
Handout 6 GPU

2017/12/20 2

Outline

ÅIntroduction of HSA

ÅExecution model

ÅMulti-threaded SIMD processor

ÅFermi Architecture

ÅSIMT ISA: PTX

ÅMemory Hierarchy

ÅSummary on GPGPU

Heterogeneous System Architecture

ÅHSA Foundation
ÅHSA System Architecture Specification
ïVersion 1.0 Provisional, Released April 2014 (V 1.0,March 16,

2015)
ïDefine how the hardware operates

ÅHSA Programmers Reference Specification
ïTool chain, software ecosystem
ïDefine the HSAIL language and object format

ÅHSA Runtime Software Specification
ïDefine the APIs through which an HSA application uses the

platform

3

HSA-Aware SIMT GPU

4

Opportunity:

For computing and graphics:

A GPU of our own binary.

ISA license-free. .

Application:

Cloud center, data center,

energy efficient servers,

mobile, machine learning etc.

ARM: Mali (Shader core)

Imagination: PowerVR

Nvidia: Tegra (Keplar)

OpenCL OpenGL HSA GPU

5

Drawn by Our GPUs

Platform OpenGLES-sim OpenGLES-sim

Scalar

HSA Simulator

Graphic Version

Devel. time 2013-2014 2014-2015 2015/April

Computing model SIMT Vector
(4 lanes, vector size 4)

SIMT Scalar
(16 scalars)

SIMT Scalar

Purpose Graphic Graphic Computing &

Graphic

Program source GLSL GLSL cl & GLSL

Compiler cgc cgc w/ scalarizer cgc w/ translator

CLOC

ISA nvgp4 (pseudo

asm.)

nvgp4-S (pseudo

asm.)

HSAIL Custom

binary ISA

Data Load/Store Fixed hardware Fixed hardware Instruction

Core utilization Medium High High

Warp scheduling None None Yes

SM Cluster None None Yes

6

API hides all compilation and translation
details

7

NVIDIA cgc is our front

end compiler.

Translator

Cg Compiler

Lexical & Syntax

Analyzer

Scalarizer

Tweaker

HSAIL Code

Generator

Finalizer

 .glsl

 .nvgp4

 .nvgp4-S

 .hsail

 .hbin

R
u

n
tim

e
 In

fo
.

glCompileShader

 .glsl

 .hbin
HSAIL standard

ISA

Our

GPU

OpenGL Runtime APIs

8

ÅOpenGL 2.0. (1) GPU fix function unit configuration
(2) GL API fragment/vertex shader kernel

OpenCL & HSA Runtime APIs

9

ÅOpenCL 1.2 and HSA 1.0

2017/12/20 10

Outline

ÅIntroduction

ÅExecution model

ÅMulti-threaded SIMD processor

ÅFermi Architecture

ÅSIMT ISA: PTX

ÅMemory Hierarchy

ÅSummary on GPGPU

Parallel Kernel

Programmer determines the parallelism by

specifying the grid dimensions and the

number of threads per SIMD processor

2 x 5 blocks

Thread blocks can be executed independently

and in any order

E
x

e
c

u
tio

n
 m

o
d

e
l

Single Instruction Multiple Threading

ÅSingle Instruction Multi-
Threading

Å Get one instruction and
dispatch to every processor
units.

Å Fetch one stream -> N threads
(of the same code) in execution

Å Each thread is independent to
each other.

Å All cores execute instructions
in lockstep mode.

2017/12/20 12

I5

I4

I3

I2

I1

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

Threads and Blocks

ÅA thread is associated with each data element

ÅThreads are organized into blocks
ïA thread block is assigned to a processor called

multithreaded SIMD processor

ÅBlocks are organized into a grid

ïthread blocks can run independently and in any order

ÅA grid is the code that runs on a GPU that
consists of a set of thread blocks.

ÅGPU hardware handles thread management, not
applications or OS

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 14

A thread; user defined entity

ÅA thread within a thread block (group) executes an instance of
the kernel (code to execute)

ïHas a thread ID in the group

ïHas its program counter

ïHas its registers, per-thread private memory

» For register spills, procedure call (stack)

ïUse off-chip DRAM for private memory

» Why? (Data to work on)

ïCan have L1 and L2 cache to cache private memory

ïMap onto a SIMD lane

ïSIMD lanes do not share private memories

A thread is an instance of program code in execution!

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 15

A group of threads: thread block

ÅA thread block: a group of concurrently
executing threads within a thread block

ïHas a thread block ID in a grid

ïSynchronization through barrier

ïAnd communicate through a block level
shared memory

» Inter-thread communication, data sharing,
result sharing

ïMap onto a multithread SIMD processor (a
block of several SIMD lanes)

ïThe SIMD processor dynamically
allocates part of the LM to to a thread
block when it creates the thread block and
frees the memory when all the threads in
the thread block exit.

