Handout 5 SIMD: Vector, SIMD



Introduction

 Instruction level parallelism

—Superscalar + OO0
 Thread level parallelism

—Simultaneous multi-threading

—Multi-core multi-threading
« Data level parallelism

—-SIMD



Introduction

« SIMD architectures can exploit significant data-
level parallelism for:

—matrix-oriented scientific computing

—media-oriented image and sound
processors

« SIMD is more energy efficient than MIMD

—Only needs to fetch one instruction per
data operation

—Makes SIMD attractive for personal
mobile devices

« SIMD allows programmer to continue to think
sequentially. One instruction stream



Architecture exploring SIMD
Parallelism

 Vector architectures
« SIMD extensions
« Graphics Processor Units (GPUSs)

* For x86 processors:

—Expect two additional cores per chip
per year

—SIMD width to double every four years

—Potential speedup from SIMD to be
twice that from MIMD!



Vector Architectures

« Basic idea:

—Read sets of data elements into “vector
registers”

—QOperate on those registers
—Disperse the results back into memory

* Registers are controlled by compiler
—Used to hide memory latency

—Leverage memory bandwidth
» Vector load/store are deeply pipelined



V-MIPS

« Example architecture: VMIPS
— Loosely based on Cray-1 Main mermory

— Vector registers

» Each register holds a 64-element, 64
bits/element vector

» Register file has 16 read ports and 8
write ports

— Vector functional units

» Fully pipelined

» Data and control hazards are detected rvef;ci:;rs
— Vector load-store unit

» Fully pipelined

» One word per clock cycle after initial
laten Ccy Scalar

. registers
— Scalar registers
» 32 general-purpose registers

| FPadd/subtract !—>
| FPmultiply r

FP divide

=™ Integer i—*

Logical

Vector
load/store

Address to load/store

» 32 floating-point registers



V-MIPS [SA

 \ector instructions 1

« A vector V has 64 elements
* Fis scalar

ADDVV.D V1i,v2,V3 Add elements of V2 and V3, then put each result in V1.
ADDVS.D Vi,V2,F0 Add FO to each element of V2, then put each result in V1.
SUBVV.D Vi,ve,v3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,F0,V2 Subtract elements of V2 from FO, then put each result in V1.
MULVV.D V1,v2,V3 Multiply elements of V2 and V3, then put each result in V1.
MULVS.D V1,V2,F0 Multiply each element of V2 by FO, then put each result in V1.
DIVVV.D Vi,v2,V3 Divide elements of V2 by V3, then put each result in V1.
DIVVS.D Vi,V2,F0 Divide elements of V2 by FO0, then put each result in V1.
DIVSV.D V1,F0,V2 Divide FO by elements of V2, then put each result in V1.




V-MIPS

 \ector instructions 2

LV V1,RI1 Load vector register V1 from memory starting at address R1. I

SV R1,VI1 Store vector register V1 into memory starting at address R1. l

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e.. R1 + i x R2).

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2).

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1 + V2(1) (i.e.. V2 is an index).

CVI V1,R1 Create an index vector by storing the values 0, 1xR1, 2xR1,...,63 xR1 into V1.

S--VV.D Vi,V2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, puta

S--VS.D V1,FO | in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but usinga
scalar value as one operand.

POP R1,VM Count the s in vector-mask register VM and store count in R1.

CVM Set the vector-mask register to all Is. N

MTC1 VLR,R1 Move contents of R1 to vector-length register VL. .

MFC1 R1,VLR Move the contents of vector-length register VL to R1. |

MVTM VM, FO Move contents of FO to vector-mask register VM. .

MVFM FO,VM Move contents of vector-mask register YM to FO. ,‘if




VMIPS Instructions

« ADDVV.D: add two vectors
« ADDVS.D: add vector to a scalar

« LV/SV: vector load and vector store from address

 Example:
L.D FO,a
LV V1,Rx
MULVS.D V2,V1,FO
LV V3,Ry
ADDVV V4 V2V3
SV Ry,V4

- load scalar a
; load vector X
; vector-scalar multiply
; load vector Y

- store the result

* Requires 6 instructions vs. almost 600 for MIPS



Vector Execution Time

« Execution time depends on three factors:
— Length of operand vectors
— Structural hazards
— Data dependencies

 VMIPS functional units consume one element per clock cycle
— Assume one lane
— Execution time is approximately the vector length

- Convoy

— A set of vector instructions that could potentially execute
together- called a convoy
» Instructions in a convoy contain no structural hazards

» By counting the number of convoys to estimate the performance



Chimes

« Sequences with read-after-write dependency hazards can
be in the same convoy via chaining

« Chaining

— Allows a vector operation to start as soon as the
Individual elements of its vector source operand
become available

— The results from the first functional unit in the chain are
forwarded to the second functional unit.

