 7486682.161 5178512.51 18954424.83 31822408.46 6587898.086 207733433.9
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5.5 Profiling of Linux Booting Sequence

In this section, we try to profile and analyze the instruction count and cycle count
of the Linux kernel booting procedure by our SystemC virtual platform. Note that, the
evaluation results are deeply relying on the configuration of Linux kernel and the
initial root file system. Here the kernel and the root file system in use are lightweight
versions; the root file system is originally 5.8MB and 2.8MB after gzip compression.

To complete the ARM Linux booting procedure, the total instruction count is
about 360 million and the total cycle count is about 480 million for our experimental
environment. Referring to the ARM manual [3], for a real ARM926 CPU
implemented in .18um process technology, the operating frequency is about 200 to
250MHz. That is, the total boot up time is less than 3 seconds. Again, the kernel and
root file system we used are very light, so it is not surprised with this rapid boot up
performance.

Fig. 5-2 and Fig. 5-3 are the pie charts of total instruction count and cycle count
of ARM Linux booting sequence respectively. From these two charts, to boot up
Linux kernel, we discover that most of time is spent on mounting the initial root file
system (including decompressing binary image of the file system) and kernel
decompression. To setup the initial root file system, it costs more than 65% of the
entire boot time; the process of kernel decompression occupies more than 20% of the
boot time. The task of file system decompression is a quite large effort for a Linux
based SoC design. In reality, the size of root file system in gzip format is usually
much greater than tens or even hundreds of MB, so that the decompression process
may spend more than 70% of the boot time.

For some specific embedded devices, the manufacture has customized the file
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system of Linux to slash the time of setting up the file system. In this case, the setup
time of the initial root file system can be omitted. Fig. 5-4 and Fig. 5-5 are the total
instruction count and cycle count of ARM Linux booting without the root file system.
These two charts show the start kernel() function (which is the PID 0 process of
Linux) occupies about 20% of the boot time in this special case. Furthermore, the
LCD (which is the function to draw and show up the Linux penguin logo on the color

LCD panel) spends 6% of the entire boot time.
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Instruction Count with FS Setup
18072551, 5.00%

6442834, 1.78%

10708070, 2.96%

B FS setup

m kernel decompress
B start_kernel()
ELCD

B MMU setup

other

Fig. 5-2: Instruction count of Linux booting with FS setup

Cycle Count with FS Setup

25184796, 5.25%

3206315, 0.67%

9615816, 2.00%
18990496, 3.96%

B FS setup

m kernel decompress
M start_kernel()
mLCD

B MMU setup

other

Fig. 5-3: Cycle count of Linux booting with FS setup
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Instruction Count without FS Setup

335536, 0.28%

6442834, 5.38% M kernel decompress

start_kernel()
10708070, 8.94% mLCD
B MMU setup

m other

Fig. 5-4: Instruction count of Linux booting without FS setup

Cycle Count without FS Setup

3206315, 2.01%
M kernel decompress

9615816, 6.03%
start_kernel()

mLCD
18990496,
11.91% m MMU setup
m other

Fig. 5-5: Cycle count of Linux booting without FS setup
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Chapter 6 - Conclusions

We have designed a functional and/or approximate-timed accurate virtual
platform and its corresponding ARM-based interpretive ISS in SystemC models for
ESL design methodology.

This virtual platform provides a full system simulation environment that can
directly execute system programs including OS kernel, device drivers, and the
corresponding application programs without any or only with tiny modification. The
virtual platform also has built in a customized gdbserver called naked GDB which is
suitable for debugging both bare-level and application programs, and thus software
engineers are able to develop the system software in the early development stage
without any real hardware devices support. In addition, system developers are apt at
analyzing the system algorithm and reviewing the interaction between software and
hardware by utilizing this full system simulation framework.

Finally, using this SystemC virtual platform and the ISS, the complexity of
developing a new SoC design can be reduced and the time-to-market will be

shortened altogether.
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Chapter 7 - Future Works

To make the ISS and the SystemC virtual platform more powerful, in the future,

we would like to keep on maintaining and improving it:

to improve the SystemC simulation kernel with pthread library, so that the
simulation performance can be accelerated by symmetric multiprocessing (SMP)
host machine in parallel [24].

using a local cache scheme or another methodology to improve the instruction
decoder of the ISS to raise up the throughput.

to fix the CPU emulator to be a multi-core processor and provide a proficient
method to develop multi-core programs.

to extend the naked GDB to support multi-core program debugging and

verifications.
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