Handout 6 GPU

Outline

A Introduction of HSA

A Execution model

A Multi-threaded SIMD processor
A Fermi Architecture

A SIMT ISA: PTX

A Memory Hierarchy

A Summary on GPGPU

Heterogeneous System Architecture

A HSA Foundation
A HSA System Architecture Specification
I Version 1.0 Provisional, Released April 2014 (V 1.0,March 16,
2015)
I Define how the hardware operates
A HSA Programmers Reference Specification
I Tool chain, software ecosystem
I Define the HSAIL language and object format
A HSA Runtime Software Specification
I Define the APIs through which an HSA application uses the

p I a.th rm AM D :l ARM Q:I imagination MEDINTEK

QUALCOMM JP e

@ LG Electronics

b4
@ Arteriss € FABRICENGINE

ey allinea Argonne@

. MULTICORE i Sandia OAK Stream
Ocodeplay” "\yv WARE ﬁLlnaro (= SUSE. ¥RIDGE Computing
ANALOG @ i _
QR Sopical) e EXRI
BROADCOM. RRRARLL
: ITRI .M ‘ om=g ~ ™ SONICS ?ogbllg sré

- A% . TOSHIBA Sy \/ANTE :
Synupsys te%lllca Leading Innovation >>> ut@tu m, " o éé ORACLE
ormatics [fl ILLINOIS () (

S5 NTHU Programming 55 NTHU System BIKE University of :
“7 Languagelab 55 software Lab g BB BRISTOL @ inf *)
11SS1SSI PP

2 m T @ O,

HSA-Aware SIMT GPU

ARM: Mali (Shader core)

Imagination: PowerVR

Nvidia: Tegra (Keplar) [DpenCL] [GLSL] [Java]
CL Offline | /
Compiler -

HSA Intermediate Language

Opportunity: (Virtual Parallel ISA)
For computing and graphics:

A GPU of our own binary. / | \’

ISA license-free.
[FinalizerA] [FinalizerB] [FinalizerC]

Application:
Cloud cenFe.r, data center, — — .
energy efficient servers, GPU A GPUB DSP

mobile, machine learning etc.

OpenCL OpenGL HSA GPU

Applicaton SW

B ﬂ E
B _ '
Packet Streaming Multiprocessor Fix Function EIW.
” Processor

L2 Cache
AXI/ AHB

- Drawn by Our GPUs

Platform OpenGLES-sim | OpenGLES-sim HSA Simulator
Scalar Graphic Version
Devel. time 2013-2014 2014-2015 2015/April
Computing model SIMT Vector SIMT Scalar SIMT Scalar
(4 lanes, vector size 4) (16 scalars)

Purpose Graphic Graphic Computing &
Graphic

Program source GLSL GLSL cl & GLSL

Compiler cgc cgc w/ scalarizer | cgc w/ translator
CLOC

ISA nvgp4 (pseudo nvgp4-S (pseudo | HSAIL Custom

asm.) asm.) binary ISA
Data Load/Store | Fixed hardware Fixed hardware Instruction
Core utilization Medium High High
Warp scheduling | None A None Yes
SM Cluster None - None - Yes -:

APl hides all compilation and translation

d

)

"oJu| swnuny

[

etalls

glsl

-
Cg Compiler

v

P
Lexical & Syntax
Analyzer

¥

J

Vs

Translator
/S

A A

.nvgp4
J ngl
N

Scalarizer

—

Tweaker

———

HSAIL Code

Generator

¥

Finalizer

= glCompileShader
=| .hsall
\ HSAIL standard k

ISA .hbin

NVIDIA cgc is our front
end compiler.