« Chime
— Unit of time to execute one convey
— m convoys executes in m chimes

— For vector length of n, requires m x n clock cycles

» This however has ignored certain overheads within the vector
execution, such as due to length difference.



Vector problem:

Y=axX+Y

;vector-scalar multiply

LV V1,Rx ;load vector X

MULVS.D V2,V1,FO

LV V3,Ry ;load vector Y

ADDVV.D V4. Vv2V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D // by chaining

2 LV ADDVV.D /[ Lv V3 on convoys 2 due to Struc. Haz.
3 SV

3 chimes, 2 FP ops per result, cycles per FLOP (3/2) = 1.5
(ignore pipeline start-up time) (192/128 = 1.5)
For 64 element vectors, requires 64 x 3 =192 clock cycles



Challenges

« Start up time: pipelined functional unit
— Latency of vector functional unit

— Assume the same as Cray-1
» Floating-point add => 6 clock cycles
» Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
» Vector load => 12 clock cycles
 Improvements:
— > 1 element per clock cycle

— Non-64 wide vectors (vector lengths are not the same as the
vector registers)

— |IF statements in vector code (conditional statement)

— Memory system optimizations to support vector processors
— Multiple dimensional matrices

— Sparse matrices

— Programming a vector computer



Multiple pipelines for a vector ADD

C=A+B

(a) single pipeline

(b) four pipelines
Element n of vector
register A is “hardwired”

to element n of vector
register B

— Allows for multiple
hardware lanes

— Elements of A and B
are interleaved across
the four pipelines

1 element / cycle

Throughput :
4 elements / cycle

EN R ETEY
EN R EIRY
AT B
N ERS
B EEY
A4 B[4
YEN R ETEY
alz)| |12
RN I ETRY

G[7]

¢
Eiemefit group




Simply spread the elements of a
vector reqgister across the lanes

A four lane

First lane holds
element O for all vector

registers

A 64-cycle Chime -> 16

cycles

Lane 0 Lane 1 Lane 2 Lane 3
FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3
| A I A i i A '
] Y \ i |
Vector Vectar Vector Vector
registers: reqisters: registers: registers:
elements alements elements elements
0,4,8, ... 1,59,... 2 6,10, ... 3711, ...

[

FP mul.
pipe 0

[ |

FP mul.
pipe 1

L |

L ]

FP mul.
pipe 2

i

A

3

Y

FFP mul.
pipe 3

Vector load-stare unit




Create a Vector Length Register

« Vector length is often unknown at compile time

« Use Vector Length Register (VLR) to control the length of
any vector operation, VLR length =< maximum vector

register length (MVL), (MVL depends on your hardware
design)

« If vector size of an operation <MVL, just use length in
VLR to control vector operation

—Specific:
» Move vector length to VLR

» VLR controls the corresponding vector
functional unit



Create a Vector Length Register-2

 What if Vector Length >= MVL

« Use acode generation scheme called strip mining for
vectors over the maximum length:

— Run those of which VL is < MVL
— Then Run any number of iterations that are a multiple

of MVL.
< Those = MVL >
Value of 0 1 2 3 ‘s o AMVL
Those < MVL ‘f ‘ ‘ ‘ ‘ ‘ ‘ I
Range of | 0 i (4 WMVL) (m+ 2 MVLY ... e (n-MVL)

(m-1) (m-1)  (m-1)  (m-1) (n-1)
+MVL +2xMVL +3=MVL

Vector of any length

<€ >

Like loop unrolling



Handle IF: Vector Mask Registers

Mask register provides conditional

* COnSider: execution of each element operation
fOl’ (I — O, | < 64, |:|+1) In a vector instruction .
. . In run time, enable the mask register when needed.
|f (X[l] = O) 1: execute, 0: disable
X[ = X[ = Y[l
« Use vector mask register to “disable” elements:
LV V1,Rx ;load vector Xinto V1
LV V2,Ry ‘load vector Y Compiler puts
_ mask instruction
L.D FO,#0 ;load FP zero into FO /
SNEVS.D V1,FO :sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1V1lV2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

e GFLOPS rate decreases!



Vector Load/Store

« Start-up time of a load: the time to get the first
word from memory into aregister

—Use cache to reduce start-up time

—Then best one word per cycle
afterwards

« Memory system must be designed to support
high bandwidth for vector loads and stores

« Spread accesses across multiple banks
— Control bank addresses independently
— Load or store non sequential words

— Support multiple vector processors sharing the same
memory



Need a large number of independent
memory banks for vector load/store

 Example: Allow all processors to run at full
memory bandwidth

— 32 processors, each generating 4 loads and 2 stores/cycle

— Processor cycle time is 2.167 ns, SRAM cycle timeis 15 ns
— How many memory banks are needed?