ïThe local memory is shared by the SIMD
lanes within the multithreaded SIMD
processor

Thread 1 Thread i

barrier

Local memory /

Shared memory

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20
16

A group of thread blocks: grid

ÅA thread grid: a group of thread blocks that execute the same
kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

Global Memory

Application Context

GPU Memory

Thread 1 Thread i

barrier

Shared memory

Thread 1 Thread i

barrier

Shared memory

Off-chip DRAM

E
x

e
c

u
tio

n
 m

o
d

e
l

Programmerôs job

ÅCUDA programmer explicitly specifies the
parallelism

ïSet grid dimensions

ïNumber of threads per SIMD
processors

ÅOne thread works on one element; no need to
synchronize among threads when writing results
to memory.

2017/12/20 17

Programming example

Å C code

daxpy (n, 2.0, x, y) // invoke daxpy

void daxpy (int n, double a, double *x, double *y)

{

For (int i=0; i<n; ++i)

y[i] = a*x[i] + y[i]; } // no loop carried dependence, vectorizable loop

2017/12/20 18

Å CUDA code // launch n threads by invoking DAXPY with 256 threads per thread block

host // declare this is a system processor function

Int nblocks = (n+255)/256; // how many thread blocks are needed?

daxpy<<<nblocks, 256>>>(n, 2.0, x, y) //function call: daxpy<<<dimGrid, dimBlock>>>

device // declare this is a GPU function in which all variables are allocated in GPU Mem.

void daxpy (int n, double a, double *x, double *y)

{ int i = blockIdx.x*blockDim.x + threadIdx.x; // one thread works on one vector element

// compute element index i based on block ID, the number of threads per block, and the
thread ID.

if (i<n) y[i]= a*x[i] + y[i]; // if index i is within the array, then compute y[i]

}

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 19

Outline

ÅIntroduction

ÅExecution model

ÅMulti-threaded SIMD processor

ÅFermi Architecture

ÅSIMT ISA: PTX

ÅMemory Hierarchy

ÅSummary on GPGPU

GPU terms-1

2017/12/20 20

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

GPU terms-2

2017/12/20 21

CUDA term

Run a thread block

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor

ÅThis is a multithreaded
SIMD processor which
runs a thread block

ÅThread block scheduler

ïDetermine the # of thread
blocks required for the
task (e.g., vectorizable
loop)

ïand keep allocating them
to different SIMD
processors until the loop
is completed.

ÅWarp scheduler, i.e.,
thread scheduler

ïInside the SIMD
processor, schedule
instructions from ready-
to-run threads

2017/12/20 22

Thread scheduler

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor-2

ÅScoreboard: keep
track of which
instruction is ready for
execution

Å Inside a SIMD
processor, Warp
scheduler, i.e., thread
scheduler

ÅA SIMD lane = a thread
processor = a CUDA
thread, working on one
element.

ÅA PTX instruction = A
SIMD instruction which
is executed across
SIMD lanes

2017/12/20 23

Thread scheduler

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor-3

ÅSince a SIMD lane = a thread processor = a CUDA
thread, working on one element.

ÅSo, if a 32-wide thread of SIMD instructions is mapped
onto this 16 lanes of thread processors.

ÅThen, this 32-element vector takes 2 clock cycles, i.e.
chime = 2 clock cycles

ÅThe 16 lane of processors executes this in lock-step and
only scheduled at the beginning.

ÅNeed not to pick up the NEXT SIMD instruction in the
sequence within a thread for scheduling.

2017/12/20 24

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

SIMD Instruction scheduling

ÅSelect a ready
thread and issues
an instruction
synchronously to
all the SIMD lanes
executing the
SIMD thread.

ÅWithin a SIMD
processor, why
scheduling this
way?
ïHide memory latency

ïWait for pipeline stalls

ïWait for execution
latency

2017/12/20 25

I42

I43

32 elements

A SIMD thread

= a warp =

32 CUDA threads

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

2017/12/20 26

Outline

ÅIntroduction

ÅExecution model

ÅMulti-threaded SIMD processor

ÅFermi Architecture

ÅSIMT ISA: PTX

ÅMemory Hierarchy

ÅSummary on GPGPU

2017/12/20 27

Fermi GPU Architecture- Floor plan

Thread Block

Distributor

SM

64-bits

32

Cores

+16

L/S +

4SFU

scheduler

L1/SMEM

40-bit address space

40 nm TSMC

3 x 109 T

> Nehalem-Ex(2.3)

1.x GHz

up to 8

thread

blocks

16 multithreaded

SIMD processors

PCI/E

This GPU is a

multiprocessor

composed of

multithreaded

SIMD processors

F
e

rm
i A

rc
h

ite
c

tu
re