OpenGL Runtime APIs

A OpenGL 2.0. (1) GPU fix function unit configuration

(2) GL API fragment/vertex shader kernel
glActiveTexture glAttachShader glBindTexture glClear
glClearColor glClearDepthf glCompileShader glCreateProgram
glCreateShader glCullFace glDeleteProgram glDeleteShader
glDeleteTextures glDepthRangef glDetachShader glDisable
glDrawArrays glDrawElements glEnable glEnableVertexAttribArray
glGenerateMipmap glGenTextures glGetAttribLocation glGetError
glGetProgramiv glGetShaderiv glGetUniformLocation | gllsProgram
gllsShader gllsTexture glLinkProgram glShaderBinary
glShaderSource glTexImage2D glTexParameter1 glUniforml1f
glUniform11 glUniform1fv glUniformliv glUniform2f
glUniform?21 glUniform2fv glUniform21v glUniform3f
glUniform31 glUniform3fv glUniform31iv glUniform4f
glUniform41 glUniform4fv glUniform4iv glUniformMatrix2tv
glUniformMatrix3fv | glUniformMatrix4fv | glUseProgram glValidateProgram
glVertexAttribPointer | glViewport ___________"‘“‘—-—————____________=_

OpenCL & HSA Runtime APIs

A OpenCL 1.2 and HSA 1.0

clBuildProgram
clCreateCommandQueueWithProperties
clCreateKernel
clEnqueueNDRangeKernel
clEnqueueWriteBufter

1

1
clGetContextInfo
clGetEventInfo
clGetPlatformIDs
clGetProgramInfo
clReleaseKernel

clSetKernelArg

clCreateBuffer
clCreateContext
clCreateProgramWithSource
clEnqueueReadButfer
clFinish

clGetDevicelDs
clGetEventProfilingInfo
clGetPlatformInfo
cIReleaseCommandQueue

cIReleaseMemObject

clCreateCommandQueue
clCreateContextFromType
cl[EnqueueMapBuffer
clEnqueueUnmapMemODbject
clFlush

clGetDevicelnfo

clGetKernel WorkGrouplnfo
clGetProgramBuildInfo
clReleaseContext

clReleaseProgram

Outline

A Introduction

A Execution model

A Multi-threaded SIMD processor
A Fermi Architecture

A SIMT ISA: PTX

A Memory Hierarchy

A Summary on GPGPU

Parallel Kernel

Thread blocks can be executed independently

CPU Host GPU Device

Grid k&

I
I
Serial Codes i |
I
I

Y BT EEm
=D

Kernel Invocation |

Serial Codes j

I
\ 4 |
I
I

2 x 5 blocks

Programmer determines the parallelism by
specifying the grid dimensions and the
number of threads per SIMD processor

ﬁ------“‘~—

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel 0-{C02()

Berial code

Parallel kernel

Herpel 1-<<<xx ()

Host
Device
Grid 0
Block (0,0) | Block (1, 0) | Block (2, 0)
ﬂ(ﬂ;% Block (1, 1) || Block (2, 1)
7’4
N Host
/|
Device
Grid 1
Block (0, 0) Block {1, 0)
Block {0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

[opOoW UO0IINI3XT

Single Instruction Multiple Threading

A Single Instruction Multi-

Th read | ng Single stream on N Cores
A Get one instruction and 5

dispatch to every processor 14

units. 13
A Fetch one stream -> N threads :i

(of the same code) in execution
A Each thread is independent to

each other.
A All cores execute instructions

in lockstep mode. ‘L

Core Core Core Core

Data 1 Data 2 Data N

Threads and Blocks

A A thread is associated with each data element

A Threads are organized into blocks

I A thread block is assigned to a processor called
multithreaded SIMD processor

A Blocks are organized into a grid
I thread blocks can run independently and in any order

A A grid is the code that runs on a GPU that
consists of a set of thread blocks.

A GPU hardware handles thread management, not
applications or OS

[opOoW UO0IINI3XT

A thread; user defined entity

A A thread within a thread block (group) executes an instance of

the kernel (code to execute)

Has a thread ID in the group
Has its program counter

Has its registers, per-thread private memory
» For register spills, procedure call (stack)

Use off-chip DRAM for private memory
» Why? (Data to work on)

Can have L1 and L2 cache to cache private memory
Map onto a SIMD lane
SIMD lanes do not share private memories

A thread is an instance of program code in execution!

[opOoW UO0IINI3XT

A group of threads: thread block

A A thread block: a group of concurrently
executlng threads within a thread block

Has a thread block ID in a grid
Synchronization through barrier

And communicate through a block level
shared memory

» Inter-thread communication, data sharing,
result sharing

Map onto a multithread SIMD processor (a
block of several SIMD lanes)

The SIMD processor dynamically
allocates part of the LM to to a thread
block when it creates the thread block and
frees the memory when all the threads in
the thread block exit.

