
Handout 6 GPU

2017/12/20 2

Outline

• Introduction of HSA

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

Heterogeneous System Architecture

• HSA Foundation
• HSA System Architecture Specification

– Version 1.0 Provisional, Released April 2014 (V 1.0,March 16,
2015)

– Define how the hardware operates
• HSA Programmers Reference Specification

– Tool chain, software ecosystem
– Define the HSAIL language and object format

• HSA Runtime Software Specification
– Define the APIs through which an HSA application uses the

platform

3

HSA-Aware SIMT GPU

4

Opportunity:

For computing and graphics:

A GPU of our own binary.

ISA license-free. 自主技術.

Application:

Cloud center, data center,

energy efficient servers,

mobile, machine learning etc.

國外技術研發現況分析

ARM: Mali (Shader core)

Imagination: PowerVR

Nvidia: Tegra (Keplar)

支援OpenCL 及OpenGL 的HSA 相容GPU 系統

5

Drawn by Our GPUs

Platform OpenGLES-sim OpenGLES-sim

Scalar

HSA Simulator

Graphic Version

Devel. time 2013-2014 2014-2015 2015/April

Computing model SIMT Vector
(4 lanes, vector size 4)

SIMT Scalar
(16 scalars)

SIMT Scalar

Purpose Graphic Graphic Computing &

Graphic

Program source GLSL GLSL cl & GLSL

Compiler cgc cgc w/ scalarizer cgc w/ translator

CLOC

ISA nvgp4 (pseudo

asm.)

nvgp4-S (pseudo

asm.)

HSAIL Custom

binary ISA

Data Load/Store Fixed hardware Fixed hardware Instruction

Core utilization Medium High High

Warp scheduling None None Yes

SM Cluster None None Yes

6

API hides all compilation and translation
details

7

NVIDIA cgc is our front

end compiler.

Translator

Cg Compiler

Lexical & Syntax

Analyzer

Scalarizer

Tweaker

HSAIL Code

Generator

Finalizer

 .glsl

 .nvgp4

 .nvgp4-S

 .hsail

 .hbin

R
u

n
tim

e
 In

fo
.

glCompileShader

 .glsl

 .hbin
HSAIL standard

ISA

Our

GPU

OpenGL Runtime APIs

8

• OpenGL 2.0. (1)設定GPU 內fix function unit 的configuration
(2)透過GL 的API 去引入fragment/vertex shader kernel

OpenCL & HSA Runtime APIs

9

• OpenCL 1.2 and HSA 1.0

2017/12/20 10

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

Parallel Kernel

Programmer determines the parallelism by

specifying the grid dimensions and the

number of threads per SIMD processor

2 x 5 blocks

Thread blocks can be executed independently

and in any order

E
x

e
c

u
tio

n
 m

o
d

e
l

Single Instruction Multiple Threading

• Single Instruction Multi-
Threading

• Get one instruction and
dispatch to every processor
units.

• Fetch one stream -> N threads
(of the same code) in execution

• Each thread is independent to
each other.

• All cores execute instructions
in lockstep mode.

2017/12/20 12

I5

I4

I3

I2

I1

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

Threads and Blocks

• A thread is associated with each data element

• Threads are organized into blocks
– A thread block is assigned to a processor called

multithreaded SIMD processor

• Blocks are organized into a grid

– thread blocks can run independently and in any order

• A grid is the code that runs on a GPU that
consists of a set of thread blocks.

• GPU hardware handles thread management, not
applications or OS

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 14

A thread; user defined entity

• A thread within a thread block (group) executes an instance of
the kernel (code to execute)

– Has a thread ID in the group

– Has its program counter

– Has its registers, per-thread private memory

» For register spills, procedure call (stack)

– Use off-chip DRAM for private memory

» Why? (Data to work on)

– Can have L1 and L2 cache to cache private memory

– Map onto a SIMD lane

– SIMD lanes do not share private memories

A thread is an instance of program code in execution!

