Handout 6 GPU

Outline

* Introduction of HSA

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

Heterogeneous System Architecture

HSA Foundation
HSA System Architecture Specification
— Version 1.0 Provisional, Released April 2014 (V 1.0,March 16,
2015)
— Define how the hardware operates
HSA Programmers Reference Specification
— Tool chain, software ecosystem
— Define the HSAIL language and object format
HSA Runtime Software Specification
— Define the APIs through which an HSA application uses the

p I atfo rm AMD ‘l ARM QZIImaglnahon MEDINTEK

QUALCO/VW\ @ *“ |NSTRUMENTS

@ LG Electronics

=g :
@ Arteriss € FABRICENGINE onst roror = | I I INEA Argonne@

MULTICORE i Sandia OAK Stream
Ocodeplay” "\yv WARE ﬁLlnaro (= SUSE “¥RIDGE mPuiine

Q@S Qapical CEVA Ee-!:Rl

_BROADCOM.
miuor_ A8 ‘ om=g T Y soncs SONY e
TDSHIBA TE
S\/"[]PS\/S tens;llca s i Y ut@tu W < SB ORACLE’
B o (@) e g B RS, @ "'0;"10' ies |
T, R

HSA-Aware SIMT GPU

ARM: Mali (Shader core)

Imagination: PowerVR
Nvidia: Tegra (Keplar) [OpenCL] [GLSL] [Java]
Bl 51 152 B SR 0 53 4 CL Offline] | /

Compiler
HSA Intermediate Language

Opportunity: (Virtual Parallel ISA)
For computing and graphics:

A GPU of our own binary. / | \’

ISA license-free. B 1.
[FinalizerA] [FinalizerB] [FinalizerC]

Application:
Cloud cenFe.r, data center, — — .
energy efficient servers, GPU A GPUB DSP

mobile, machine learning etc.

2 #EOpenCL KOpenGL BYHSA HHEBGPU &4

Applicaton SW

B ﬂ E
B _ '
Packet Streaming Multiprocessor Fx Fanction FIW
” Processor

L2 Cache
AXI/ AHB

- Drawn by Our GPUs

Platform OpenGLES-sim | OpenGLES-sim HSA Simulator
Scalar Graphic Version
Devel. time 2013-2014 2014-2015 2015/April
Computing model SIMT Vector SIMT Scalar SIMT Scalar
(4 lanes, vector size 4) (16 scalars)

Purpose Graphic Graphic Computing &
Graphic

Program source GLSL GLSL cl & GLSL

Compiler cgc cgc w/ scalarizer | cgc w/ translator
CLOC

ISA nvgp4 (pseudo nvgp4-S (pseudo | HSAIL Custom

asm.) asm.) binary ISA
Data Load/Store | Fixed hardware Fixed hardware Instruction
Core utilization Medium High High
Warp scheduling | None A None Yes
SM Cluster None - None - Yes -:

APl hides all compilation and translation

d

)

"oJu] swnuny

[

etalls

.glsl
p

Cg Compiler

v

(Lexical & Syntax
Analyzer

¥

J

Vs

Translator
/S

N
) .nvgp4

Scalarizer

—

Tweaker

———

HSAIL Code

Generator

¥

Finalizer

\ HSAIL standard
ISA

NVIDIA cgc is our front
end compiler.

% .glsl

glCompileShader

.hbin

OpenGL Runtime APIs

. OpenGL 2.0. (L)&FEGPU Ffix function unit fjconfiguration

(2)3F3\GL BYAPI EE5[Afragment/vertex shader kernel

glActiveTexture glAttachShader glBindTexture glClear
glClearColor glClearDepthf glCompileShader glCreateProgram
glCreateShader glCullFace glDeleteProgram glDeleteShader
glDeleteTextures glDepthRangef glDetachShader glDisable
glDrawArrays glDrawElements glEnable glEnableVertexAttribArray
glGenerateMipmap glGenTextures glGetAttribLocation glGetError
glGetProgramiv glGetShaderiv glGetUniformLocation | gllsProgram
gllsShader gllsTexture glLinkProgram glShaderBinary
glShaderSource glTexImage2D glTexParameter1 glUniforml1f
glUniform11 glUniform1fv glUniformliv glUniform2f
glUniform?21 glUniform2fv glUniform21v glUniform3f
glUniform31 glUniform3fv glUniform31iv glUniform4f
glUniform41 glUniform4fv glUniform4iv glUniformMatrix2tv
glUniformMatrix3fv | glUniformMatrix4fv | glUseProgram glValidateProgram

glVertexAttribPointer

glViewport

OpenCL & HSA Runtime APIs

« OpenCL 1.2 and HSA 1.0

clBuildProgram
clCreateCommandQueueWithProperties
clCreateKernel
clEnqueueNDRangeKernel
clEnqueueWriteBufter