The local memory is shared by the SIMD
lanes within the multithreaded SIMD
processor

fead 1 Thread i

Local memory /
Shared memory

arrier

[opOoW UO0IINI3XT

A group of thread blocks: grid

A A thread grid: a group of thread blocks that execute the same
kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

read 1 Threadi read 1 Threadi

barrier W barrier
Shared memory Shared memory

l l
¢

Global Memory Off'Ch|p DRAM
Application Context

GPU Memory

[opOoW UO0IINI3XT

Programmer 0s | ob

A CUDA programmer explicitly specifies the
parallelism

I Set grid dimensions
I Number of threads per SIMD

Processors

A One thread works on one element: no need to
synchronize among threads when writing results
to memory.

Programming example

A Ccode
daxpy (n, 2.0, x,y) //invoke daxpy
void daxpy (int n, double a, double *x, double *y)

{
For (int i=0; i<n; ++i)
y[i] = a*x[i] +y[i]; } // no loop carried dependence, vectorizable loop

[opOoW UO0IINI3XT

A CUDA code // launch n threads by invoking DAXPY with 256 threads per thread block
host /I declare this is a system processor function

Int nblocks = (n+255)/256; // how many thread blocks are needed?

daxpy<<<nblocks, 256>>>(n, 2.0, x, y) //function call: daxpy<<<dimGrid, dimBlock>>>
device// declare this is a GPU function in which all variables are allocated in GPU Mem.
void daxpy (int n, double a, double *x, double *y)

{int i =Dblockldx.x*blockDim.x + threadldx.x; // one thread works on one vector element

/[compute element index i based on block ID, the number of threads per block, and the
thread ID.
if (i<n) y[i]= a*x[i] + y[i]; // if index i is within the array, then compute y[i]

}

Outline

A Introduction

A Execution model

A Multi-threaded SIMD processor
A Fermi Architecture

A SIMT ISA: PTX

A Memory Hierarchy

A Summary on GPGPU

GPU terms-1

More descrip- Closest old term Official CUDA/
Type tive name outside of GPUs NVIDIA GPUterm Book definition
Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
a | Loop up of one or more Thread Blocks (bodies of
S vectorized loop) that can execute in parallel.
g Body of Body of a Thread Block A vectorized loop executed on a multithreaded
= Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
Q Vectorized Loop of SIMD instructions. They can communicate via
£ Local Memory.
m . . N ¢ . ~ - . .
& Sequence of One iteration of ~ CUDA Thread A vertical cut of a thread of SIMD instructions
2 SIMD Lane a Scalar Loop corresponding to one element executed by one
Operations SIMD Lane. Result is stored depending on mask
and predicate register.
v A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
% SIMD Instructions instructions that are executed on a multithreaded
8 Instructions SIMD Processor. Results stored depending on a
£ per-element mask.
{g SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

2017/12/20

20

10Ssa204d QNIS papealyl-nniA

GPU terms-2

CUDA term

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors. Run a thread block

v

o Thread Block Scalar Processor ~ Giga Thread Assigns multiple Thread Blocks (bodies of

% Scheduler Engine vectorized loop) to multithreaded SIMD

E Processors.

2 SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
a Scheduler in a Multithreaded of SIMD instructions when they are ready to

e CPU execute; includes a scoreboard to track SIMD
g Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

© SIMD Processors in a GPU.

-

o

% Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
= Memory Local Storage (OS) Lane.

£

> Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

g Processor, unavailable to other SIMD Processors.
@ : —

s SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).

2017/12/20

21

10ssa204d QNIS papealyl-nniA

A multithreaded SIMD processor

A This is a multithreaded
SIMD processor which
runs a thread block

A Thread block scheduler

I Determine the # of thread
blocks required for the
task (e.g., vectorizable
loop)

I and keep allocating them
to different SIMD
processors until the loop
IS completed.