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 15

A group of threads: thread block

• A thread block: a group of concurrently
executing threads within a thread block

– Has a thread block ID in a grid

– Synchronization through barrier

– And communicate through a block level
shared memory

» Inter-thread communication, data sharing,
result sharing

– Map onto a multithread SIMD processor (a
block of several SIMD lanes)

– The SIMD processor dynamically
allocates part of the LM to to a thread
block when it creates the thread block and
frees the memory when all the threads in
the thread block exit.

– The local memory is shared by the SIMD
lanes within the multithreaded SIMD
processor

Thread 1 Thread i

barrier

Local memory /

Shared memory

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20
16

A group of thread blocks: grid

• A thread grid: a group of thread blocks that execute the same
kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

Global Memory

Application Context

GPU Memory

Thread 1 Thread i

barrier

Shared memory

Thread 1 Thread i

barrier

Shared memory

Off-chip DRAM

E
x

e
c

u
tio

n
 m

o
d

e
l

Programmer’s job

• CUDA programmer explicitly specifies the
parallelism

–Set grid dimensions

–Number of threads per SIMD
processors

• One thread works on one element; no need to
synchronize among threads when writing results
to memory.

2017/12/20 17

Programming example

• C code

daxpy (n, 2.0, x, y) // invoke daxpy

void daxpy (int n, double a, double *x, double *y)

{

For (int i=0; i<n; ++i)

y[i] = a*x[i] + y[i]; } // no loop carried dependence, vectorizable loop

2017/12/20 18

• CUDA code // launch n threads by invoking DAXPY with 256 threads per thread block

host // declare this is a system processor function

Int nblocks = (n+255)/256; // how many thread blocks are needed?

daxpy<<<nblocks, 256>>>(n, 2.0, x, y) //function call: daxpy<<<dimGrid, dimBlock>>>

device // declare this is a GPU function in which all variables are allocated in GPU Mem.

void daxpy (int n, double a, double *x, double *y)

{ int i = blockIdx.x*blockDim.x + threadIdx.x; // one thread works on one vector element

// compute element index i based on block ID, the number of threads per block, and the
thread ID.

if (i<n) y[i]= a*x[i] + y[i]; // if index i is within the array, then compute y[i]

}

E
x

e
c

u
tio

n
 m

o
d

e
l

2017/12/20 19

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

GPU terms-1

2017/12/20 20

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

GPU terms-2

2017/12/20 21

CUDA term

Run a thread block

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor

• This is a multithreaded
SIMD processor which
runs a thread block

• Thread block scheduler

– Determine the # of thread
blocks required for the
task (e.g., vectorizable
loop)

– and keep allocating them
to different SIMD
processors until the loop
is completed.

• Warp scheduler, i.e.,
thread scheduler

– Inside the SIMD
processor, schedule
instructions from ready-
to-run threads

2017/12/20 22

Thread scheduler

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor-2

• Scoreboard: keep
track of which
instruction is ready for
execution

• Inside a SIMD
processor, Warp
scheduler, i.e., thread
scheduler

• A SIMD lane = a thread
processor = a CUDA
thread, working on one
element.

• A PTX instruction = A
SIMD instruction which
is executed across
SIMD lanes

2017/12/20 23

Thread scheduler

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

A multithreaded SIMD processor-3

• Since a SIMD lane = a thread processor = a CUDA
thread, working on one element.

• So, if a 32-wide thread of SIMD instructions is mapped
onto this 16 lanes of thread processors.

• Then, this 32-element vector takes 2 clock cycles, i.e.
chime = 2 clock cycles

• The 16 lane of processors executes this in lock-step and
only scheduled at the beginning.

• Need not to pick up the NEXT SIMD instruction in the
sequence within a thread for scheduling.

2017/12/20 24

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

SIMD Instruction scheduling

• Select a ready
thread and issues
an instruction
synchronously to
all the SIMD lanes
executing the
SIMD thread.

• Within a SIMD
processor, why
scheduling this
way?
– Hide memory latency

– Wait for pipeline stalls

– Wait for execution
latency

2017/12/20 25

I42

I43

32 elements

A SIMD thread

= a warp =

32 CUDA threads

M
u

lti-th
re

a
d

e
d

 S
IM

D
 p

ro
c

e
s

s
o

r

2017/12/20 26

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

2017/12/20 27

Fermi GPU Architecture- Floor plan

Thread Block

Distributor

SM

64-bits

32

Cores

+16

L/S +

4SFU

scheduler

L1/SMEM

40-bit address space

40 nm TSMC

3 x 109 T

> Nehalem-Ex(2.3)

1.x GHz

up to 8

thread

blocks

16 multithreaded

SIMD processors

PCI/E

This GPU is a

multiprocessor

composed of

multithreaded

SIMD processors

F
e

rm
i A

rc
h

ite
c

tu
re

2017/12/20 28

Fermi’s Streaming Multi-processors

SMEM: shared memory in Fermi term, but this is actually a private local scratchpad memory

for a thread block communication.

Data memory hierarchy: register, L1, L2, global memory

L1 + Local Scratchpad = 64KB configurable

F
e

rm
i A

rc
h

ite
c

tu
re

A Steaming Multiprocessor
ie., a Multithreaded SIMD
Processor

• An SM consists of 32 CUDA
cores + some 16 Load/Store
unit + 4 special functional units

• Registers: 32K x words

• L1 data cache private to each
SM

• L1 Instruction cache

• L2 unified for data and texture,
instruction(?), shared globally,
coherent for all SMs.

• Instruction dispatch

(A, B) fs

(A+B) fd

(A, C)

(B, C)

(A, D)

(B, D), (C, D), etc

2017/12/20 29L2

A B C D

F
e

rm
i A

rc
h

ite
c

tu
re

Warp Scheduler in Fermi

• Fermi can have up to 48 active warps
per SM => meaning 48 instruction
streams.

48 x 32 = 1536 threads/SM

2017/12/20 30

Queue for

48 warps

Pick instruction from ready warps A cycle for issuing an instruction from warp 8

t1

t1 + xx cycles

32 threads (on 32 SIMD lanes) have only one instruction stream due to SIMT!

A warp is simply an instruction stream

of SIMD instructions.

F
e

rm
i A

rc
h

ite
c

tu
re

2017/12/20 31

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

Mind-set behind NVIDIA Instruction Set Architecture :
Parallel Thread Execution, PTX

• ISA is an abstraction of the hardware instruction set

• Hide the hardware instructions from the programmer

• Stable ISA across generations of GPUs

• PTX instructions describe operations on a single
CUDA thread

• Usually map one-to-one with hardware instructions,
but may have one-to-many and vice versa.

– Translation to machine code is performed in software

– Uses virtual registers

S
IM

T
 IS

A
: P

T
X

Software maps PTX to machine code

• Translation to machine code is performed in
software and at load time on a GPU

– PTX uses virtual registers

– A PTX instruction of a SIMD thread is broadcast to all SIMD
lanes involved (hence a vector of n elements).

– Compiler figures out how many physical vector registers a
SIMD thread needs.

– An optimizer divides the available register storage btw the
SIMD threads

– The assignment of virtual registers to physical registers
occurs at load time (by MMU like mechanism?)

– The optimizer also calculates places where branches might
and places where diverged paths could converge.

S
IM

T
 IS

A
: P

T
X

PTX Instructions

• All instructions can be predicated by 1-bit predicate
registers. RISC-type

– Like ARM, conditional execution

– setp.lt.f32. p, a, b // p = (a<b). Compare and set predicate

– This is branch: @p bra target // if (p) goto target

– barrier syc: bar.sync d // in a thread block, wait for threads

– exit; terminate thread execution

– call, ret

– atomic read-modify-write

– memory access, like ld/st

– texture lookup

– special functions; like square root, sine, cosine, log, exp….

