

國 立 成 功 大 學

電腦與通信工程研究所

碩 士 論 文

支援GDB之指令集架構模擬器與其全系統虛擬平台
An Instruction Set Simulator with GDB Support
and its Full System Simulation Virtual Platform

研 究 生： 李信穎 ：Student Shin-Ying Lee
指導教授： 陳中和 ：Advisor Chung-Ho Chen

Institute of Computer and Communication Engineering
National Cheng Kung University

Thesis for Master of Science
July 2010

中 華 民 國 九 十 九 年 七 月

I

支援 GDB 之指令集架構模擬器

與其全系統虛擬平台

研究生：李信穎 指導教授：陳中和

國立成功大學電腦與通信工程研究所

摘要

 在晶片系統的開發過程中，如何在全部的硬體裝置開發完成前即進行系統軟

體的開發以及軟硬體的協同模擬與協同驗證，是晶片系統開發人員一直以來所面

臨的一大挑戰。

在本論文中，我們利用 SystemC 模組實現了一個基於 ARM 架構的指令集模

擬器與其全系統虛擬平台。此 SystemC 虛擬平台提供了功能準確性以及時間準確

性的全系統模擬環境。藉由此 SystemC 虛擬平台，系統開發工程師能夠很容易地

對整體晶片系統（包含：硬體裝置、作業系統、驅動程式、以及應用程式…等部

件）進行協同模擬、協同驗證、系統評測與演算法分析的工作。除此之外，此虛

擬平台亦內建了 GDB 遠端除錯協定的通訊通道。透過此遠端除錯通道，SystemC

虛擬平台可直接與 GDB 除錯器進行連接，便於軟體工程師利用此虛擬平台和我

們所修改擴充的 naked GDB 除錯器於系統開發先期即開始進行各種系統軟體與

應用程式的開發及除錯工作，以達到有效地縮短整體晶片系統開發時程的目標。

關鍵字：虛擬平台、全系統模擬、協同模擬、系統除錯

II

An Instruction Set Simulator with GDB Support

and its Full System Simulation Virtual Platform

Student：Shin-Ying Lee Advisor：Chung-Ho Chen

Institute of Computer and Communication Engineering
National Cheng Kung University

Tainan, Taiwan

Abstract

 When developing a system-on-a-chip (SoC) embedded system, how to develop

the system software as well as co-verify the hardware and software before all

hardware modules are available is usually a big challenge for engineers.

In this thesis, we have implemented a virtual platform with an ARM-based

instruction set simulator in SystemC. This virtual platform provides a functional

and/or approximate-timed accurate full system simulation environment. By this

SystemC virtual platform, SoC developers are able to co-simulate, co-verify, evaluate,

and analyze the whole SoC system including hardware devices, OS kernel, device

drivers, and application programs…etc., in a simple way. Also, we have provided a

GDB RDP communication channel to connect the virtual platform and GDB debugger

directly. Through this virtual platform and the naked GDB debugger which we modify

from GDB, software engineers can easily develop and debug the system programs in

the early development stage. Thus, the time-to-market of a new SoC design can be

reduced significantly.

Keywords: virtual platform, full system simulation, co-simulation, system debugging

III

Contents

摘要 .. I

Abstract ... II

Contents ... III

List of Figures ... VI

List of Tables ... VIII

Chapter 1 - Introduction ... 1

1.1 Motivation ... 1

1.2 Contribution .. 2

1.3 Scope and Organization ... 3

Chapter 2 - Background and Related Works .. 4

2.1 Instruction Set Simulator ... 4

2.1.1 Interpretive Simulation .. 4

2.1.2 Static Compiled Simulation ... 5

2.1.3 Dynamic Compiled Simulation ... 6

2.2 GNU Debugger .. 7

2.2.1 Introduction to GDB .. 7

2.2.2 Remote Debugging Protocol ... 8

2.3 Related Works ... 10

2.3.1 Simplescalar .. 10

2.3.2 FaCSim .. 10

2.3.3 Dynamic Binary Translation ... 11

2.3.4 SimIt-ARM .. 12

2.3.5 Hybrid Compiled Simulation .. 12

2.3.6 Simics .. 13

Chapter 3 - System Framework .. 14

IV

3.1 Emulation Methodology .. 14

3.1.1 The Accurate Model .. 14

3.1.2 SystemC Simulation Methodologies ... 16

3.2 ARM-Based Instruction Set Simulator .. 18

3.2.1 Datapath .. 18

3.2.2 Memory System .. 20

3.2.3 Exception Handlers ... 20

3.3 Naked GDB ... 21

3.3.1 The Virtual Platform with GDB .. 21

3.3.2 Co-processor Probing .. 22

3.4 Power Estimation of the Memory System ... 23

3.5 The SystemC Virtual Platform .. 25

3.5.1 Platform Overview .. 25

3.5.2 Full System Simulation ... 27

3.5.3 Evaluation Methodology ... 31

Chapter 4 - Platform Verification ... 33

4.1 Verification Methodology ... 33

4.2 Linux Booting Sequence ... 34

4.3 Verification Result .. 35

4.3.1 Verification by Linux Booting .. 35

4.3.2 Verification by Device Driver under Linux .. 38

4.3.3 Verification by User Mode Applications under Linux 39

4.3.4 Co-Work with the Naked GDB ... 41

4.3.5 Summary of System Verification .. 42

Chapter 5 - Evaluation and Results .. 43

5.1 Experimental Environment and Parameters .. 43

5.2 Simulation Performance .. 45

V

5.2.1 The Throughput ... 45

5.2.2 SystemC Speedup .. 47

5.3 Cycles per Instruction .. 48

5.4 Power Metric ... 49

5.5 Profiling of Linux Booting Sequence .. 51

Chapter 6 - Conclusions ... 55

Chapter 7 - Future Works ... 56

References ... 57

VI

List of Figures

Fig. 1-1: Project schedule of traditional SoC design flow ... 1

Fig. 1-2: Project schedule of ESL design flow .. 1

Fig. 2-1: Interpretive simulation framework ... 4

Fig. 2-2: Static compiled simulation framework ... 5

Fig. 2-3: Dynamic compiled simulation framework ... 6

Fig. 2-4: RDP connection .. 8

Fig. 2-5: RDP packet format .. 9

Fig. 2-6: Object cache methodology ... 10

Fig. 2-7: Hybrid compiled simulation framework ... 12

Fig. 3-1: Trading off between accuracy and performance 14

Fig. 3-2: SystemC simple counter module .. 17

Fig. 3-3: State machine of the SystemC ISS ... 19

Fig. 3-4: Pseudo code of the datapath state machine ... 19

Fig. 3-5: gdbstub scenario with the ISS ... 22

Fig. 3-6: Overview of the SystemC virtual platform ... 27

Fig. 3-7: Architecture of the full system simulation virtual platform 29

Fig. 3-8: System design flow ... 30

Fig. 3-9: System profiler scheme ... 31

Fig. 4-1: Linux boot up sequence .. 35

Fig. 4-2: Snapshot of Linux booting .. 36

Fig. 4-3: Snapshot of the virtual LCD panel ... 36

Fig. 4-4: Snapshot of the PS command ... 37

Fig. 4-5: Snapshot of loading a device driver .. 38

Fig. 4-6: Snapshot of executing apps .. 40

VII

Fig. 4-7: Snapshot of the naked GDB ... 41

Fig. 5-1: Speedup of different SystemC scheme ... 47

Fig. 5-2: Instruction count of Linux booting with FS setup 53

Fig. 5-3: Cycle count of Linux booting with FS setup .. 53

Fig. 5-4: Instruction count of Linux booting without FS setup 54

Fig. 5-5: Cycle count of Linux booting without FS setup 54

VIII

List of Tables

TABLE— 3-1: Abstract level of simulation accuracy ... 15

TABLE— 3-2: Comparison of SystemC simulation scheme 16

TABLE— 3-3: Performance of SystemC v2.2.0 on Intel Q9500 18

TABLE— 3-4: List of co-processor registers of ARM ... 23

TABLE— 3-5: Components of the virtual platform ... 26

TABLE— 4-1: List of application programs we used ... 39

TABLE— 5-1: Experimental environment ... 43

TABLE— 5-2: Parameters of the virtual platform .. 44

TABLE— 5-3: Average executing cycle(s) of CPU emulator 44

TABLE— 5-4: Throughput of different ARM ISSs .. 46

TABLE— 5-5: Performance of different SystemC schemes 47

TABLE— 5-6: CPI of the ISS ... 48

TABLE— 5-7: Power model of ARM Versatile-PB.. 49

TABLE— 5-8: Power estimation of memory system ... 50

1

Chapter 1 - Introduction

1.1 Motivation

As the improvement of the process technology of very large scale integrated

(VLSI) circuit, in recent years, a system-on-a-chip (SoC) design becomes more and

more complicated. The task of algorithm validation, system evaluation, hardware

verification, and software debugging also becomes a big effort for engineers to design

a vast computing system. How to make this heavy job easier is a very important issue

for SoC developers.