32 x 6 =192 memory references/CPU cycle
Each SRAM bank is busy for 15/2.167 = 7 CPU clock cycles
during 7 CPU cycles, 192 x 7 = 1344 (memory ref) memory banks



Stride

 Example: row major order (one entry = 8 bytes)
* Load

0 1 2 .. N-1 ERER

0 > A[0,0]

for (i = 0; i < 100; i=i+1) ! Akl

for (j = 0; j < 100; j=j+1){ = ﬁ

I 3 A[ON-1) .

Ali][j] = 0.0; ALLO)

for (k = 0; k < 100; k=k+1) | AL
Al = AliGT + BIi][K] * DIK][j]; . ‘ |

} M1 AQM-1N-1]
<BEOE> <HRRUE>

For D, since it is k changes first,
D[00] then D[1,0], so it has a stride of 800 bytes (8 bytes x 100)

For B, B[0,0], then B[0,1], so the stride is only 8 bytes

Need a vector load with stride here: LVWS



V-MIPS

Vector instructions 2

LV V1,RI1 Load vector register V1 from memory starting at address R1.

SV R1,VI1 Store vector register V1 into memory starting at address R1.

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e.. R1 + i x R2). I

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2). I

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1 + V2(1) (i.e.. V2 is an index).

CVI V1,R1 Create an index vector by storing the values 0, 1xR1, 2xR1,...,63 xR1 into V1.

S--VV.D Vi,V2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, puta

S--VS.D V1,FO | in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but usinga
scalar value as one operand.

POP R1,VM Count the s in vector-mask register VM and store count in R1.

CVM Set the vector-mask register to all Is. N

MTC1 VLR,R1 Move contents of R1 to vector-length register VL. .

MFC1 R1,VLR Move the contents of vector-length register VL to R1. |

MVTM VM, FO Move contents of FO to vector-mask register VM. .

MVFM FO,VM Move contents of vector-mask register YM to FO.




Representation of sparse matrices

Compressed representation (zeros not included)
Normal representation (zeros are included)

Gather operation

— Using an index vector and fetching the vector whose
elements are at the addresses given by adding a base
to the offsets given in the index vector —This is dense
form in the vector register

— LVI (load vector indexed or gather)

Scatter store

— Using the same index vector, the sparse vector can be
stored in expanded form by a scatter store

— SVI (store vector indexed or scatter)



V-MIPS

Vector instructions 2

LV V1,RI1 Load vector register V1 from memory starting at address R1.

SV R1,VI1 Store vector register V1 into memory starting at address R1.

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e.. R1 + i x R2).

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2).

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index). I
SVI (R1+V2),V1 Store V1 to vector whose elements are at R1 + V2(1) (i.e.. V2 is an index). I
CVI V1,R1 Create an index vector by storing the values 0, 1xR1, 2xR1,...,63 xR1 into V1.

S--VV.D V1, V2
S--VS.D V1,FO

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, puta
| in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but usinga
scalar value as one operand.

POP R1,VM Count the s in vector-mask register VM and store count in R1.

CVM Set the vector-mask register to all Is. 4
MTC1 VLR,R1 Move contents of R1 to vector-length register VL. .
MFC1 R1,VLR Move the contents of vector-length register VL to R1. r |
MVTM VM, FO Move contents of FO to vector-mask register VM. .
MVFM FO,VM Move contents of vector-mask register YM to FO.




Scatter-Gather

« Consider:
for (I =0; 1 <n; I=i+1)
A[K[I]] = A[K[I]] + C[M[I]], /Il K[i] and M[i] are index vectors of sizen

To do a sparse vector sum of array A and C
index vectors K and M designate the non-zero elements of A and C

—
base | 1 6 0 0 5

K 3 K is an array (vector)
of offsets : (i=0) O, (i=1) 3, ....