1

1
clGetContextInfo
clGetEventInfo
clGetPlatformIDs
clGetProgramInfo
clReleaseKernel

clSetKernelArg

clCreateBuffer
clCreateContext
clCreateProgramWithSource
clEnqueueReadButfer
clFinish

clGetDevicelDs
clGetEventProfilingInfo
clGetPlatformInfo
cIReleaseCommandQueue

cIReleaseMemObject

clCreateCommandQueue
clCreateContextFromType
cl[EnqueueMapBuffer
clEnqueueUnmapMemODbject
clFlush

clGetDevicelnfo

clGetKernel WorkGrouplnfo
clGetProgramBuildInfo
clReleaseContext

clReleaseProgram

Outline

* Introduction

 Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

Parallel Kernel

Thread blocks can be executed independently

CPU Host GPU Device

Grid k&

I
I
Serial Codes i |
I
I

Y BT EEm
=D

Kernel Invocation |

Serial Codes j

I
\ 4 |
I
I

2 x 5 blocks

Programmer determines the parallelism by
specifying the grid dimensions and the
number of threads per SIMD processor

ﬁ------“‘~—

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel 0-{C02()

Berial code

Parallel kernel

Herpel 1-<<<xx ()

Host
Device
Grid 0
Block (0,0) | Block (1, 0) | Block (2, 0)
ﬂ(ﬂ;% Block (1, 1) || Block (2, 1)
7’4
N Host
/|
Device
Grid 1
Block (0, 0) Block {1, 0)
Block {0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

[opOoW UO0IINI3XT

Single Instruction Multiple Threading

Single Instruction Multi-

Th read | ng Single stream on N Cores
Get one instruction and 5
dispatch to every processor 14
units. 13

12

Fetch one stream -> N threads 1

(of the same code) in execution

Each thread is independent to
each other.

All cores execute instructions
in lockstep mode. ‘L

Core Core Core Core

Data 1 Data 2 Data N

Threads and Blocks

A thread is associated with each data element

Threads are organized into blocks

— A thread block is assigned to a processor called
multithreaded SIMD processor

Blocks are organized into a grid
— thread blocks can run independently and in any order

A grid is the code that runs on a GPU that
consists of a set of thread blocks.

GPU hardware handles thread management, not
applications or OS

[opOoW UO0IINI3XT

A thread; user defined entity

« A thread within a thread block (group) executes an instance of
the kernel (code to execute)

— Has a thread ID in the group
— Has its program counter

— Has its registers, per-thread private memory
» For register spills, procedure call (stack)

— Use off-chip DRAM for private memory
» Why? (Data to work on)

— Can have L1 and L2 cache to cache private memory
— Map onto a SIMD lane
— SIMD lanes do not share private memories

A thread is an instance of program code in execution!

[opOoW UO0IINI3XT

A group of threads: thread block

« A thread block: a group of concurrently
executing threads within a thread block

— Has athread block ID in a grid
— Synchronization through barrier

— And communicate through a block level
shared memory
» Inter-thread communication, data sharing,
result sharing
— Map onto a multithread SIMD processor (a
block of several SIMD lanes)

— The SIMD processor dynamically
allocates part of the LM to to a thread
block when it creates the thread block and
frees the memory when all the threads in
the thread block exit.

— The local memory is shared by the SIMD
lanes within the multithreaded SIMD

processor

fead 1 Thread i

Local memory /
Shared memory

arrier

[opOoW UO0IINI3XT

A group of thread blocks: grid

 Athread grid: a group of thread blocks that execute the same
kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

read 1 Threadi read 1 Threadi

barrier W barrier
Shared memory Shared memory

l l
¢

Global Memory Off'Ch|p DRAM
Application Context

GPU Memory

[opOoW UO0IINI3XT

Programmer’s job

 CUDA programmer explicitly specifies the
parallelism

—Set grid dimensions

—Number of threads per SIMD
Processors
e One thread works on one element; no need to

synchronize among threads when writing results
to memory.

