
1

Chapter 7

Multicores, Multiprocessors, and

Clusters

There are finer fish in the sea than

have ever been caught

Irish proverb

2

Multiprocessors

• Idea: create powerful computers by connecting many smaller ones

good news: works for timesharing (better than supercomputer)

vector processing may be coming back

bad news: its really hard to write good concurrent programs

many commercial failures

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O
Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory

3

Questions

• How do parallel processors share data?

— single address space (SMP vs. NUMA)

— message passing

• How do parallel processors coordinate?

— synchronization (locks, semaphores)

— built into send / receive primitives

— operating system protocols

• How are they implemented?

— connected by a single bus

— connected by a network

4

Some Interesting Problems

• Cache Coherency

• Synchronization

— provide special atomic instructions (test-and-set, swap, etc.)

• Network Topology

Cache tag

and data

Processor

Single bus

Memory I/O

Snoop

tag

Cache tag

and data

Processor

Snoop

tag

Cache tag

and data

Processor

Snoop

tag

5

Terminology

• Multi-core (MIMD)

• Multi-threading

• Simultaneous multithreading (SMT); hyper-threading

6

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle

One thread, 8 units

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

7

SIMD and Vector Processing

8

Example SIMD Code, 256-bit reg
4D: operate on 4 double-precision operands

• Example DXPY:
L.D F0,a ;load scalar a

MOV F1, F0 ;copy a into F1 for SIMD MUL

MOV F2, F0 ;copy a into F2 for SIMD MUL

MOV F3, F0 ;copy a into F3 for SIMD MUL

DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]

DADDIU Rx,Rx,#32 ;increment index to X

DADDIU Ry,Ry,#32 ;increment index to Y

DSUBU R20,R4,Rx ;compute bound

BNEZ R20,Loop ;check if done

9

Vector Instructions; some examples

10

Multiple pipelines for a vector ADD

• C = A+ B

• (a) single pipeline

• (b) four pipelines

• Element n of vector

register A is

“hardwired” to element

n of vector register B

– Allows for multiple

hardware lanes

– Elements of A and

B are interleaved

across the four

pipelines

1 element / cycle

Throughput :

4 elements / cycle

11

Simply spread the elements of a vector

register across the lanes

• A four lane

• First lane holds

element 0 for all

vector registers

• A 64-cycle Chime ->

16 cycles

2014/12/3 11

12

12

Heterogeneous System

CPU & GPU

• CPU wants GPU’s capability (SIMD)

• Sequential thread with limited data

parallelism

• 8 ~ 16 cores

• GPU wants to have CPU’s

features (GPGPU)

• Data parallel processing

• 192 ~ cores (NV Kepler)

CPU GPU

13

13

Heterogeneous Computing
Acceleration based on data parallelism

14

14

Shared Memory or not
Challenge of Traditional Heterogeneous Systems

Support only dedicated address space
CPU1 GPU

CPU Memory GPU Memory

CPU2

• Require cumbersome copy operations

• Prevent the use of pointer

• DMA copy

15

15

Pointer addressable: load/store access

Heterogeneous Systems Architecture
CPU1 GPU

Unified Memory

CPU2

• Unified Memory Address Space (hMMU)

• HSA Intermediate Language

Both CPU and GPU and access the

memory directly.

Remove the overhead due to memory

copy.1. Enable Unified address space access

2. Provide a unified intermediate

language for high-level languages

and different hardware ISA

X

16

16

 Introduced by HSA Foundation

 A virtual ISA with many operations.

 A textual representation of instructions and a binary format called BRIG.

 ISA, programming model, memory model, machine model, profile…..

HSA INTERMEDIATE LANGUAGE

HSAIL Overview

17

17

HSAIL

COMPLIER

CPU ISA

C++ Java OpenCL

FINALIZER

GPU ISA
Custom

ISA

BRIG

Programmers can program in languages they already

know, and with the features and tools they expect.