Fig. 1-1: Project schedule of traditional SoC design flow

Fig. 1-2: Project schedule of ESL design flow

2

In traditional SoC design flow, to develop, verify, and debug the software

programs before all hardware devices are available is a very difficult work when

building a new SoC design. This is because the hardware modules don’t have a robust

and suitable testbench to validate until their corresponding software systems are ready

to use. That is, the development of software and hardware are hard to advance and the

time-to-market will be delayed as Fig. 1-1 shows [11].

Nowadays, as Fig. 1-2 shows [11], the electronic system level (ESL) design

methodology becomes a popular way to reduce the complexity of system

development and decrease the time-to-market. Following the ESL design flow,

developers can co-verify both hardware and software easily. Nevertheless, it is still a

difficult job to do full system simulation involving in the operating system (OS),

hardware device and its corresponding device driver, as well as the application

programs in the early development stage, i.e. before the synthesizable register-transfer

level (RTL) code is ready.

In short, to achieve verifying and evaluating the entire SoC system in the early

development stage, an efficient and robust full system simulation instruction set

simulator (ISS) supporting of bare-level program (a program runs without any OS

sustaining) debugging is intensely required for ESL design methodology.

1.2 Contribution

In this thesis, we have built a robust ARM-based ISS and SystemC virtual

platform which has the following features:

 supporting full system simulation in approximate-timed/functional accuracy with

unmodified OS kernels

3

 supporting debugging for bare-level programs, e.g., OS kernel and bootloader,

with the GNU debugger (GDB)

 supporting system profiling, evaluating, analyzing, and validating of an SoC

design with the proposed ESL mechanism

1.3 Scope and Organization

The rest of this thesis is organized as follows: Chapter 2 takes a brief

introduction to the concepts and issues about the instruction set simulators and GDB

debugger; Chapter 3 presents the system framework of our ISS and SystemC virtual

platform design; Chapter 4 discusses how to validate this full system simulation

virtual platform; Chapter 5 shows the experimental results. Finally, Chapter 6 gives

the conclusions of this thesis.

4

Chapter 2 - Background and Related Works

2.1 Instruction Set Simulator

An instruction set simulator (ISS) is a tool that runs on a host machine to mimic

the behavior of running a program on a target CPU, that is, it can execute the target

binary code as a real CPU does [28][29][30]. Through the ISS, engineers can explore

the CPU architecture and validate the compiler design easily. Moreover, the ISS is

also the pivotal component for a full system simulation virtual platform. Thus, how to

design and implement a powerful and robust ISS is a significant theme we have to

explore in this thesis.

Basically, there are three types of ISS simulation method which are interpretive

simulation, static compiled simulation, and dynamic compiled simulation. First we

give an introduction of these ISS simulation frameworks.

2.1.1 Interpretive Simulation

Fig. 2-1: Interpretive simulation framework

5

Fig. 2-1 shows the interpretive simulation framework of an ISS. Similarly as a

real processor’s datapath, an interpretive simulation ISS regularly works in sequence

with three stages: fetching, decoding, and executing for every input target instructions

as Fig. 2-1 illustrates. Because all input target instructions have to be decoded

repeatedly in run time as routine, the throughput of an ISS designed in interpretive

simulation is usually pretty poor. Regardless, an interpretive simulation ISS allows the

developers to investigate the system design and can show up many details of program

executing in run time, e.g., the timing information.

2.1.2 Static Compiled Simulation

Fig. 2-2: Static compiled simulation framework

 Static compiled simulation uses a translator or a specific compiler to interpret the

entire target binary code as the host machine code by a one-to-one mapping technique

before simulation. In this way, no matter how many times we want to do the

simulating task, the ISS only has to translate the target binary once. Because the ISS

doesn’t need to decode the target instructions in run time, the simulation performance

can be improved substantially. Fig. 2-2 shows the mechanism of a static compiled

simulation ISS.

6

 Because a static compiled simulation ISS translates the entire target binary

before run time, the behavior of the simulated program must be predictable. That is, it

cannot involve to a complex OS kernel if it will dynamically mount and manage lots

of device drivers and application programs into memory at run time, e.g., Linux. A

static compiled simulation ISS can be only used for application program simulations.

2.1.3 Dynamic Compiled Simulation

Fig. 2-3: Dynamic compiled simulation framework

 Like the static compiled simulation framework, dynamic compiled simulation

which is also known as dynamic binary translation interprets the target binary code as

host machine binary to improve the performance of the ISS. The difference to static

compiled simulation is that it translates the target binary by the unit of block (which is

composed by a few of target instructions) in the run time dynamically and stores the

translation result temporarily into a local translating buffer rather than in pre-run time.

7

Through its dynamical property, a dynamic compiled simulation ISS can be applied to

simulate not only application programs but also OS kernels.

As Fig. 2-3 shows, for dynamic compiled simulation framework, the ISS doesn’t

fetch the target instruction after executing an instruction. In fact, it fetches, translates,

and executes a block of instructions once a time instead of one by one. In this way, the

executing overhead will be reduced when repeatedly executions occurring in the same

translation block.

In theory, the performance of a dynamic compiled simulation ISS is usually

worse than a static compiled simulation one because of the translation overhead. Note

that, the static compiled simulation framework doesn’t have to translate the target

instructions in the run time.

2.2 GNU Debugger

2.2.1 Introduction to GDB

A debugger is a software tool that helps software engineers to find out bugs

resided in a program. A debugger might allow the programmers to examine the

executing sequence of the debugged program.

GNU debugger (GDB) [17][33] is a well-known and widespread open source

debugger for software debugging within GNU POSIX development environment.

Since it’s flexible to cross fit on many types of processor architecture, GDB is popularly

used for embedded system developing.

Current GDB has already provided the functions of break point and step

execution to control the program executing flow. Also, it has the watch point

8

functionality, general registers’ values probing, and calling stack inspecting (or called

as backtrace) to monitor the memory system. Unfortunately, the memory space which

GDB sees is virtual address space only and GDB has no mechanism to change the

setting of the memory management unit (MMU) and/or co-processors, so that it is

difficult to apply GDB to debug a bare-level program which might control and

manage the system resources through the MMU. Indeed, the original GDB program is

designed for debugging application programs only instead of bare-level programs.

2.2.2 Remote Debugging Protocol

GDB

TCP/IP

Target Program

TCP/IP

Host Machine

Target Machine

RDP

gdbserver

Inter Network

GDB

Serial Port

Register File

JTAG Probe

Host Machine

Target CPU

RDP

gdbserver

ICE

(a) (b)

Fig. 2-4: RDP connection

(a)via Inter Network (b)via JTAG and ICE

For cross developing an embedded system, the debugged program is usually

executed on a remote machine, e.g., a development board. The remote debugging

protocol (RDP) defined by GDB is a protocol for communicating with target programs

inside a remote machine. Through RDP, the host machine (where the GDB executed on)

9

and the target machine (which the debugged program runs on) have the ability to

connect each other via TCP/IP network as Fig. 2-4(a) shows. Furthermore, the

debugged target program requires an extra module, called gdbserver or gdbstub, to

parse and pack up the RDP data packet. In most cases, both the TCP/IP protocol stack

and gdbstub are furnished by an OS, i.e., it’s difficult to debug bare-level programs

such as bootloader and OS kernel itself. Again, GDB is originally concerned to debug

only application programs running on an OS, Linux, for example. This remote

debugging scheme is not useful for embedded system development at the early stages.

→ $command/data #checksum

← +

Fig. 2-5: RDP packet format

In some cases, as Fig. 2-4(b) shows, GDB uses serial port to link with the target

CPU directly by means of JTAG (joint test action group) probe and ICE (in-circuit

emulator) for bare-level software debugging and hardware circuit testing. In this way, it

is easy to scan and monitor the register file and memory system of the target CPU;

nonetheless this scenario has a disadvantage, that is, the target system has to carry out

the gdbstub by some additional hardware circuit. However, in this way, the cost of the

target system is increased significantly.