Programming example

« Ccode
daxpy (n, 2.0, x,y) //invoke daxpy
void daxpy (int n, double a, double *x, double *y)

{
For (int i=0; i<n; ++i)
y[i] = a*x[i] +y[i]; } // no loop carried dependence, vectorizable loop

[opOoW UO0IINI3XT

« CUDA code//launch n threads by invoking DAXPY with 256 threads per thread block

host /I declare this is a system processor function

Int nblocks = (n+255)/256; // how many thread blocks are needed?

daxpy<<<nblocks, 256>>>(n, 2.0, x, y) //function call: daxpy<<<dimGrid, dimBlock>>>
device// declare this is a GPU function in which all variables are allocated in GPU Mem.
void daxpy (int n, double a, double *x, double *y)

{int i =Dblockldx.x*blockDim.x + threadldx.x; // one thread works on one vector element

/[compute element index i based on block ID, the number of threads per block, and the
thread ID.
if (i<n) y[i]= a*x[i] + y[i]; // if index i is within the array, then compute y[i]

}

Outline

* Introduction

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

GPU terms-1

More descrip- Closest old term Official CUDA/
Type tive name outside of GPUs NVIDIA GPUterm Book definition
Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
a | Loop up of one or more Thread Blocks (bodies of
S vectorized loop) that can execute in parallel.
g Body of Body of a Thread Block A vectorized loop executed on a multithreaded
= Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
Q Vectorized Loop of SIMD instructions. They can communicate via
£ Local Memory.
m . . N ¢ . ~ - . .
& Sequence of One iteration of ~ CUDA Thread A vertical cut of a thread of SIMD instructions
2 SIMD Lane a Scalar Loop corresponding to one element executed by one
Operations SIMD Lane. Result is stored depending on mask
and predicate register.
v A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
% SIMD Instructions instructions that are executed on a multithreaded
8 Instructions SIMD Processor. Results stored depending on a
£ per-element mask.
{g SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

2017/12/20

20

10Ssa204d QNIS papealyl-nniA

GPU terms-2

CUDA term

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors. Run a thread block

v

o Thread Block Scalar Processor ~ Giga Thread Assigns multiple Thread Blocks (bodies of

% Scheduler Engine vectorized loop) to multithreaded SIMD

E Processors.

2 SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
a Scheduler in a Multithreaded of SIMD instructions when they are ready to

e CPU execute; includes a scoreboard to track SIMD
g Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

© SIMD Processors in a GPU.

-

o

% Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
= Memory Local Storage (OS) Lane.

£

> Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

g Processor, unavailable to other SIMD Processors.
@ : —

s SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).

2017/12/20

21

10ssa204d QNIS papealyl-nniA

A multithreaded SIMD processor

 This is a multithreaded
SIMD processor which
runs a thread block

« Thread block scheduler

— Determine the # of thread
blocks required for the
task (e.g., vectorizable
loop)

— and keep allocating them
to different SIMD
processors until the loop
IS completed.

« Warp scheduler, i.e.,
thread scheduler

— Inside the SIMD
processor, schedule
instructions from ready-
to-run threads

Thread scheduler

Warp scheduler Scoreboard
! :,,W,a,'p No. Addfrésfsﬁ;SVIMDEsitrucﬁhs @érands? |
Instruction g 1 42 | Idglobali64 Ready
cache 1 | mufe4 | No |
- g | W shl.s32 __ PReady |
y 3 | 9% | adds®2 | No |
8 | 11 | Idglobalf64 Ready |
_§ 12 ld.global f64 Ready |
.
Instruction register ‘
& 1 & ¢ ¢ ¢ ¢ 3 & 33 3 (€ N

' o B o B o B o Bl on] Lo B o B on Bl on s am 4 +9 (" r Y S”AD La‘,—‘es

' /{I\ il TS| (Thread
FUTU T T T e e e o ey ejfviivi?]Processors)
¢ f + * 4 f’*‘ T L 2 T *Y 07}" 07'{”0 1 4 2 -4 +——4 4
s \ [= ! =)
Address coalescing ur terconnection net
P t - I i

10ssa20.1d QINIS papealyl-i N

A multithreaded SIMD processor -2

Scoreboard: keep
track of which
Instruction is ready for
execution

Inside a SIMD
processor, Warp
scheduler, i.e., thread
scheduler

A SIMD lane = a thread
processor =a CUDA
thread, working on one
element.