Complier that generates HSAIL can be assured that the

resulting code will be able to run on different target

platforms

HSAIL: Virtual ISA Abstraction
HSAIL: A virtual ISA abstraction for popular
programming languages.

The conversion from HSAIL to machine ISA is

more of a translation than a complex complier

optimization.

18

18

Grids are divided into one or more work-groups.

Work-groups are composed of work-items.

HSAIL: Programming Model

Sequential program expanded in three dimensional parallel execution model.

Work-items in the same work-group can efficiently

communicate and synchronize with each other through

the “group” memory.

19

19

• When the parallel task is dispatched, the dispatch command

specifies the number of work-items that should be executed.

• Each work-item has a unique identifier specified with x, y, z

coordinate.

• HSAIL contains instructions so that each work-item can determine

its unique coordinate and operate on certain part of the data.

HSAIL: Single instruction Multiple Data

Sequential programming run in parallel

HSAIL itself specifies the instruction flow for a single “work-item” of execution.

20

20

When a grid executes, work-groups are distributed to one

or more compute units in the target device.

HSAIL: Example
Parallel workgroups, parallel work-items

Work-items in the same work-group then are dispatched

to each execution unit (processing element) in the

computing unit, and executed in parallel.
2D Grid

2D Work-group

Work-item

http://www.gamesaktuell.de/Crysis-Xbox360-237049/News/Crysis-3D-Support-und-Parallax-Occlusion-Mapping-fuer-die-Konsolen-Version-

844757/

21

21

The grid is always scheduled in work-group-sized

granularity. Work-group thus encapsulates a piece of

parallel work.

HSAIL: Scheduling Granularity (1)

Top level dispatch example

Work-groups

Computing Unit 1 Computing Unit 2

SIMT

Execution

Unit

22

22

• The wavefront is a hardware concept indicating the

number of work-items that are scheduled together.

HSAIL: Scheduling Granularity (2)
Warp or Wavefront: An independent instruction stream
which works on multiple data.

Streaming

Multiprocessor

Instruction Cache

Warp Scheduler

Instruction Decode

Dispatch Unit

Register File

Processing

Elements

• Wavefront width is implementation dependent.

• HSAIL also provides cross-lane operations that

combine results from several work-items in the work-

group. (cross lane transfer of data…)

23

23

• Each work-item in the HSA execution model represents a single

thread of execution.

HSAIL: A RISC-like ISA, inherent for SIMT Operations

Effective Parallel Processing Comes from Machine.

Dispatch Unit

Processing

Elements

• HSAIL thus looks like a sequential program.

Work-group

Work-items

• Parallelism is expressed by the grid and the work-groups, which

specify how many work-items to run, rather than expressed in

the HSAIL code itself.

24

Concluding Remarks

• Evolution vs. Revolution

“More often the expense of innovation comes from being too disruptive

to computer users”

“Acceptance of hardware ideas requires acceptance by software people;

therefore hardware people should learn about software. And if software

people want good machines, they must learn more about hardware to be able

to communicate with and thereby influence hardware engineers.”

C
ac

he

V
irt

ua
l m

em
or

y

R
IS

C

P
ar

al
le

l p
ro

ce
ss

in
g

m
ul

tip
ro

ce
ss

or

P
ip

el
in

in
g

M
as

si
ve

 S
IM

D

M
ic

ro
pr

og
ra

m
m

in
g

T
im

es
ha

re
d

m
ul

tip
ro

ce
ss

or

C
C

-U
M

A
 m

ul
tip

ro
ce

ss
or

C
C

-N
U

M
A

 m
ul

tip
ro

ce
ss

or

N
ot

-C
C

-N
U

M
A

 m
ul

tip
ro

ce
ss

or

M
es

sa
ge

-p
as

si
ng

 m
ul

tip
ro

ce
ss

or

Evolutionary Revolutionary