Fig. 2-5 describes the RDP data packet format. Each data packet of RDP starts

with a ‘$’ sign and finishes by a ‘#’ symbol following an 8-bit checksum value. No

matter the GDB or gdbserver, after receiving a RDP packet with correct checksum

value, they ought to immediately response a ‘+’ symbol for acknowledgement. Again,

all RDP packets are transferred by TCP/IP or the serial port.

10

2.3 Related Works

2.3.1 Simplescalar

Simplescalar [13] is an open source and very famous (be cited by nearly 2000

times) interpretive ISS that is extensively used in areas of computer architecture

research and compiler designing. It provides the developers a CPU prototype to

examine a new processor architecture design as well as to evaluate its performance.

Simplescalar executes target programs in cycle accurate model, but simulates at a

very low speed. Besides, because Simplescalar doesn’t have any I/O peripheral

interface, it can only simulate with specific applications but an OS kernel which is

necessary to run with peripheral device, e.g., timers, interrupt controllers, and

keyboard interfaces…etc.

2.3.2 FaCSim

Fig. 2-6: Object cache methodology

In [22], it improved and accelerated the decoder module of interpretive ISS by an

object cache technique. Similarly like the dynamic binary translation framework, it

records some of the instructions that have been decoded and executed. Hence, it can

11

reduce a great amount of instruction decoding overheads during simulation time. The

difference to dynamic binary translation in this framework is that it interprets the

target binary instruction one by one rather than block by block. Fig. 2-6 shows the

concept of the object cache methodology.

FaCSim is a full system simulation virtual platform established in pure C/C++

language and optimized for multi-core host machines with the object cache ISS

mechanism. The ISS of FaCSim is time accurate but the I/O peripherals are modeled

with only functional accuracy. Consequently, because it is implemented by native

C/C++, the developers are difficult to attach new hardware devices with the virtual

platform.

2.3.3 Dynamic Binary Translation

In [31], the work proposed the concept of dynamic binary translation. Nowadays,

there are many ISSs and virtual machines by means of the dynamic binary translation

methodology in order to obtain a better simulation throughput.

QEMU [14][26] is a famous virtual machine which is implemented by dynamic

binary translation in pure C/C++. In QEMU, it applies the core of gcc compiler to

re-generate and optimize the target binary code.

Recently, QEMU is popularly applied to develop and emulate OS kernels of

embedded systems from its high performance. Unfortunately, like most of binary

translation frameworks, QEMU is functional accurate but timed accurate. The system

developers cannot examine the interaction between the hardware and software with

the QEMU virtual machine. Moreover, it is implemented in pure C/C++ language; the

developers are hard to bind a new hardware device with QEMU as well. For the above

12

reasons, we don’t attempt to apply QEMU to do full system simulation in ESL design

methodology.

2.3.4 SimIt-ARM

In [20], the work proposed a virtual machine called SimIt-ARM implemented by

both interpretive model and dynamic binary translation. SimIt-ARM has already

supported an instruction count metric. Even though it has an instruction count metric,

developers still cannot probe the timing information like a common dynamic binary

translation framework. Again, it is not powerful enough to be used as a virtual

platform in an ESL design flow.

2.3.5 Hybrid Compiled Simulation

Fig. 2-7: Hybrid compiled simulation framework

13

In [28][29][30], they have proposed a hybrid compiled simulation framework to

associate the advantages of both static compiled simulation and dynamic compiled

simulation. Fig. 2-7 shows the framework of hybrid compiled simulation.

 The hybrid compiled simulation framework translates the target binary before

run time the same as a static compiled simulation framework. Yet, during run time, it

will monitor whether the code segment in the memory is modified or not. If modified,

the ISS will re-generate and update the host machine code. This framework is more

flexible than a static compiled simulation ISS and more efficient than dynamic

compiled simulation one, but it still cannot show up the timing information for system

engineers.

In practice, to save the cost of storage devices, a lot of embedded systems,

especially for portable devices, store the OS kernel image in a compressed form and

decompress the image at boot up time. To simulate system like this case, the hybrid

compiled simulation mechanism will not gain much benefit because it probably

cannot translate the compressed image. It is not good enough for doing full system

simulation with ESL design methodology.

2.3.6 Simics

Simics [10][23] is a commercial ESL tool for doing full system simulation.

Recently, it goes popular in system design domain, but it is not open source and free

for using. Therefore, the developers cannot easily investigate and modify the whole

system design. Namely, it might not be flexible enough to explore the entire system

for system developers.

3.1

simu

wel

desi

corr

ther

and

3.1.

simu

simu

 Emulati

In this the

ulation env

l as softwa

ign method

responding

re are two m

the simulat

.1 The Ac

As Fig. 3

ulation per

ulation spee

Chap

ion Metho

esis, the mai

vironment w

are program

dology. To

ISS which

major issues

tion perform

ccurate Mo

3-1 shows,

rformance

ed and vice

Fig. 3-1

pter 3 -

odology

in goal we a

which can

ms including

design a f

can emula

s we have t

mance.

del

, the relati

is that hig

versa.

: Trading off

14

System

aim to and l

co-simulate

g OS kern

full system

ate the OS k

to trade off

ionship be

gher simula

between accu

m Frame

look forwar

e and co-ve

el (Linux f

m simulation

kernel with

f first, that i

tween the

ation accura

uracy and perf

ework

rd is to desig

erify hardw

for our exa

n virtual pl

h acceptable

is, the simu

accurate m

acy usually

formance

gn a full sys

ware device

ample) for

latform and

e time dura

ulation accu

model and

y makes lo

stem

es as

ESL

d its

tion,

uracy

the

ower

15

TABLE— 3-1: Abstract level of simulation accuracy

Abstract level Features Throughput

functional (untimed) only mimic the functional behavior very high

timed

approximate-timed simulate the action during a specific period high

cycle simulate the actions for each clock cycle slow

pin simulate the signal transferring on the wires for each clock cycle very slow

TABLE— 3-1 shows the characteristics of different abstract models of

simulation accuracy [18].

For the functional accurate model, e.g., binary translation scenario, it normally

has the best simulation performance comparing with the other abstract models, but it

is difficult to verify and investigate the interactions between software and hardware

by means of a functional accurate virtual platform. On the other hand, a pin accurate

virtual platform, such as RTL models, always simulates at a very low speed which is

not suitable for running with an OS kernel.

To develop the proposed full system simulation virtual platform and its ISS, the

policy of approximate-timed accurate model in SystemC [8][11][18] is chosen to

achieve for the following reasons:

(1) First of all, timed accurate hardware models can be applied to profile the entire

system including both hardware and software easily.

(2) Secondly, an approximate-timed accurate virtual platform can be simulated at a

much higher speed than cycle accurate and pin accurate models, so that the

amount of time to emulate booting up an OS is acceptable.

(3) The system developers can try, adjust, and determine the system parameters

simply within SystemC simulation framework.

16

(4) Finally, SystemC is an IEEE standard used for building hardware modules; as a

result, the hardware developers are able to modify and build up this virtual

platform with additional hardware devices painlessly. Moreover it also allows

developers to advance the hardware modules to become cycle accurate if needed.

3.1.2 SystemC Simulation Methodologies

TABLE— 3-2: Comparison of SystemC simulation scheme

 SC_CTHREAD SC_THREAD SC_METHOD

executing trigger clock edge signal events signal events

executing suspend yes yes no

infinite loop yes yes no

resume from suspending
wait()

wait_until()

wait() N/A

According to the IEEE 1666 standard [8], there are three categories of simulation

process which are SC_CTHREAD, SC_THREAD, and SC_METHOD in SystemC

simulation kernel. TABLE— 3-2 lists the comparison of these three kinds of

simulation scheme.

 The main difference between SC_CTHREAD/SC_THREAD and SC_METHOD is

SC_CTHREAD/SC_THREAD support executing suspending and resuming. In practice,

this property makes the developers easy to implement a virtual hardware module

especially for circuits which have the pipeline scheme. Moreover, the

transaction-level modeling (TLM) standard is also defined based on SC_CTHREAD

simulation process. Although applying SC_CTHREAD or SC_THREAD to model the

17

behavior of hardware modules is more convenient and easier since they support

executing suspending and resuming by the assigned SystemC events, their simulation

performance is not as good as SC_METHOD [15].