A PTX instruction = A
SIMD instruction which
IS executed across
SIMD lanes

Warp scheduler
Warp No. | Address
Instruction of feieg ‘ 42
cache ‘ 1 [4’5*‘"

i 3 95
3 | 9%

8 | 11

8 | 12

'

F & ¥ F ¥ ¥ ¥ 3 _ 3

B B 49 | +9 (% +9 9 +9 4+

<

=

=

Scoreboa'ghread scheduler §
SIMD instructions | Operands? | o
|d.global.f64 Ready o

I P)]

mul.f64 P =
shls32 | Ready o
adds32 | No || ©
*nglobal f64 Ready | o
__ld.global.f64 Ready || &
”

»

<

HERIERIENIENIX]

Instruction register

% 3 ¥ [¥- N

S]MD Lanes
e (Thread
{| Y | Processors)

e llnmiinsiincsiicesdisas

stils
i (EEEEEEEEEENENEEENEEEEENEEENERE
& ———— * ————¢ + - *~—— +——¢ ———+ K
I ! = = , S — -
Address coalescing ur Interconnection ne
i z - ;'t '
T N - To Global
Local Memory

Memory

A multithreaded SIMD processor-3

Since a SIMD lane = athread processor =a CUDA
thread, working on one element.

So, if a 32-wide thread of SIMD instructions is mapped
onto this 16 lanes of thread processors.

Then, this 32-element vector takes 2 clock cycles, i.e.
chime = 2 clock cycles

The 16 lane of processors executes this in lock-step and
only scheduled at the beginning.

Need not to pick up the NEXT SIMD instruction in the
sequence within athread for scheduling.

10ssa20.1d QINIS papealyl-i N

SIMD Instruction scheduling

Select a ready | S hd‘l | ASIMDthread

: | l thread scheduler . =awarp =
thread and issues it g | 32 CUDA threads
an instruction firma f

10Ssa20.4d QINIS papeadyl-i N

synchronously to ~
SIMDthreadBnnstrucuon 11 |:>32 |)
a”theSIMDIaneS Lv%tt#v'v'vviv'vv eIements

executmg the [SIMD thread1 instruction 42 <
SIMD thread. A RE EEEEEEEEE

Within a SIMD [SIMD thread 3 instruction 95 |
prOCeSSOI‘,Why EEREIEEAZERRZAERE D
scheduling this
way?

— Hide memory latency

— Wait for pipeline stalls

— Wait for execution

latency " SIMD thread 1 instruction 43 |
Y vvvvvvvvv'ivvivv\l43

| SIMD. thread 8 nﬁstrucftion 12_

B EEEEEEEEEEEEERE

SIMD thredo 3 lHSUuCIIOH % |

EEEREEEEREEEEEEEEEEE

Outline

* Introduction

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

Fermi GPU Architecture- Floor plan

40-bit address space
40 nm TSMC
3x10°T

> Nehalem-Ex(2.3)
1.x GHz

16 multithreaded
SIMD processors

Thread Block
Distributor

This GPU is a
multiprocessor
composed of
multithreaded
SIMD processors

2017/12/20

Host Interfa

L2 Cache

=
o
=
[1+]
)
o

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

64-bits

Ll

91N10911Y21V Wi

Fermi’s Streaming Multi-processors

SMEM: shared memory in Fermi term, but this is actually a private local scratchpad memory
for athread block communication.

Data memory hierarchy: register, L1, L2, global memory

L1 + Local Scratchpad = 64KB configurable

SM - Streaming multi-processors with multiple processing cores
Each SM contains 32 processing cores
Execute in a Single Instruction Multiple Thread (SIMT) fashion
Up to 16 SMs on a card for a maximum of 512 compute cores

31N10911Y2JVY 1WiaH

A Steaming Multiprocessor
le., a Multithreaded SIMD
Processor

An SM consists of 32 CUDA
cores + some 16 Load/Store
unit + 4 special functional units

Registers: 32K x words

L1 data cache private to each
SM

L1 Instruction cache

L2 unified for data and texture,
instruction(?), shared globally,
coherent for all SMs.
Instruction dispatch

(A, B) fs

(A+B) fd

(A, C)

(B, C)

(A, D)

(B, D), (C, D), etc

2017/12/20

Fermi Streaming Multiprocessor (SM)

91N10911Y21V Wi

A warp is simply an instruction stream

Warp Scheduler in Fermi o sivp instructions.

32 threads (on 32 SIMD lanes) have only one instruction stream due to SIMT!