A Warp scheduler, i.e.,
thread scheduler

i Inside the SIMD
processor, schedule
instructions from ready-
to-run threads

Thread scheduler

Warp scheduler Scoreboard

[Warp No. | Address | SIMD instructions ZWQBerands? |

Instruction |} [T 1 | 42 | Idglobali64 Ready
cache T [® | muet | N
3 95 | shis32 | Ready |
| [3 | % adds’2 | No
8 | 11 | Idglobalf4 | Ready |
T dglobalf64 | Ready

'

Instruction register
S A N T el I L A N T S i
+9 +9 9 4 4 +9 s o Bl o 9 4 L am Bl o 9 9 9 9 S‘MD L;i,_‘es

I (Thread

T TUTLTL LU T L e e o4 91917]Processors)

10ssa20.1d QINIS papealyl-i N

A multithreaded SIMD processor -2

A Scoreboard: keep
track of which
Instruction is ready for
execution

Inside a SIMD
processor, Warp
scheduler, i.e., thread
scheduler

A A SIMD lane = a thread
processor =a CUDA
thread, working on one
element.

A A PTX instruction = A
SIMD instruction which
IS executed across
SIMD lanes

<

=

=

Warp scheduler Scoreboa'ghread scheduler §

_ ‘7W§rp No. | Address SIMDmstructlons Qgerands? || @
Instruction J [1 | 42 | Idgobalie4 | Ready 3
cache 1 8 | mud [N]| =
3 05 | shia®@ | "Rualy IS

a 3 | 9% [ads®2 [N || o
A 5 | Id.global.fe4 Ready || o

8 | 12 \d.global.f64 Ready o

e | Mg i .

n

e

Instruction register

P P PSP B e e mllamliamdileadinadicadieadinadinadinadinmi

—f ¢t § & ¢ % v ¥ ¥ ¢ 3% 3 % (¢ WU

S]MD Lanes

N : s ; L) A Il (Thread
F PP v v e e eedeoeiviviviviyProcessos)
! =
stils
i (EEEEEEEEEENENEEENEEEEENEEENERE
< ¢ —— * ——— + -+ - — + -+ —+ o
I ! = , S e -
o Address coalescing ur Interconnection ne
i z - ;'t '
T N - To Global
Local Memory

Memory

A multithreaded SIMD processor-3

A Since a SIMD lane = a thread processor =a CUDA
thread, working on one element.

A So, if a 32-wide thread of SIMD instructions is mapped
onto this 16 lanes of thread processors.

A Then, this 32-element vector takes 2 clock cycles, i.e.
chime = 2 clock cycles

A The 16 lane of processors executes this in lock-step and
only scheduled at the beginning.

A Need not to pick up the NEXT SIMD instruction in the
sequence within athread for scheduling.

10ssa20.1d QINIS papealyl-i N

SIMD Instruction scheduling

A Select a ready ~ ASIMD thread
thread and issues SIMD thread scheduler . =awarp =
an instruction Time* g f
synchronously to '
SIMDthreadBmstructnonH > 30l t
a”theSIMDIaneS ['vivviv'vvvvi'vv{ slements
executing the

32 CUDA threads

10Ssa20.4d QINIS papeadyl-i N

[SIMD thread1 instruction 42

SIMD thread. S E AR EEED LR
A Within a SIMD SIMDthrPadSmeructaon q5 |
processor’ Why 'EEEEE v.v.v.v 'EEEEEE

scheduling this

| SIMD thread 8 nnstructuon 12

‘‘‘‘‘‘‘

f?
Way EBEEEEEEEEEEEEEEEEE
I Hide memory latency
I Wait for pipeline stalls

T Wait for execution

latency \ SlMDAthread1 instruction 43 |
Y vvvivvvvvvvvvivv\|43

SIMD thread 3 mstruct:on 96

EEEEEEEEREEEEEEEE,

Outline

A Introduction

A Execution model

A Multi-threaded SIMD processor
A Fermi Architecture

A SIMT ISA: PTX

A Memory Hierarchy

A Summary on GPGPU

Fermi GPU Architecture- Floor plan

40-bit address space
40 nm TSMC
3x10°T

> Nehalem-Ex(2.3)
1.x GHz

16 multithreaded
SIMD processors

Thread Block
Distributor

This GPU is a
multiprocessor
composed of
multithreaded
SIMD processors

L1/SMEM

scheduler

SM

up to 8
thread
blocks

64-bits

31N10911Y2JVY 1WiaH