SC_CTHREAD/SC_THREAD SC_METHOD

counter::counter(sc_module name):

sc_module(name)

{

SC_CTHREAD(run_thread, clk.pos())

}

counter::thread(void)

{

do

{

 count++;

 wait();

}while(1);

}

counter::counter(sc_module name):

sc_module(name)

{

SC_METHOD(run_method);

sensitive << clk.pos();

}

counter::method(void)

{

count++;

}

Fig. 3-2: SystemC simple counter module

Here we utilize a simple counter module in SystemC v2.2.0 to exam the upper

bound of the simulation performance for each scheme on an Intel Core 2 Q9500

machine as Fig. 3-2 shows. From TABLE— 3-3, we see the upper bound of

simulation performance is about 4.4 million clock cycles per second by SC_METHOD.

In contrast, using the SC_CTHREAD scheme only reaches 3.0 million clock cycles

per second. Here we observe that using SC_METHOD will gain a speedup of around

1.5 times faster than using SC_CTHREAD. This result implies SC_METHOD is a

better option to implement the SystemC virtual platform.

18

TABLE— 3-3: Performance of SystemC v2.2.0 on Intel Q9500

Scheme Million cycles / sec
Speedup

comparing with SC_CTHREAD

SC_CTHREAD 3.0 1.00x

SC_THREAD 3.3 1.10x

SC_METHOD 4.4 1.47x

3.2 ARM-Based Instruction Set Simulator

In this work, we model the interpretive ISS founded on ARMv5 architecture [5]

in SystemC. This SystemC ISS design involves in datapath, MMU, and exception

handlers. Now we are going to take a brief introduction to the SystemC ISS in the

following Sections.

3.2.1 Datapath

As a general interpretive ISS, the SystemC ISS has three stages to perform when

executing a target instruction like we described in Section 2.1.1.

For using the approximate-timed model to improve the throughput, we don’t

precisely model the pipeline architecture. The actions of fetching, decoding, and

executing are accomplished at a time instead of step by step for each clock cycle. The

ISS will calculate the total time spent and decide how many clock cycles to rest after

executing one target instruction. In fact, the SystemC ISS has totally four states

including an extra rest state as Fig. 3-3 shows. The rest state indicates that the ISS has

19

to add delays for an appropriate period to model the execution time. Fig. 3-4 describes

the pseudo code of this ISS mechanism.

Fig. 3-3: State machine of the SystemC ISS

ISS::ISS(sc_module name): sc_module(name)

{

SC_METHOD(datapath);

sensitive << clk.pos()

}

ISS::datapath()

{

……

if(!rest)

fetch()

decode()

execute()

rest = cycles in execution

else

pause()

rest--

……

}

Fig. 3-4: Pseudo code of the datapath state machine

20

3.2.2 Memory System

The SystemC ISS has a complete MMU/co-processor system in compatible with

the ARMv5 architecture. This MMU module involves in translating the virtual

memory address into physical address and check the memory permission for every

instruction fetching and data access.

The MMU module also has a separate I-cache and D-cache within round robin

replacement policy. Like the datapath module, we don’t actually access instruction

and data through the cache model to simplify the ISS design for better simulation

throughput. These two “virtual cache” here are used only for system profiling and

making the timing information more precisely.

For ARM processors, the I/O architecture is memory mapped I/O. All I/O

peripherals are abstract to the ISS. On the virtual platform, the SystemC ISS treats

these I/O devices as a universal memory module. This framework let the developers

design the I/O peripheral devices without any need to concern with the ISS structure

abstractly.

3.2.3 Exception Handlers

The SystemC ISS supports exceptions generated by internal and external sources

consisting with all of the seven exception types of an ARM processor. The ISS will

check the exception state at every clock cycle. As an exception occurs, the ISS

switches to the corresponding executing mode and forces the program counter

(register 15) pointing to the address of exception table automatically.

21

3.3 Naked GDB

One of our main goals is to debug both bare-level programs and application

programs by the virtual platform and GDB in this thesis.

Because GDB is designed for debugging with only application programs

originally as we have mentioned in Section 2.2, it has no available scheme to explore

the MMU and/or co-processors of an ARM processor. Furthermore, the supervisor

mode operations are not allowed to be performed by GDB. Consequently, it’s

apparently not fit for debugging a bare-level program, especially for an OS kernel

which has to access the co-processors and perform supervisor mode operations

frequently. For the above reason, the original GDB design requires fixing and

enhancing to be adequate for the use in debugging bare-level programs.

3.3.1 The Virtual Platform with GDB

To use GDB, a gdbstub/gdbserver program embedded in the ISS is definitely

necessary. The purpose of this embedded gdbstub is to work as an RDP parser and a

JTAG scanner virtually. We use the embedded gdbstub to replace a real ICE/JTAG

circuit, so that the debugged program has no need to run upon an OS. Namely,

developers can debug bare-level programs on the virtual platform without an

embedded scan chain circuit support.

Fig. 3-5 is the scenario of the gdbstub residing in the ISS. The gdbstub has two

components, the RDP parser/packer (which is used to parse and pack up the RDP

command packet) and the scanner (which is used to fetch the registers’ values and

data stored in the memory system). The connection between gdbstub and GDB is

22

TCP/IP socket as the figure shows, so that the GDB and the virtual platform can run

on different host machines and make the debugging job more flexible.

Fig. 3-5: gdbstub scenario with the ISS

3.3.2 Co-processor Probing

A bare-level program often manages system resources by MMU/co-processors. If

there is any error existing in the MMU setting, it might cause the system going to

crash quickly even if it’s just a minute bug. Unfortunately, this kind of programming

bugs is very difficult to find out and always makes software developers puzzled.

To solve this critical problem, we have to propose a method for developers

23

reviewing the MMU setting. We add the co-processor specific registers of ARM

processor into the architecture descriptor of the GDB program as TABLE— 3-4 lists.

By the new modified GDB program named as the naked GDB and the embedded

gdbstub in the ISS, developers are able to monitor the system status during simulation

time. Thus, the software designers can investigate the MMU/co-processors settings

and repair the system program when a system failure occurs.

TABLE— 3-4: List of co-processor registers of ARM

Register Description

pid (context) stores the process ID of current executed process

sys the system control register of the co-processor 15 (MMU)

ttbr the page table base address

domain the memory access domain control register

dfsr stores the data access abort status

ifsr stores the instruction pre-fetch abort status

far contains the data/instruction abort address

3.4 Power Estimation of the Memory System

Another issue we are interesting in when developing a new SoC design is the

energy consumption, especially to design a portable device, e.g., a smart phone.

According to [25], the energy consumption of the memory system is about 17% to

20% for an ARM-based embedded system. Therefore, the memory system is one of

the major parts of energy consumption for an ARM SoC. In this section, we focus on

24

discussing how to estimate and calculate the energy consumption of the memory

system by the SystemC virtual machine.

Typically, the energy consumption of the memory system has three major parts

which are:

(1) leakage power

the static operating power of the transistors and capacitors

(2) refreshing power

the power dissipation during the DRAM memory cell performs data refreshing

(3) switching energy

the energy consumption when the logic level switching

For a memory module, in general, almost of the logic level switching occurs at data

storing and loading, that is, the total amount of switching energy dissipation

extremely depends on the numbers of data access.

 	∑ E ൎ tP tPୖ aୱ୲୰Eୱ୲୰ a୪ୢ୰E୪ୢ୰ ൌ
ୡ

ሺP Pୖ ሻ aୱ୲୰Eୱ୲୰ a୪ୢ୰E୪ୢ୰ Equ. 3-1

 If we sum up the leakage power, refreshing power, and load/store switching

energy, we can get to estimate the energy consumption of the memory module of an

SoC design. Equ 3-1 is the approximate formula of total energy consumption for a

memory module where

 PL is the leakage power

 Er represents the refreshing power

 Estr and Eldr are the switching energy of data store and load

 astr and aldr are the numbers of access of data store and load

25

 c is the total cycle count during executing

 f is the operating clock rate

Note that, the refreshing power (Er) of a SRAM module, e.g., I-cache and D-cache,

are nearly none that we can omit it.

Since PL, PR, Estr , and Eldr are constant value depend on process technology, we

can estimate the energy consumption of the memory system just by recording the total

executing time/cycles and numbers of data accessing including I-cache, D-cache, and

DRAM module through the SystemC virtual platform.

This power estimation methodology gives the system engineers an elementary

way to predict the energy consumption of an algorithm in the early development stage.

It can help the developers to decide and choose which algorithm or policy to be used

for an SoC design appropriately.