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit | Instruction Dispatch Unit

T
AMAAMARAAAARAARARAARARRARARALR

32 threads form a warp
Instructions are issued per warp
If an operand is not ready the

warp will stall

Context switch between warps
when stalled

A
AMARAAMARARAARAARARAARAL

Context switch must be very fast N ms Warp 8 instruction 11 Warp 9 instruction 11

Fermi can have up to 48 active warps
per SM => meaning 48 instruction

Warp 2 instruction 42 Warp 3 instruction 33

0 ' '
£ - -
48 x 32 = 1536 threads/SM Warp 8 instruction 12 Warp 9 instruction 12
tl + xx cycles >

Warp 14 instruction 96 Warp 3 instruction 34
r Warp 2 instruction 43 Warp 15 instruction 96

Pick instruction from ready warps A cycle for issuing an instruction from warp 8

31N10911Y2JVY 1WiaH

Outline

* Introduction

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

Mind-set behind NVIDIA Instruction Set Architecture :
Parallel Thread Execution, PTX

X1ld ‘VSI LINIS

ISA is an abstraction of the hardware instruction set
Hide the hardware instructions from the programmer
Stable ISA across generations of GPUs

PTX instructions describe operations on a single
CUDA thread

Usually map one-to-one with hardware instructions,
but may have one-to-many and vice versa.

— Translation to machine code is performed in software
— Uses virtual registers

Software maps PTX to machine code

* Translation to machine code is performed in
software and at load time on a GPU
— PTX uses virtual registers

— A PTX instruction of a SIMD thread is broadcast to all SIMD
lanes involved (hence a vector of n elements).

— Compiler figures out how many physical vector registers a
SIMD thread needs.

— An optimizer divides the available register storage btw the
SIMD threads

— The assignment of virtual registers to physical registers
occurs at load time (by MMU like mechanism?)

— The optimizer also calculates places where branches might
and places where diverged paths could converge.

X1d ‘VSI LNIS

PTX Instructions

« All instructions can be predicated by 1-bit predicate
registers. RISC-type

— Like ARM, conditional execution

— setp.lt.f32. p,a, b // p =(a<b). Compare and set predicate
— This is branch: @p bra target //if (p) goto target

— barrier syc: bar.sync d // in a thread block, wait for threads
— exit; terminate thread execution

— call, ret

— atomic read-modify-write

— memory access, like Id/st

— texture lookup

— special functions; like square root, sine, cosine, log, exp....

— arithmetic/logic,......

X1ld ‘VSI LINIS

Operation type

Untyped: 8, 16, 32, 64 bit; .b8,.b16, b32,.064

— (binary?, not one of the followings)
Unsigned integer: .u8, .ul6, .u32, .u64
Signed integer: .s8, .s16, .s32, .s64
Floating point: .f16,. {32, .f64

X1ld ‘VSI LINIS

Linpack benchmark: inner loop

« X, Y are vectors of some length say 64, ais a
scalar

e Y=axX+Y

X1d ‘VSI LNIS

Example: ALU and LD/Store

B the PTX instructions for one iteration of DAXPY

shl.u32 R8, blockldx, 9 ; Thread Block ID * Block size (512 or 29)

add.u32 R8, R8, threadldx ; R8 =1 =my CUDA thread ID
shl.u32, R8, R8, 3 ; R8 x 23

|d.global.f64 RDO, [X+R8] ; RDO = X[i]

|d.global.f64 RD2, [Y+RS8] ; RD2 = Y[i]

mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (Y]i])
st.global.f64 [Y+R8], RDO ; Y[1] = sum (X[i]*a + Y[i])

Assign one CUDA thread to each loop iteration which gives unique thread block ID
and thread ID in the given thread block.

Create 8192 CUDA threads of this copy (having different block ids)
and uses the ID to address each element in the array

No need for incrementing or branching code

X1ld ‘VSI LINIS

Address Coalescing Hardware

* For data transfer from/to memory, a burst
transfer of, say 32 sequential words is performed
by the runtime hardware.

 To do this, the programmer must ensure that
adjacent CUDA threads access nearby
addresses at the same time so that they can be
coalesced into one or a few memory blocks.

X1ld ‘VSI LINIS

ISA Issues for SIMT

 Branch problem in
SIMT

— Can not use “reqgular
branches” in SIMT because

— If some gets I3 etc and
some get |5,

— then there is no single
instruction stream anymore.