– arithmetic/logic,……

2017/12/20 34

S
IM

T
 IS

A
: P

T
X

Operation type

• Untyped: 8, 16, 32, 64 bit; .b8,.b16, b32,.b64
– (binary?, not one of the followings)

• Unsigned integer: .u8, .u16, .u32, .u64

• Signed integer: .s8, .s16, .s32, .s64

• Floating point: .f16,. f32, .f64

2017/12/20 35

S
IM

T
 IS

A
: P

T
X

Linpack benchmark: inner loop

• X, Y are vectors of some length say 64; a is a
scalar

• Y = a x X + Y

2017/12/20 36

S
IM

T
 IS

A
: P

T
X

Example: ALU and LD/Store

 the PTX instructions for one iteration of DAXPY

shl.u32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)

add.u32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

shl.u32, R8, R8, 3 ; R8 x 23

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

Assign one CUDA thread to each loop iteration which gives unique thread block ID

and thread ID in the given thread block.

Create 8192 CUDA threads of this copy (having different block ids)

and uses the ID to address each element in the array

No need for incrementing or branching code

S
IM

T
 IS

A
: P

T
X

Address Coalescing Hardware

• For data transfer from/to memory, a burst
transfer of, say 32 sequential words is performed
by the runtime hardware.

• To do this, the programmer must ensure that
adjacent CUDA threads access nearby
addresses at the same time so that they can be
coalesced into one or a few memory blocks.

2017/12/20 38

S
IM

T
 IS

A
: P

T
X

ISA issues for SIMT

• Branch problem in
SIMT
– Can not use “regular

branches” in SIMT because

– If some gets I3 etc and
some get I5,

– then there is no single
instruction stream anymore.

2017/12/20 39

I1

I2

.

.

BEQ xx

I3

I4

xx I5

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

S
IM

T
 IS

A
: P

T
X

If-Conversion for Scalar

40

f0: cmp r4, #0

f4: beq 0x100

f8: sub r2, r7,r4

fc: bne 0x104

100: add r2, r3, r4

104: mov r5, r2

If-conversion uses predicates to transform a conditional branch into a
single control stream code.

code using br
If-converted code

if(r1 == 0)

add r2, r3,r4

else

sub r2, r7,r4

mov r5, r2

cmp r1 , #0

addeq r2, r3,r4

subne r2, r7,r4

mov r5, r2

S
IM

T
 IS

A
: P

T
X

If-Conversion for SIMT

41

If-conversion uses predicates to transform a conditional branch into a
single control stream code.

if(r1 == 0)

add r2, r3,r4

else

sub r2, r7,r4

mov r5, r2

addeq r2, r3,r4

S
IM

T
 IS

A
: P

T
X

addeq r2, r3,r4

ADD EQ TrueADD EQ Not true

Then part

All lanes run the same instruction

Ways to deal with conditional
execution-1

• Predication if possible. PTX assembler optimizes
an outer-level IF/THEN/ELSE coded with a PTX
branch instruction to just predicated GPU
instructions, without any GPU branch instruction.

setp.lt.f32. p, a, b // p = (a<b)

2017/12/20 42

SIMD lanes

enabled enableddisabled

………………..

p=1 p=0

Predicated

instructions of

the THEN part

p: per lane 1-bit predicate register

IF/THEN/ELSE

Step of execution

1. the THEN part is broadcast

to all SIMD lanes (for p=1,

green lanes store results)

2. Similarly, the ELSE part (for p’=1,

white lanes store results)

(store results) (nop) (store results)

p=1

Collectively, all ps’ form a mask

(1,1,1……0,1)

S
IM

T
 IS

A
: P

T
X

Conditional Branching

• Like vector architectures, GPU branch hardware
uses internal masks

• Also uses

– Branch synchronization stack

» Entries consist of masks for each SIMD lane

» I.e. which threads commit their results (all threads
execute); results stored depending on mask

– Instruction markers to manage when a branch diverges
into multiple execution paths

» Push on divergent branch

– …and when paths converge

» Act as barriers

» Pops stack

• Per-thread-lane 1-bit predicate register, specified
by programmer

S
IM

T
 IS

A
: P

T
X

Ways to deal with conditional
execution-2

• Mixture of predication and GPU branch instructions
with special stack instructions and markers that use
branch synchronization stack to push a current
active mask onto stack when a branch diverges.

–Use branch instructions and branch
synchronization markers to show the divergence
and convergence of control flow;

– however, all the same instructions are broadcast
to all the SIMD lanes and conditionally executed
based on their mask bits.

2017/12/20 44

S
IM

T
 IS

A
: P

T
X

branch synchronization marker: *push,
*comp, * *pop executed by all SIMD lanes

if (X[i] != 0)

X[i] = X[i] – Y[i]; // when p1 = 1

else X[i] = Z[i]; // when p1 = 0

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1= 1 if x[i] != 0

@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1 but actually nop

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

Those SIMD lanes

having p = 1, work

and write result;

others nop.

Those SIMD lanes

having p = 0, work

and write result;

others nop.

All SIMD lanes

execute the same

instructions in the

IF-THEN-ELSE

statement

S
IM

T
 IS

A
: P

T
X

Illusion of MIMD branch-based program
behavior on SIMD instructions

• Illusion of some threads go one way, the rest go
another.

• Illusion of a CUDA thread works independently
on one element in a thread of SIMD instructions.

• In fact, each CUDA thread (each SIMD lane) is
executing the same instruction either
“committing their results” or “idle, i.e. no
operation.”

2017/12/20 46

S
IM

T
 IS

A
: P

T
X

2017/12/20 47

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

CUDA thread hierarchy

2017/12/20 48

All blocks run the same

Kernel code

Synchronize

through

global memory

If dependent

GPU

memory

Single element

vector

M
e

m
o

ry
 H

ie
ra

rc
h

y

Memory Hierarchy

• Similar to general purpose
CPU

• Add a scratch-pad mem for
group of threads that can
locally share through
load/store in the instruction
stream-- a common DSP
technique

2017/12/20 49

M
e

m
o

ry
 H

ie
ra

rc
h

y

NVIDIA GPU Memory Structures

• Each SIMD Lane (a CUDA thread) has private
section of off-chip DRAM

– “Private memory”

–Contains stack frame, spilling registers, and
private variables

• Each multithreaded SIMD processor also has
local memory

–Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU
Memory

–Host can read and write GPU memory

M
e

m
o

ry
 H

ie
ra

rc
h

y

2017/12/20 51

Outline

• Introduction

• Execution model

• Multi-threaded SIMD processor

• Fermi Architecture

• SIMT ISA: PTX

• Memory Hierarchy

• Summary on GPGPU

NVIDIA GPU Architecture

• Similarities to vector machines:

–Works well with data-level parallel problems

–Scatter-gather transfers

–Mask registers

– Large register files

• Differences:

–No scalar processor

–Uses multithreading to hide memory latency

–Has many functional units, as opposed to a
few deeply pipelined units like a vector
processor

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Fermi Architecture Innovations

• Each SIMD processor has

– Two SIMD thread schedulers, two instruction dispatch
units

– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16
load-store units, 4 special function units

– Thus, two threads of SIMD instructions are scheduled
every two clock cycles

• Fast double precision

• Caches for GPU memory

• 64-bit addressing and unified address space

• Error correcting codes

• Faster context switching

• Faster atomic instructions

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

2017/12/20 54

What new in Fermi - April 2010

• D. Patternson said in 2009

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Unified Address Space

• Patternson’s word

2017/12/20 55

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Debug using GPU’s thread!

• Patternson’s word

2017/12/20 56

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Work Model in Fermi

• Host CPU
launches a grid of
thread blocks and
let them run to
completion.