3.5 The SystemC Virtual Platform

3.5.1 Platform Overview

Using SystemC SC_METHOD, we have established a full system simulation

virtual platform in compliance with the ARM Versatile-PB [7]. TABLE— 3-5 lists the

components on the virtual platform we have implemented. Fig. 3-6 shows the diagram

of the full system simulation environment.

On the virtual platform, we have already provided some virtual I/O interfaces,

e.g., keyboard, console, and LCD panel. Therefore, the program developers can

emulate and verify the user interface on this virtual platform. In addition, since the

26

virtual platform is implemented by IEEE SystemC standard, the hardware developers

are able to attach new intellectual property (IP) modules and their corresponding

device drivers for the virtual platform to co-simulation.

TABLE— 3-5: Components of the virtual platform

Module Description

ARM926 Processor [3]

 ALU

 register file

 MMU/co-processors

 gdbstub

an ARM v5 compatible ISS which includes arithmetic and logic unit

(ALU), register file, MMU/co-processors, and the embedded gdbstub

DRAM module the main memory module

PL011 UART [6]

 keyboard interface

 virtual console

the UART controller with a console emulator and a keyboard interface

PL110 VGA controller [1]

 virtual LCD panel
the LCD device with an LCD panel emulator

PL190 VIC [4] the vector controller module with totally 32 interrupt channels

SP804 dual timer [2] a 32-bits wide system counter/timer

27

Fig. 3-6: Overview of the SystemC virtual platform

3.5.2 Full System Simulation

The main purpose of hardware and software co-verification is to verify if the

software program executes correctly and efficiently on the hardware design. The job

of full system simulation co-simulates the hardware and software at the same time to

provide system developers a useful co-verification methodology. For a new SoC

design, there are two primary benefits of applying full system simulation to

co-verification [9]:

(1) First, it allows the system software to be tested and debugged before the

28

hardware devices are available to use. Therefore, this significantly shortens the

development time of the intended design.

(2) Secondly, the system software itself which co-simulates with the hardware

designs is an excellent and useful testbench.

For the above two reasons, to co-verify a complex SoC design, performing full system

simulation is always an important job for system developers in ESL design

methodology.

In this work, we use the Linux OS as an example, which is emulated on our

SystemC virtual platform for full system simulation. Fig. 3-7 exhibits the structure of

the full system simulation framework. This framework commonly has four echelons:

(1) hardware devices

The first echelon is the hardware devices consisting of some customized

hardware designs in SystemC, that is, the hardware side.

(2) OS kernel

The second echelon is the place where the Linux OS kernel resides. This echelon

involves the interrupt service routine (ISR), task scheduler, inter-process

communication (IPC) module, and device drivers. This part is also the core

component in our full system simulation platform.

(3) system libraries

The third echelon contains all of the dynamic linking shared libraries, system

application programming interfaces (API), and some specific middleware

including the C/C++ standard library.

(4) user mode apps

The highest echelon is the user mode programs. All apps including the console

29

terminal and shell program reside in here.

Through this full system simulation framework, all components in these four

echelons involving both hardware devices and software programs can be simulated at

the same time. Also, all of the system software and application programs can run upon

the simulation platform without any modification, so that the programmers are able to

design, test, and debug before the corresponding RTL code designs are synthesized.

Fig. 3-7: Architecture of the full system simulation virtual platform

30

Fig. 3-8: System design flow

Fig. 3-8 is the system design flow of an SoC project. In the design flow, the first

step is to sketch the system algorithm, and then implement the hardware and software

design. Then, the SystemC virtual platform and the ISS can be applied to involve in

the task of full system simulation to co-verify and validate the system algorithm,

hardware devices, as well as software programs.

31

In traditional SoC design flow, the hardware engineers and software

programmers are very difficult to start developing at the same time. Following this

ESL system design methodology, developers can easily leap across the big hurdle.

Because both the hardware and software can be developed and verified in parallel, the

total time-to-market of a new SoC will be shortened.

3.5.3 Evaluation Methodology

Fig. 3-9: System profiler scheme

The value change dump (VCD) file format is an IEEE standard to record the

status of data change and signal waveform for hardware description languages (HDL)

in simulation time. Current SystemC standard had already provided an sc_trace() API

to collect and dump the information for hardware engineers. So that, for our full

32

system simulation platform, we can simply add the sc_trace() function into the

SystemC hardware model to capture and evaluate the signal waveform if necessary.

For software side, to get the profile we want, we log the information through the

PID number of the process. As TABLE— 3-4 shows, the PID number will be

registered into the co-processor in run time and our naked GDB scheme has the

support to fetch this value.

Fig. 3-9 is the scenario of our profiler that is used to evaluate and log information

we need. There are three kinds of traced information we can retrieve after system

simulation, that is, the VCD file generated by hardware modules, PID number from

the naked GDB, and the program profiles from the ISS. Besides, we might also have

some additional information of the target program dumped by the cross toolchain in

compiled time, e.g., the system map. These four records can be used to analyze the

system algorithm, verify the hardware designs, and check the correctness of the

software programs.

33

Chapter 4 - Platform Verification

4.1 Verification Methodology

After implementing the ARM-based ISS and SystemC full system simulation

virtual platform, in this chapter, we are going to test and verify the behavior of the

whole virtual platform and see whether it is correct or not.

To verify the virtual platform, running a bare-level program on it to check is

necessary. A bare-level program has the ability to directly operate and access the

system with

 user mode instructions

 privileged mode instructions

 exception handlers

 the MMU/co-processor of the CPU

 I/O peripherals

that the user mode application programs cannot freely do. In short, a bare-level

program can go over the entire system smoothly without any privilege violations.

Therefore, general application programs are not suitable for verifying the virtual

platform because they cannot cover all the aspects of these system operations.

Since Linux is a very popular OS in embedded systems, the Linux kernel is a

good selection to be the testbench for our full system simulation framework.

34

4.2 Linux Booting Sequence

Fig. 4-1 is the Linux booting sequence [12]. Generally speaking, the booting

sequence of an embedded Linux can be separated into the following five steps:

(1) loads the kernel image into the main memory by the bootloader

(2) decompresses the kernel images and setups the MMU

(3) creates the PID 0 process, setups scheduler, and setups the exception handlers

(4) the PID 0 process forks the PID 1 process, and then the PID 1 process goes to

setup all device drivers and the initial root file system

(5) starts to load and run user mode apps

In conclusion, during the boot up time, Linux will visit and access the MMU

system, I/O peripheral devices, and exception handlers by both user mode and

privileged mode instructions. Consequently, all of the five parts we want to test and

verify will be visited during Linux booting.

In accordance with [21], it had proposed a methodology to verify an ARM-based

embedded system by Linux kernel and proved that we can guarantee the action of all

privileged mode instructions, exception handler, and MMU are working correct if an

ARM Linux kernel can be booted up and performed on the virtual platform and the

ISS successfully.

35

Fig. 4-1: Linux boot up sequence

4.3 Verification Result

4.3.1 Verification by Linux Booting

Fig. 4-2 and Fig. 4-3 are the snapshots of the console terminal and the LCD panel

respectively at Linux booting on our virtual platform. Fig. 4-2 shows the Linux kernel

goes to get the system information of our CASLab SystemC virtual platform, and then

to initialize the memory system, file system, and I/O peripheral devices. In Fig. 4-3, it

presents the Linux kernel drawing the color penguin logo on the LCD panel and

shows up the information of the initial root file system.

F

Fig. 4-2: Sn

Fig. 4-3: Snaps

36

napshot of Lin

shot of the vir

nux booting

rtual LCD pannel

We

proc

syst

plat

Fig. 4-4 sh

can discov

cesses runn

tem includin

As we ha

tform as nor

hows the pr

ver that the

ning at the

ng the sched

ave said in

rmally, we c

Fig. 4-4: Sna

rocesses inf

ere are alre

same time

duler and th

Section 4.2

can almost b

37

apshot of the P

formation a

ady more t

e upon Lin

he timer dev

2, if the Lin

believe it to

PS command

after enterin

than 20 ker

nux kernel.

vice are acti

nux kernel c

o be correctl

ng the Linu

rnel mode

Namely, th

ve successf

can boot up

ly implemen

ux ps comm

and user m

he multitas

fully.

p on the vir

nted.

mand.

mode

king

rtual

4.3.

calc

(adv

calc

Linu

sc_c

exec

cust

dev

.2 Verifica

We are g

culator mod

vanced micr

Fig. 4-5 s

culator mod

ux insmod

calculator

cuting in th

This work

tomized har

ice driver o

ation by De

going to tr

dule onto th

rocontroller

shows using

dule into Li

d command

recorded i

his figure.

k demonstra

rdware devi

on this virtua

Fi

evice Drive

ry to attac

he virtual m

r bus archite

g Linux in

inux kernel

d, we can

in the file

ates that the

ices. Moreo

al platform

ig. 4-5: Snaps

38

er under Li

ch a custo

machine and

ecture) devi

nsmod comm

l. Comparin

see there

of /proc/d

virtual plat

over, the pro

by co-simu

shot of loading

inux

omized hard

d hang on

ice driver [1

mand to lo

ng with bef

is an ext

/device afte

tform is able

ogrammers c

ulating with

g a device driv

dware devi

the corresp

16] into the

ad the dev

fore and aft

tra kernel

er the com

e to co-work

can examine

the hardwa

ver

ice—a spe

ponding AM

Linux kern

vice driver

fter entering

module ca

mmand fini

rk with

e and verify

are module.

cific

MBA

nel.

of a

g the

alled

shed

y the

39

4.3.3 Verification by User Mode Applications under Linux

TABLE— 4-1: List of application programs we used

Category Program Operations

ours

loop branches

Hanoi branches/recursion

thread multi-threading/multi-tasking

bSort branches/recursion/integer arithmetic

hSort

branches

recursion

integer arithmetic

factorial

gcd

MiBench

SHA

dijkstra

qSort

string

susan
integer arithmetic

floating arithmetic
jpeg

math

Undoubtedly, the full system simulation virtual platform can also be applied to

emulate the user mode application programs the same way as the device drivers. Here

we take several ARM Linux apps [32][34] to run on the virtual platform with Linux

OS kernel.

The

othe

syst

the

Thr

wel

plat

mul

TABLE—

ere are two c

er comes fr

tem explora

user mode a

ough these

l. In TABLE

Fig. 4-6 p

tform. It sh

lti-threading

— 4-1 lists th

classes of o

rom MiBen

ation. This d

application

testbenche

E— 4-1, it a

presents an

hows an ap

g program w

he apps we

ur testbench

nch [19] wh

demonstratio

programs r

s, we can c

also shows

example t

pplication p

within pthre

Fig. 4-6: Sn

40

e used to ve

hes; one is o

hich is a f

on is used t

run well on

check and v

the operatio

that some A

program of

ead library.

napshot of exe

erify the ISS

our own ba

famous ben

to confirm th

our full sys

verify opera

ons in cover

ARM Linu

f calculatin

ecuting apps

S and the v

sic program

chmark sui

hat the shar

stem simula

ations of the

rage for the

x apps run

ng Fibonacc

virtual platf

m design and

ite in comp

red libraries

ation framew

e ISS desig

ese testbench

n on the vir

ci series an

form.

d the

puter

s and

work.

gn as

hes.

rtual

nd a

4.3.

nak

regi

mon

prog

debu

app

.4 Co-Wo

Fig. 4-7 i

ed GDB go

isters of AR

The naked

nitor not o

gram debug

ug the bare

lication pro

ork with the

s the snaps

oes to probe

RM processo

d GDB abs

only the ge

gging stage

e-level prog

ogram witho

e Naked GD

shot of the

and fetch t

or.

solutely hel

neral regist

. Through t

grams and r

out any addi

Fig. 4-7: Sn

41

DB

naked GD

the general r

lps and allo

ters but th

this naked

recognize th

itional hard

napshot of the

DB. In this

registers an

ows the pro

he MMU/co

scheme, th

hese system

ware circuit

naked GDB

figure, we

nd the specif

ogrammers

o-processor

e software

m programs

t support.

notice that

fic co-proce

to observe

system in

developers

like a com

t the

essor

and

n the

 can

mmon

42

4.3.5 Summary of System Verification

In summary, as we have emphasized in Section 4.2, we believe and have

confidence that the functions of our ISS and the SystemC virtual platform are

implemented accurately and correctly since it can successfully boot up the ARM

Linux kernel and execute user mode applications. That is, the system developers can

trust and rely on the simulation result from this full system simulation virtual platform

and its ARM-based ISS.

43

Chapter 5 - Evaluation and Results

5.1 Experimental Environment and Parameters

TABLE— 5-1 lists the experimental environment of our simulation framework.

The experimental environment can be separated into two parts, the host machine side

and the target machine side.

The host machine is an Intel x86 based computer with Linux OS where the

virtual platform runs on. All programs on the host machine are compiled by gcc

v4.2.4 and the SystemC library in used is v2.2.0.

The target machine is the SystemC full system simulation virtual platform which

emulates and executes an ARM Linux kernel here. On the target virtual platform, the

ARM Linux kernel is compiled by arm-elf-gcc v4.3.2 and all apps including the

busybox tool set are compiled by arm-linux-gcc v4.4.3. Yet, the initial RAM disk and

all dynamic liking libraries of Linux are made by busybox v1.16.0.

TABLE— 5-1: Experimental environment

Host machine Target machine

 Intel Core 2 Q9500

 2GB DDRII SDRAM

 kUbuntu v8.04 with 32-bits kernel v2.6.24

 gcc v4.2.4

 arm-elf-gdb v7.1

 SystemC v2.2.0

 SDL v1.2

 HP CACTI v6.5

 arm-elf-gcc v4.3.2

 arm-linux-gcc v4.4.3

 Linux kernel v2.6.28 for AEM Versatile-PB

 busybox v1.16.0

44

TABLE— 5-2: Parameters of the virtual platform

Name Settings

CPU model ARM926 (ARMv5)

D-cache 32kB, 4-ways, 256-sets, round-robin

I-cache 32kB, 4-ways, 256-sets, round-robin

Bus model perfect (no latency)

DRAM model perfect (no latency)

DRAM size 128MB, 2 banks

clock rate of CPU 200MHz

clock rate of peripherals 4MHz

TABLE— 5-3: Average executing cycle(s) of CPU emulator

 cycles

arithmetic & logic instructions 1

32-bits multiply instructions 2

64-bits multiply instructions 4

load/store instructions N + 1 (N = number of words to transfer)

coprocessor access 2

branch penalty 3

swi instruction 3

D-cache miss penalty 16

I-cache miss penalty 8

45

TABLE— 5-2 lists the parameters of the ISS and the SystemC virtual platform in

assumption. Both of the I-cache and D-cache in the ISS are size of 32 KB, 4 way set

associative with 256 sets, and the replacement policy is round robin. In addition, here

we assume the DRAM and bus model are perfect, i.e., no access latency, though other

models can also be explored . Also, the clock rate of the CPU (ISS) is assumed to be

200 MHz as well as all of the I/O peripherals are running at 4 MHz.

TABLE— 5-3 is the timing setting of the ISS referring to [3][5][32]. The average

executing time of all arithmetic and logic instructions (except the multiply

instructions) are one clock cycle. The time to perform load/store instructions is N + 1

clock cycles where N is the number of words (4 bytes width here) to be transferred.

The total time to access the co-processors is assumed as two clock cycles. The branch

and exception penalty are three clock cycles. Finally, the penalty of D-cache miss and

I-cache miss are set to be 16 and 8 clock cycles respectively.

5.2 Simulation Performance

5.2.1 The Throughput

In this section, we are going to evaluate the throughput of our ARM-based

interpretive ISS and the SystemC virtual platform. TABLE— 5-4 shows the

throughput of a few of ARM-based ISSs and their comparisons.

In Section 3.1.2, we have shown the simulation upper bound of SystemC kernel

v2.2.0 is about 4.4 million clock cycles per second on our Intel Q9800 experimental

machine. For our SystemC virtual platform, the simulation throughput is around 2.1

million instructions per second (MIPS) with 2.9 million clock cycles per second.

46

Comparing between the value 2.9 and 4.4, the simulation speed of our SystemC

virtual platform has a 65.9% drop.

As TABLE— 5-4 shows, not unexpectedly, the QEMU and SimIt-ARM obtain

much higher throughput because both of them are designed within dynamic binary

translation technique which cannot explore the timing information in system design

space. Meanwhile, the GDB ARMulator is a functional accurate ISS model and the

FaCSim is implemented in pure C/C++ language that is hard to attach new hardware

devices. Though they have gained much higher performance than ours, all of these

ISS frameworks are not suitable for ESL design methodology. Finally, the throughput

of Simplescalar and the synthesizable RTL ISS module are much poorer than our

virtual platform; both cannot run an OS kernel in acceptable time duration.

TABLE— 5-4: Throughput of different ARM ISSs

Model Scheme MIPS Features

real hardware Versatile-PB 77.1

dynamic binary translation

QEMU > 100

SimIt-ARM 30.0 with instruction metric

functional accurate in pure C/C++

GDB ARMulator 8.2

FaCSim 4.3 optimized for MP

approximate-timed/cycle accurate

SystemC VP 2.1 approximate-timed accurate in SystemC

Simplescalar 0.9 cycle accurate

RTL < 0.1 pin accurate, synthesizable

47

5.2.2 SystemC Speedup

TABLE— 5-5: Performance of different SystemC schemes

 SC_CTHREAD SC_THREAD SC_METHOD

Million cycles / sec 2.2 2.5 2.9

Speedup(SC_CTHREAD) 100.00% 113.64% 131.81%

Fig. 5-1: Speedup of different SystemC scheme

 We have implemented the SystemC virtual machine and the ISS in all of the

three different SystemC simulation processes. Here we are going to measure and

compare the performance of these SystemC simulation methodologies.

 TABLE— 5-5 shows the simulation performance of our SystemC virtual

platform in each implementation methodology of SystemC process. From the table,

the simulation speed of our virtual platform is near to 2.9 million clock cycles per

second in SC_METHOD. Instead, if it is implemented in SC_CTHREAD, the

simulation speed is only 2.2 million clock cycles per second. Also, the virtual

80%
85%
90%
95%

100%
105%
110%
115%
120%
125%
130%
135%
140%

SC_CTHREAD SC_THREAD SC_METHOD

speedup

48

platform in SC_THREAD will run at 2.5 million cycles per second.

Fig. 5-1 is the bar chart of the speedup comparing with SC_CTHREAD. This

figure illustrates that using SC_METHOD will have a speedup of more than 130% and

the speedup of using SC_THREAD is about 114%. Using SC_METHOD to build the

ISS and the SystemC virtual platform has obtained the best simulation performance as

we have expected.

5.3 Cycles per Instruction

TABLE— 5-6: CPI of the ISS

 jpeg susan SHA dijkstra qSort string math total

Cycles 18519389 28130600 13964233 76008446 96078007 25559581 536300593 794560849

Inst. 13614684 22361502 11426232 54258552 53904386 15721040 355114001 526400397

CPI 1.36 1.26 1.22 1.40 1.78 1.63 1.51 1.51

 average	CPI ൌ ୲୭୲ୟ୪	ୡ୷ୡ୪ୣ	ୡ୭୳୬୲

୲୭୲ୟ୪	୧୬ୱ୲୰୳ୡ୲୧୭୬	ୡ୭୳୬୲
 Equ. 5-1

From ARM Spec. [3] [5], the average clock per instruction (CPI) is 1.5 within

MiBench [19] for ARMv5 architecture. Here we use MiBench and apply Equ. 5-1 to

evaluate the average CPI of our ISS.

TABLE— 5-6 shows the results of the CPI evaluation for each test program in

MiBench on our SystemC ISS. The CPI of our ISS is in the range from 1.22 to 1.78

for all test programs. Overall, the CPI of our ARM-based ISS is around 1.51 which

tightly couples with the value of 1.5. Through this experiment, we believe that the

49

timing setting in assumption is reasonable and trustworthy for our ARM-based ISS.

Note that, these timing parameters are freely adjustable for SystemC modules.

5.4 Power Metric

TABLE— 5-7: Power model of ARM Versatile-PB

Model

Power

I-cache & D-cache

(32kB, 4 ways associative)

DRAM

(128MB, 2 banks)

leakage power (mW) 1.1601 34.9812

refreshing power (mW) 0 1.0107

read operation (nJ) 0.3394 3.6097

write operation (nJ) 0.1637 3.6241

 To do the task of memory power estimating, at first, we use and look for HP

CACTI [27] program (be cited over 2000 times) to figure out the power/energy model

of I-cache, D-cache, and the DRAM module of ARM Versatile-PB platform.

TABLE— 5-7 lists the leakage power, refreshing power, and switching energy of the

ARM Versatile-PB memory system based on CACTI. Again, we ignore the refreshing

power of I-cache and D-cache because they are SRAMs. Note that, to evaluate the

power model, we assume both the cache and DRAM module are manufactured by the

90nm processing technology.

 By recording the total executing time and number of memory access including

read operations, write operations, and cache misses, we can easily figure out the total

energy dissipation of a program by Equ. 3-1. TABLE— 5-8 is the results of power

evaluation for MiBench on our SystemC virtual platform.

50

TABLE— 5-8: Power estimation of memory system

Program

Energy(mJ)
jpeg susan SHA dijkstra qSort string math

I-cach
e

read

No. 13614684 22361502 11426232 54258552 53904386 15721040 355114001

energy 4621.232 7590.165 3878.406 18416.98 18296.766 5336.193 120536.345

m
iss

No. 98821 88372 77454 89886 151992 83803 5937845

energy 268339.334 239966.036 210319.211 244077.163 412720.293 227559.337 16123671.82

D
-cach

e

read

No. 4506274 7973216 3301398 16290791 20523885 5806617 7262554

energy 1529429.396 2706109.51 1120494.481 5529094.465 6965806.569 1970765.81 2464910.828

w
rite

No. 2518749 1517741 1996887 5556542 14664336 3871841 50798426

energy 412243.649 248408.669 326830.495 909439.229 2400111.873 633704.216 8314178.383

m
iss

No. 42647 27993 20685 156033 284938 21496 149274

energy 171645.646 112666.226 83252.988 628001.618 1146818.462 86517.101 600797.995

D
R

A
M

read

No. 1131744 930920 785112 1967352 3495440 842392 48696952

energy 4085256.317 3360341.924 2834018.786 7101550.514 12617489.77 3040782.402 175781387.6

w
rite

No. 341176 223944 165480 1248264 2279504 171968 1194192

energy 1236455.942 811595.45 599716.068 4523833.562 8261150.446 623229.229 4327871.227

leakage

+

refreshing

cycles 18519389 28130600 13964233 76008446 96078007 25559581 536300593

energy 2.752 4.181 2.075 11.296 14.278 3.798 79.7

total 7707994.268 7486682.161 5178512.51 18954424.83 31822408.46 6587898.086 207733433.9

51

5.5 Profiling of Linux Booting Sequence

In this section, we try to profile and analyze the instruction count and cycle count

of the Linux kernel booting procedure by our SystemC virtual platform. Note that, the

evaluation results are deeply relying on the configuration of Linux kernel and the

initial root file system. Here the kernel and the root file system in use are lightweight

versions; the root file system is originally 5.8MB and 2.8MB after gzip compression.

To complete the ARM Linux booting procedure, the total instruction count is

about 360 million and the total cycle count is about 480 million for our experimental

environment. Referring to the ARM manual [3], for a real ARM926 CPU

implemented in .18μm process technology, the operating frequency is about 200 to

250MHz. That is, the total boot up time is less than 3 seconds. Again, the kernel and

root file system we used are very light, so it is not surprised with this rapid boot up

performance.

Fig. 5-2 and Fig. 5-3 are the pie charts of total instruction count and cycle count

of ARM Linux booting sequence respectively. From these two charts, to boot up

Linux kernel, we discover that most of time is spent on mounting the initial root file

system (including decompressing binary image of the file system) and kernel

decompression. To setup the initial root file system, it costs more than 65% of the

entire boot time; the process of kernel decompression occupies more than 20% of the

boot time. The task of file system decompression is a quite large effort for a Linux

based SoC design. In reality, the size of root file system in gzip format is usually

much greater than tens or even hundreds of MB, so that the decompression process

may spend more than 70% of the boot time.

 For some specific embedded devices, the manufacture has customized the file

52

system of Linux to slash the time of setting up the file system. In this case, the setup

time of the initial root file system can be omitted. Fig. 5-4 and Fig. 5-5 are the total

instruction count and cycle count of ARM Linux booting without the root file system.

These two charts show the start_kernel() function (which is the PID 0 process of

Linux) occupies about 20% of the boot time in this special case. Furthermore, the

LCD (which is the function to draw and show up the Linux penguin logo on the color

LCD panel) spends 6% of the entire boot time.