Single stream on N Cores

11

X1d ‘VSI LNIS

12
BEQ xx
13
14
XX 15
Core Core Core Core
Data 1 Data 2 Data N

If-Conversion for Scalar

4 If-conversion uses predicates to transform a conditional branch into a
single control stream code.

if(rl ==0)
addr2, r3,rd4
else
subr2, r7,r4
code using br ys, 2 \ If-converted code
fO: cmp r4, #0 cmp rl, #0
f4: beq 0x100 addeq r2, r3,rd
f8:subr2, r7,r4 subne r2, r7,rd
fc: bne 0x104 mov r5, r2
100: add r2, r3, r4
104: mov r5, r2

X1d ‘VSI LNIS

If-Conversion for SIMT

4 If-conversion uses predicates to transform a conditional branch into a
single control stream code.

if(rl ==0)
addr2, r3,rd4
else
subr2, r7,r4
mov r5, r2
ADD EQ Not true ‘ ADD EQ True
addeq r2,r3,rd Then part addeq r2,r3,r4

All lanes run the same instruction

X1d ‘VSI LNIS

Ways to deal with conditional

execution-1

* Predication if possible. PTX assembler optimizes
an outer-level IFF-THEN/ELSE coded with a PTX
branch instruction to just predicated GPU
Instructions, without any GPU branch instruction.

setp.lt.f32.p,a, b //p = (a<b)

p: per lane 1-bit predicate register

IF/THEN/ELSE

Step of execution

1. the THEN part is broadcast
to all SIMD lanes (for p=1,
green lanes store results)

2. Similarly, the ELSE part (for p’=1,
white lanes store results)

Collectively, all ps’ form a mask
(1,11...... 0,1)

p:l p:O p:l
Predicated
L instructions of
.................... the THEN part
SIMD lanes
enabled disabled enabled

(store results)

(nop) (storeresults)

X1d ‘VSI LNIS

Conditional Branching

 Like vector architectures, GPU branch hardware
uses internal masks

« Also uses

— Branch synchronization stack
» Entries consist of masks for each SIMD lane

» |.e. which threads commit their results (all threads
execute); results stored depending on mask

— Instruction markers to manage when a branch diverges
Into multiple execution paths

» Push on divergent branch
— ...and when paths converge

» Act as barriers

» Pops stack

* Per-thread-lane 1-bit predicate register, specified
by programmer

X1ld ‘VSI LINIS

Ways to deal with conditional
execution-2

« Mixture of predication and GPU branch instructions
with special stack instructions and markers that use
branch synchronization stack to push a current
active mask onto stack when a branch diverges.

—Use branch instructions and branch
synchronization markers to show the divergence
and convergence of control flow;

—however, all the same instructions are broadcast
to all the SIMD lanes and conditionally executed
based on their mask bits.

X1d ‘VSI LNIS

branch synchronization marker: *push,
*comp, * *pop executed by all SIMD lanes

if (X[i] != 0)

X1d ‘VSI LNIS

X[i] = X[i] = Y[i]; // when pl=1

else X[i] = Z[i];

|d.global.f64
setp.neq.s32
@!'P1, bra

|d.global.f64
sub.f64
st.global.f64
@P1, bra

ELSE1:

// When pl =0 All SIMD lanes
execute the same
instructions in the

RDO, [X+R8] : RDO = X[i] IF-THEN-ELSE
P1, RDO, #0 :P1=1if x[i]!=0 statement
ELSE1, *Push ; Push old mask, set new mask bits
; if P1 false, go to ELSE1 but actually nop
RD2, [Y+R8] . RD2 = Y[i] ;hose SIMD 'anei
o~ . aving p =1, wor
RDO, RDO, RD2 ; Difference in RDO and write result:
[X+R8], RDO ; X[i] = RDO others nop.
ENDIF1, *Comp , complement mask bits
; if P1 true, go to ENDIF1
Id.global.f64 RDO, [Z+R8] ; RDO = Z][i] Those SIMD lanes
e having p =0, work
st.global.f64 [X+R8], RDO ; X[i] = RDO and write result:

ENDIF1: <next instruction>, *Pop , pop to restore old mask others nop.

lllusion of MIMD branch-based program
behavior on SIMD instructions

 lllusion of some threads go one way, the rest go
another.

 |llusion of a CUDA thread works independently
on one element in a thread of SIMD instructions.

 In fact, each CUDA thread (each SIMD lane) is
executing the same instruction either
“committing their results” or “idle, i.e. no
operation.”

X1d ‘VSI LNIS

Outline

* Introduction

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

CUDA thread hierarchy

Synchronize
through
global memory

If dependy

Thread

>

%

per-Thread Private
Local Memory

vector

Thread Block
per-Block
+ Shared Memory
Grid 0

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global

memory spaces.