Scatter-Gather

- Consider:
for (I=0;1<n; i=i+1)
A[KI[i]] = A[KTi]] + C[M[1]]; # K[i] and M[i] are index vectors of same size n

 Use index vector: Ra, Rc, Rk Rm contains the starting
addresses of the vectors:

* the inner loop

LV Vk, Rk ‘load K, vector Vk now has the offset vector
LVI Va, (Ra+Vk) ;load A[K][]], gather, base Ra

LV Vm, Rm ;load M, Vm is the offset vector

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va  ;store A[K]]], scatter



Programming Vector Architectures

« Compilers can provide feedback to programmers
« Programmers can provide hints to compiler

Operations executed Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 04.5% 1.00
FLO52 91.5% B8. 7% N/A
ARC3D a91.1% 092.0% 1.01
SPEC7T7 Q0 3% Q0. 4% 1.07

MDG 87.7% 04.2% 1.49

TREFD 69 _B% 73. 7% 1.67
DYFESM 68.8% 65.6% N/A

ADM 42.9% 59.6% 3.60
OCEAN 42 8% 01.2% 3.02
TRACK 14.4% 54.6% 2.52

SPICE 11.5% | ayel 79.9% 4.06

QCD 4.2% of vectorization 75.1% 2.15  Cray- Y-MP 1991

Without hint from programmers



SIMD Extensions

 Media applications operate on data types
narrower than the native word size

—Disconnect carry chains to “partition”
adder is of little overheads

256-bit-wide operations

Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four D
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or tour64‘_
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or fOUre:
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or fi

Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or tWo pg.blt




SIMD Extensions v.s. Vector

 Number of data operands encoded into op code,
fixed operands in SIMD

 While in vector CPU, it is variable and specified
In vector length register

* No sophisticated addressing modes (strided,
scatter-gather) in SIMD

« Often no mask registers in SIMD (means no
support of conditional execution)

* Vector is much more complicated than SIMD ext.



SIMD Implementations

* Implementations:
— Intel MMX (1996): 64-bit FP registers
» Eight 8-bit integer ops or four 16-bit integer ops
— Streaming SIMD Extensions (SSE) (1999): 128-bit reg
» Sixteen 8-bit ops, eight 16-bit integer ops
» Four 32-bit integer/fp ops or two 64-bit integer/fp
ops
— Advanced Vector Extensions (2010): 256-bit reg
» Four 64-bit integer/fp ops
— Intel® Advanced Vector Extensions 512 / Intel® AVX-
512 (2013): 512-bit reqg

» Programs can pack eight double precision or sixteen single
precision floating-point numbers, or eight 64-bit integers, or
sixteen 32-bit integers within the 512-bit vectors.

— Operands must be consecutive and aligned memory
locations, within page boundary

Future => 1024 bits reg



Example SIMD Code, 256-bit reg
4D: operate on 4 double-precision operands

 Example DXPY:

L.D FO,a ;load scalar a
MOV F1, FO ;,copy ainto F1 for SIMD MUL
MOV F2, FO ;,copy ainto F2 for SIMD MUL
MOV F3, FO ;copy ainto F3 for SIMD MUL
DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]
MUL.4D F4,F4,FO0 axX[i],axX[i+1],axX[i+2],axX[i+3]
L.4D F8,0[Ry] load Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8,F8,F4 ;axX[i]+Y[i], ..., axX[i+3]+Y[i+3]
S.4D O[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
DADDIU RX,RX,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound

BNEZR20,Loop ;check if done



Roofline Performance Model

« Basic idea:

— Plot peak floating-point throughput as a
function of arithmetic intensity

—Ties together floating-point performance and
memory performance for a target machine

« Arithmetic intensity
— Floating-point operations per byte read:

om Oflog(N)) OM)
- _ T A . T
' ™
< Arithmetic Intensity
[ ] ] L d . ]
Spectral
e Dence [ty
(FFTs) (Particle
(SpMY) (BLAS3) methods)
Structured | Structured
grids grids

(Stencils, (Lattice

PDEs)  methods) High Arithmetic Intensity



Examples

« Attainable GFLOPs/sec Min = (Peak Memory BW
x Arithmetic Intensity, Peak Floating Point Perf.)

FLOPs/byte
R NEC S$X-9 CPU
056
2 128 102.4 GFLOP/s
a |
Q 64 ‘bﬁ{
Y NS
(4] ;\h Q\ﬁ@
g 82 /@
g 16
2 /
2
g 4

1/8 1/4 12 1 2 4
Arithmetic intensity

Hit the roof by
by memory BW

8

16

Double precision GLFOPF/sec

—
= W @ M
B om » M B @

2

3.2 GHz, with eight-way replicated vector pipes

Intel Core i7 920
A (Nehalem)

42.66 GFLOP/s]

T

>

1/8 1/4 1/2 A 2 4 8 16
Arithmetic intensity

)
FRD
Qa‘?‘ @@
s
>

Hit the roof by
computations



Summary

* Vector processor

—More flexible but complicated in
context switching, vector ISA, memory
systems

« SIMD extensions

—Less expensive, fixed vector size,
compatibility issues grow as more
registers are added