53

Fig. 5-2: Instruction count of Linux booting with FS setup

Fig. 5-3: Cycle count of Linux booting with FS setup

241735512,
66.87%

84224154,
23.30%

10708070, 2.96%

6442834, 1.78%

335536, 0.09%
18072551, 5.00%

Instruction Count with FS Setup

FS setup

kernel decompress

start_kernel()

LCD

MMU setup

other

320552527,
66.77%

102505037,
21.35%

18990496, 3.96%

9615816, 2.00%

3206315, 0.67%
25184796, 5.25%

Cycle Count with FS Setup

FS setup

kernel decompress

start_kernel()

LCD

MMU setup

other

54

Fig. 5-4: Instruction count of Linux booting without FS setup

Fig. 5-5: Cycle count of Linux booting without FS setup

84224154, 70.31%
10708070, 8.94%

6442834, 5.38%

335536, 0.28% 18072551,
15.09%

Instruction Count without FS Setup

kernel decompress

start_kernel()

LCD

MMU setup

other

102505037,
64.27%

18990496,
11.91%

9615816, 6.03%

3206315, 2.01%
25184796,
15.79%

Cycle Count without FS Setup

kernel decompress

start_kernel()

LCD

MMU setup

other

55

Chapter 6 - Conclusions

We have designed a functional and/or approximate-timed accurate virtual

platform and its corresponding ARM-based interpretive ISS in SystemC models for

ESL design methodology.

This virtual platform provides a full system simulation environment that can

directly execute system programs including OS kernel, device drivers, and the

corresponding application programs without any or only with tiny modification. The

virtual platform also has built in a customized gdbserver called naked GDB which is

suitable for debugging both bare-level and application programs, and thus software

engineers are able to develop the system software in the early development stage

without any real hardware devices support. In addition, system developers are apt at

analyzing the system algorithm and reviewing the interaction between software and

hardware by utilizing this full system simulation framework.

Finally, using this SystemC virtual platform and the ISS, the complexity of

developing a new SoC design can be reduced and the time-to-market will be

shortened altogether.

56

Chapter 7 - Future Works

To make the ISS and the SystemC virtual platform more powerful, in the future,

we would like to keep on maintaining and improving it:

 to improve the SystemC simulation kernel with pthread library, so that the

simulation performance can be accelerated by symmetric multiprocessing (SMP)

host machine in parallel [24].

 using a local cache scheme or another methodology to improve the instruction

decoder of the ISS to raise up the throughput.

 to fix the CPU emulator to be a multi-core processor and provide a proficient

method to develop multi-core programs.

 to extend the naked GDB to support multi-core program debugging and

verifications.

57

References

[1] “PrimeCell Color LCD (PL110) Technical Reference Manual DDI-0161E,”

ARM Co. Ltd., May 2003.

[2] “ARM Dual-Timer Module (SP804) Technical Reference Manual,” ARM Co.

Ltd., January 2004.

[3] “ARM926EJ-S Technical Reference Manual DDI-0198D,” ARM Co. Ltd.

January 2004.

[4] “PrimeCell Vectored Interrupt Controller (PL190) Technical Reference Manual

DDI-0181E” ARM Co. Ltd., November 2004.

[5] “ARM Architecture Reference Manual DDI-0100I,” ARM Co. Ltd., July 2005.

[6] “PrimeCell UART (PL011) Technical Reference Manual DDI-0183F,” ARM Co.

Ltd., November 2005.

[7] “Versatile Application Baseboard for ARM926EJ-S User Guide DUI-0225B,”

ARM Co. Ltd., July 2006.

[8] “IEEE Standard SystemC Language Reference Manual,” Design Automation

Standards Committee, IEEE Computer Society, March 2006.

[9] J. R. Andrews, “Co-Verification of Hardware and Software for ARM SoC

Design,” Elsevier Inc., August 2004.

[10] D. Beal, “The Magic of Virtualized Systems Development,” Virtutech Co. Ltd.,

October 2009.

[11] D. C. Black, J. Donovan, B. Bunton, and A. Keist, “SystemC: From the Ground

up 2nd Edition,” Springer Media Inc., 2010.

[12] D. P. Bovet and M. Cesati, “Understanding the Linux Kernel 3rd Edition,”

O’Reilly Media Inc., November 2005.

58

[13] D. Burger and T. M. Austin, “The Simplescalar Tool Set Version 2.0,” University

of Wisconsin-Madison Computer Sciences Department Technical Report, June

1997.

[14] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” Proceedings of the

2005 USENIX Annual Technical Conference, Anaheim, CA, USA, April 2005.

[15] L. Charest, C. Pilking, and P. Paulin, “SystemC Performance Evaluation Using a

Pipelined DLX Multiprocessor,” Proceedings of the 2002 ACM/IEEE Design,

Automation, & Test in Europe Conference (DATE’02), Paris, France, March

2002.

[16] J. Corbet, A. Rubini, and G. Kroah-Hartman, “Linux Device Driver 3rd Edition”,

O’Reilly Media Inc., January 2005.

[17] J. Gilmore and S. Shebs, “GDB Internals—A Guide to the Internals of the GNU

Debugger,” Cygnus Solutions, February 2004.

[18] T. Grötker, S. Liao, G. Martin, and S. Swan, “System Design with SystemC,”

Springer Media Inc., 2002.

[19] M. R. Guthaus, et al., “MiBench: a Free, Commercially Representative

Embedded Benchmark Suite,” Proceedings of the 2008 IEEE International

Workshop on Workload Characterization (WWC’01), Austin, TX, USA,

December 2001

[20] A. H. Han, Y.-S. Hwang, Y.-H. An, S.-J. Lee, and K.-S. Chung, “Virtual ARM

Platform for Embedded System Developers,” Proceedings of the 2008 IEEE

International Conference on Audio, Languages, and Image Processing

(ICALIP’08), pp. 586-592, Shanghai, China, November 2008.

[21] H.-W. Kao, “Embedded Processor Verification Using Particular Characteristics

of Linux Operating System,” 2006 master thesis of National Cheng Kung

59

University, Tainan, Taiwan, July 2006.

[22] J. Lee, et al., “FaCSim: A Fast and Cycle-Accurate Architecture Simulator for

Embedded Systems,” Proceedings of the 2008 ACM SIGPLAN-SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES’08), pp. 89-100, Tucson, AZ, USA, June 2008.

[23] P. S. Magnusson, et al., “Simics: A Full System Simulation Platform,” IEEE

Computer, Vol. 35, No. 2, pp. 50-58, February 2002.

[24] P. Ezudheen, et al., “Parallelizing SystemC Kernel for Fast Hardware Simulation

on SMP Machines,” Proceedings of the 23rd ACM/IEEE/SCS Workshop on

Principles of Advanced and Distributed Simulation (PADS’09), pp. 80-87, Lake

Placid, NY, USA, June 2009.

[25] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,”

IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, pp. 1703-1714, November

1996.

[26] M. Montón, A. Portero, M. Moreno, B. Martínez, and J. Carrabina, “Mixed

SW/SystemC SoC Emulation Framework,” Proceedings of the 2007 IEEE

Symposium on Industrial Electronics (ISIE’07), pp. 2338-2341, Vigo, Spain,

June 2007.

[27] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A Tool

to Model Large Caches,” HP Laboratories, April 2009.

[28] M. Reshadi, P. Mishara, and N. Dutt, “Instruction Set Compiled Simulation: A

Technique for Fast and Flexible Instruction Set Simulation,” Proceedings of the

40th ACM/IEEE Design Automation Conference (DAC’03), Vol. 8, No. 3, pp.

758-763, Anaheim, CA, USA, June 2003.

[29] M. Reshadi and N. Dutt, “Reducing Compilation Time Overhead in Compiled

60

Simulators,” Proceedings of the 21st IEEE Internaional Conference on Computer

Design (ICCD’03), pp. 151-153, San Jose, CA, USA, October 2003.

[30] M. Reshadi, P. Mishara, and N. Dutt, “Hybrid-Compiled Simulation: An

Efficient Technique for Instruction-Set Architecture Simulation,” ACM

Transactions on Embedded Computer Systems, Vol. 8, No. 3, pp. 20-27, April

2009.

[31] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson, “Binary

Translation,” Communications of the ACM, Vol. 36, No. 2, pp. 68-81, February

1993.

[32] A. N. Sloss, D. Symes, and C. Wright, “ARM System Developer’s Guide:

Design and Optimizing System Software”, Elsevier Inc., March 2004.

[33] R. Stallman, R. Pesch, S. Shebs, et al., “Debugging with GDB—The GNU

Source-Level Debugger 9th Edition”, Cygnus Solutions, February 2004.

[34] R. Stones and N. Matthew, “Beginning Linux Programming 3rd Edition,” Wiley

Publishing Inc., January 2004.