GPU

memory
per-
Application
Context
Global
Memory

Single element

All blocks run the same
Kernel code

AyoielalH Alowap

Memory Hierarchy

« Similar to general purpose
CPU

 Add ascratch-pad mem for
group of threads that can
locally share through
load/store in the instruction
stream--a common DSP
technique

Fermi Memory Hierarchy
Thread

f

Shared Memory

L2 Cache

Ayolelsaiq Aloway

NVIDIA GPU Memory Structures

« Each SIMD Lane (a CUDA thread) has private
section of off-chip DRAM

— “Private memory”

— Contains stack frame, spilling registers, and
private variables

« Each multithreaded SIMD processor also has
local memory

— Shared by SIMD lanes / threads within a block

« Memory shared by SIMD processors is GPU
Memory

—Host can read and write GPU memory

AyoielalH Alowap

Outline

* Introduction

« Execution model

* Multi-threaded SIMD processor
 Fermi Architecture

« SIMT ISA: PTX

« Memory Hierarchy

« Summary on GPGPU

NVIDIA GPU Architecture

« Similarities to vector machines:
—Works well with data-level parallel problems
— Scatter-gather transfers
— Mask registers
—Large register files
 Differences:
—No scalar processor
— Uses multithreading to hide memory latency

—Has many functional units, as opposed to a
few deeply pipelined units like a vector
processor

Nd9do uo Arewwns

Fermi Architecture Innovations

Each SIMD processor has

— Two SIMD thread schedulers, two instruction dispatch
units

— 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16
load-store units, 4 special function units

— Thus, two threads of SIMD instructions are scheduled
every two clock cycles

Fast double precision

Caches for GPU memory

64-bit addressing and unified address space
Error correcting codes

Faster context switching

Faster atomic instructions

Nd9do uo Arewwns

What new in Fermi - April 2010

« D. Patternson said in 2009

Top 10 Innovations in Fermi

Top 3 Next Challenges

Real Floating Point in Quality and
Performance

The Relatively Small Size of GPU Memory

Error Correcting Codes on Main Memory and
Caches

Inability to do 1/0 directly to GPU Memory

64-bit Virtual Address Space

No Glueless Multisocket Hardware and Software

Caches

Fast Context Switching

Unified Address Space

Debugging Support

o NNy W

Faster Atomic Instructions to Support Task-
Based Parallel Programming

A Brand New Instruction Set

10

Also, Fermi is Faster than G80

Nd9do uo Arewwns

Unified Address Space

« Patternson’s word

Nd9do uo Arewwns

Past GPUs had a variety of different types of memories, each in their own address
space. Although these could be used to achieve excellent performance, such
architectures are problematic with programming languages that rely on pointers to
any piece of data in memory, such as C, C++, and CUDA

Fermi has rectified that problem with by placing those separate memories—the
local scratchpad memory, the graphics memory, and system memory—into a single
64-bit address space, thereby making it much more easier to compile and run C and
C++ programs on Fermi.® Once again, PTX enabled this relatively dramatic

architecture change without the legacy binary compatibility problems of
mainstream computing.

Like caches, a unified address space increases the types of programs that can run
well on GPUs.

Debug using GPU’s thread!

« Patternson’s word

Nd9do uo Arewwns

A significant change in Fermi is that traps, breakpoints, and so on are now handled
in GPU trap handler software by GPU threads. GPU trap handler software can
interact with CPU code as needed. That lets the GPU be more flexible, enables robust
debugger actions, and lets the GPU provide system call support.

This innovation will likely popularize debuggers like GDB or Integrated Design
Environments like Microsoft’s Visual Studio for programming GPUs.

Work Model in Fermi

Nd9d9o uo Arewwns

« Host CPU Fermi Workflow
launches a grid of
Stream Queue
thread blocks and e
let them run to
completion.
« Unidirectional
command flow. lOne-wayFlow
— "~ WorkDistributor
r Tracks blocks issued from grids)
l\\\

16 Active Grids

A CUDA Core

A coreis afunctional
unit of some operations
— Pipelined

— Int unit: Boolean, shift,
move, compare, convert, bit-
field extraction, bit-reverse,
etc.

— FP unit: IEEE 754, fused MA
etc.

— How to effectively schedule
instruction to a pipeline ?

2017/12/20

CUDA Core

Dispatch Port
Operand Collector

Result Queue

58

Nd9do uo Arewwns

SIMT: Single Instruction Multiple Thread

« Clarify what is what

« What is S? Single stream on N Cores
» What are threads? -
— AN INSTRUCTION STREAM IN EXECUTION 13
14
\ 4
v
Core Core Core Core
Data 1 Data 2 Data N

Thread 2

Nd9do uo Arewwns

Instruction Stream Scheduling and Pipeline

« An SM executes one or more

Nd9do uo Arewwns

thread blocks See a core in the system
A group of N-threads called a time N stages in a FU

warp. (Recall warp speed in

Star Trek?) C1 11

« A warp scheduler issues
(broadcasts) one instruction
to either X cores (thus SIMD)
or X Load/Store Units,orto Z C2
SFUs.