• Unidirectional
command flow.

2017/12/20 CA 2008 57

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

A CUDA Core

2017/12/20 58

• A core is a functional
unit of some operations
– Pipelined

– Int unit: Boolean, shift,
move, compare, convert, bit-
field extraction, bit-reverse,
etc.

– FP unit: IEEE 754, fused MA
etc.

– How to effectively schedule
instruction to a pipeline ?

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

SIMT: Single Instruction Multiple Thread

• Clarify what is what

• What is S?

• What are threads?
– AN INSTRUCTION STREAM IN EXECUTION

2017/12/20 59

I1

I2

I3

I4

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

Thread 2

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

2017/12/20
60

Instruction Stream Scheduling and Pipeline

• An SM executes one or more
thread blocks

• A group of N-threads called a
warp. (Recall warp speed in
Star Trek?)

• A warp scheduler issues
(broadcasts) one instruction
to either X cores (thus SIMD)
or X Load/Store Units, or to Z
SFUs.

• However, this is a pipeline
functional unit!

• Assuming independent N
instruction streams

• So guess: Longest pipeline
length = 32?

• Actually a warp scheduler
picks from 48 streams for
instruction dispatching!

N stages in a FU

I1

See a core in the system

I1J1

S1: I1 I2 I3 I4 I5…

S2: J1 J2 J3 J4 J5..

SN: z1 z2 z3….

z1 I1J1

After N cycles,

I1 completes

Warp back to

Issue I2 of S1, and etc.

So, if I2 depends on I1,

It has a room of N cycles

for execution latency.

time

C1

C2

CN

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Inside warp scheduler

• Scheduling optimization: ILP & Hyper threading
– Limited version of OOO

– Register scoreboard: Allow OOO but stall on WAW and WAR
hazards. Per stream view!

– For RAW hazard, similar toTomasulo’s basic. Per stream
view.

– Many instruction streams to dispatch through multiple warp
schedulers. Simultaneous Multi-Threading !

2017/12/20 61

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

2017/12/20
62

Unified Address Space in Program View

• A load/store
directly
accesses any
type of the
memory.

• A hardware
translation unit
maps load/store
address to the
correct memory
location.

register

SMEM

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Unified address memory access by:

• Hardware assisted page mapping that
determines

– which regions of virtual memory get mapped into a
thread’s private memory

– which are shared across a block of threads

– which are shared globally

– which are mapped onto DRAM

– which are mapped onto system memory

• As each thread executes, Fermi automatically
maps its memory references and routes them to
the correct physical memory segment.

2017/12/20 63

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Resource Allocation in an SM

• How many active threads to run depends on

– How many registers to use for a thread

» since total has 32K registers

– How much SMEM to use for a thread

2017/12/20 64

As usual, Compiler determines these allocations!

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

Resource Utilization in an SM

• Utilization determined by:
– How many registers are allocated to each active thread or to

each instruction stream? (compiler)

– How many SMEM are allocated to each thread? (compiler)

– Each SM support s 8 active blocks and how big is the block
size of each of the active blocks? Cannot be too small!
(programmer??)

 Example

a thread uses 21 registers, 32K/21 = 1560 threads

1560 > 1536 threads (spec)

Good utilization depends on the above 3 settings!

Need to see: FU utilization, throughput achieved, and
bandwidth used

2017/12/20 65

S
u

m
m

a
ry

 o
n

 G
P

G
P

U

2017/12/20 66

And in Conclusion

• ISA Architecture for GPU

– ISA design, branch, predication, indexed
Jump, etc

• SIMT Architecture

–Multi-threaded SIMD processor

–Whole GPU

–Memory support

• Software

–Compiler

–PTX assembler and optimizer

–Run time

Reference

• The Top 10 Innovations in the New NVIDIA Fermi
Architecture, and the Top 3 Next Challenges,
David Patterson Sept. 30, 2009.

2017/12/20 67