« However, this is a pipeline
functional unit!

« Assuming independent N CN z1 ‘ J1 ‘ 11
instruction streams
« So guess: Longest pipeline
|en§th Sazn PP S1: M12131415... After Ncycles,
' S2: 3132333435, |lcompletes
Warp back to
« Actually a warp scheduler 'SSS”? |'22 gf Sl'gnd etli'
picks from 48 streams for SN:z12223.... O, | €penads on 11,

! : : : It has aroom of N cycles
|
instruction dispatching! for execution latency.

Ji1 |11

Inside warp scheduler

« Scheduling optimization: ILP & Hyper threading
— Limited version of OOO

— Register scoreboard: Allow OOO but stall on WAW and WAR
hazards. Per stream view!

— For RAW hazard, similar toTomasulo’s basic. Per stream
view.

— Many instruction streams to dispatch through multiple warp
schedulers. Simultaneous Multi-Threading !

Nd9d9 uo Arewwns

a) Register scoreboarding for long latency operations (texture and load)
b) Inter-warp scheduling decisions (e.g., pick the best warp to go next among eligible candidates)
c) Thread block level scheduling (e.g., the GigaThread engine)

However, Fermi’s scheduler also contains a complex hardware stage to prevent data hazards in the
math datapath itself. A multi-port register scoreboard keeps track of any registers that are not yet ready
with valid data, and a dependency checker block analyzes register usage across a multitude of fully

decoded warp instructions against the scoreboard, to determine which are eligible to issue.

Unified Address Space in Program View

With PTX 2.0, a unified address space unifies all three address spaces into a single, continuous
A load/store . >) . |
address space. A single set of unified load/store instructions operate on this address space,

Nd9do uo Arewwns

di reCtIy augmenting the three separate sets of load/store instructions for local, shared, and global

accesses any memory. The 40-bit unified address space supports a Terabyte of addressable memory, and
the load/store supports 64-bit addressing for future growth.

type of the he load/: ISA bit addressing for f h

memory.

Separate Address Spaces

A hardware
wansiation unit

maps load/store *p_global
address to the
correct memory
location. ')
SMEM Unified Address Space

register— ;

Unified Pointer Reference

Unified address memory access by:

« Hardware assisted page mapping that
determines

— which regions of virtual memory get mapped into a
thread’s private memory

— which are shared across a block of threads
— which are shared globally
— which are mapped onto DRAM
— which are mapped onto system memory
« As each thread executes, Fermi automatically

maps its memory references and routes them to
the correct physical memory segment.

Nd9do uo Arewwns

Resource Allocation in an SM

Registers and shared memory are allocated for a block as long
as that block is active

Nd9do uo Arewwns

Once a block is active it will stay active until all threads in that block have

completed

Context switching is very fast because registers and shared memory do
not need to be saved and restored

« How many active threads to run depends on
— How many registers to use for a thread
» since total has 32K registers

— How much SMEM to use for a thread

As usual, Compiler determines these allocations!

Resource Utilization in an SM

 Utilization determined by:

— How many registers are allocated to each active thread or to
each instruction stream? (compiler)

— How many SMEM are allocated to each thread? (compiler)

— Each SM support s 8 active blocks and how big is the block
size of each of the active blocks? Cannot be too small!
(programmer??)

v’ Example

a thread uses 21 registers, 32K/21 = 1560 threads
1560 > 1536 threads (spec)

Good utilization depends on the above 3 settings!

Need to see: FU utilization, throughput achieved, and
bandwidth used

Nd9do uo Arewwns

And in Conclusion

* ISA Architecture for GPU
—ISA design, branch, predication, indexed
Jump, etc
« SIMT Architecture
— Multi-threaded SIMD processor
—Whole GPU
—Memory support
« Software
— Compiler
— PTX assembler and optimizer
—Run time

66

Reference

 The Top 10 Innovations in the New NVIDIA Fermi
Architecture, and the Top 3 Next Challenges,
David Patterson Sept. 30, 20009.

JUDA Warps and Occupancy

aPU Computing Webinar 7/12/2011

NVIDIA's Next Generation NVIDIA’s Next Generation
CUDA" Compute Architecture: ~ CUDA Compute Architecture:

