
Handout 5 SIMD: Vector, SIMD



Introduction

• Instruction level parallelism

–Superscalar + OOO

• Thread level parallelism

–Simultaneous multi-threading 

–Multi-core multi-threading 

• Data level parallelism

–SIMD 
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Introduction

• SIMD architectures can exploit significant data-
level parallelism for:

–matrix-oriented scientific computing

–media-oriented image and sound 
processors

• SIMD is more energy efficient than MIMD

–Only needs to fetch one instruction per 
data operation

–Makes SIMD attractive for personal 
mobile devices

• SIMD allows programmer to continue to think 
sequentially. One instruction stream 



Architecture exploring SIMD 
Parallelism 

• Vector architectures

• SIMD extensions

• Graphics Processor Units (GPUs)

• For x86 processors:

–Expect two additional cores per chip 
per year

–SIMD width to double every four years

–Potential speedup from SIMD to be 
twice that from MIMD!



Vector Architectures

• Basic idea:

–Read sets of data elements into “vector 
registers”

–Operate on those registers

–Disperse the results back into memory

• Registers are controlled by compiler

–Used to hide memory latency

–Leverage memory bandwidth

» Vector load/store are deeply pipelined



V-MIPS
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Address to load/store

• Example architecture:  VMIPS

– Loosely based on Cray-1

– Vector registers

» Each register holds a 64-element, 64 
bits/element vector

» Register file has 16 read ports and 8 
write ports

– Vector functional units

» Fully pipelined

» Data and control hazards are detected

– Vector load-store unit

» Fully pipelined

» One word per clock cycle after initial 
latency

– Scalar registers

» 32 general-purpose registers

» 32 floating-point registers



V-MIPS ISA

• Vector instructions 1

• A vector V has 64 elements

• F is scalar



V-MIPS

• Vector instructions 2



VMIPS Instructions

• ADDVV.D:  add two vectors

• ADDVS.D:  add vector to a scalar

• LV/SV:  vector load and vector store from address

• Example:  

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV V4,V2,V3 ; add

SV Ry,V4 ; store the result

• Requires 6 instructions vs. almost 600 for MIPS



Vector Execution Time

• Execution time depends on three factors:

– Length of operand vectors

– Structural hazards

– Data dependencies

• VMIPS functional units consume one element per clock cycle

– Assume one lane 

– Execution time is approximately the vector length

• Convoy

– A set of vector instructions that could potentially execute 
together- called a convoy 

» Instructions in a convoy contain no structural hazards

» By counting the number of convoys to estimate the performance 



Chimes

• Sequences with read-after-write dependency hazards can 
be in the same convoy via chaining 

• Chaining

– Allows a vector operation to start as soon as the 
individual elements of its vector source operand 
become available

– The results from the first functional unit in the chain are 
forwarded to the second functional unit.

• Chime

– Unit of time to execute one convey

– m convoys executes in m chimes

– For vector length of n, requires m x n clock cycles

» This however has ignored certain overheads within the vector 
execution, such as due to length difference.



Vector problem:  Y = a x X + Y

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D   // by chaining 

2 LV ADDVV.D   // LV V3 on convoys 2 due to Struc. Haz.

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP (3/2) = 1.5

(ignore pipeline start-up time) (192/128 = 1.5)

For 64 element vectors, requires 64 x 3 = 192 clock cycles



Challenges

• Start up time: pipelined functional unit

– Latency of vector functional unit

– Assume the same as Cray-1
» Floating-point add => 6 clock cycles

» Floating-point multiply => 7 clock cycles

» Floating-point divide => 20 clock cycles

» Vector load => 12 clock cycles

• Improvements:
– > 1 element per clock cycle

– Non-64 wide vectors (vector lengths are not the same as the 
vector registers)

– IF statements in vector code (conditional statement)

– Memory system optimizations to support vector processors

– Multiple dimensional matrices

– Sparse matrices

– Programming a vector computer



Multiple pipelines for a vector ADD

• C = A+ B
• (a) single pipeline

• (b) four pipelines

• Element n of vector 
register A is “hardwired” 
to element n of vector 
register B

– Allows for multiple 
hardware lanes

– Elements of A and B 
are interleaved across 
the four pipelines

1 element / cycle

Throughput :

4 elements / cycle



Simply spread the elements of a 
vector register across the lanes

• A four lane 

• First lane holds  
element 0 for all vector 
registers

• A 64-cycle Chime -> 16 
cycles
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Create a Vector Length Register

• Vector length is often unknown at compile time

• Use Vector Length Register (VLR) to control the length of 
any vector operation, VLR length =< maximum vector 
register length (MVL), (MVL depends on your hardware 
design)

• If vector size of an operation  < MVL,  just use length in 
VLR to control vector operation

–Specific: 

» Move vector length to VLR 

» VLR controls the corresponding vector 
functional unit



Create a Vector Length Register-2

• What if Vector Length  >= MVL

• Use  a code generation scheme called strip mining for 
vectors over the maximum length:

– Run those of which VL is < MVL

– Then Run any number of iterations that are a multiple 
of MVL.

Those  <  MVL

Those = MVL

Vector of any length 

Like loop unrolling



Handle IF: Vector Mask Registers

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• Use vector mask register to “disable” elements:
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

• GFLOPS rate decreases!

Mask register provides conditional

execution of each element operation 

in a vector instruction .

In run time, enable the mask register when needed.

1: execute, 0: disable 

Compiler puts 

mask instruction 



Vector Load/Store

• Start-up time of a load: the time to get the first 
word from memory into a register

–Use cache to reduce start-up time

–Then best one word per cycle 
afterwards 

• Memory system must be designed to support 
high bandwidth for vector loads and stores

• Spread accesses across multiple banks

– Control bank addresses independently

– Load or store non sequential words

– Support multiple vector processors sharing the same 
memory



Need a large number of independent 
memory banks for vector load/store

• Example: Allow all processors to run at full 
memory bandwidth 
– 32 processors, each generating 4 loads and 2 stores/cycle

– Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

– How many memory banks are needed?

32 x 6 = 192 memory references/CPU cycle

Each SRAM bank is busy for 15/2.167 = 7 CPU clock cycles

during 7 CPU cycles, 192 x 7 = 1344 (memory ref) memory banks
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Stride

• Example: row major order (one entry = 8 bytes)

• Load
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for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

For D, since it is k changes first,

D[00] then D[1,0], so it has a stride of 800 bytes (8 bytes x 100)

For B, B[0,0], then B[0,1], so the stride is only 8  bytes

Need a vector load with stride here: LVWS



V-MIPS

• Vector instructions 2



Representation of sparse matrices

• Compressed representation (zeros not included)

• Normal representation (zeros are included)

• Gather operation

– Using an index vector and fetching the vector whose 
elements are at the addresses given by adding a base 
to the offsets given in the index vector –This is dense 
form in the vector register

– LVI (load vector indexed or gather)

• Scatter store

– Using the same index vector, the sparse vector can be 
stored in expanded form by a scatter store 

– SVI (store vector indexed or scatter)
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V-MIPS

• Vector instructions 2



Scatter-Gather

• Consider:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]]; // K[i] and M[i] are index vectors of size n

To do a sparse vector sum of array A and C

index vectors K and M designate the non-zero elements of A and C

K

1

31

56

K is an array (vector)

of offsets : (i=0) 0, (i=1) 3, ….

base 0 0



Scatter-Gather

• Consider:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]]; // K[i] and M[i] are index vectors of same size n

• Use index vector: Ra, Rc, Rk Rm contains the starting 
addresses of the vectors: 

• the inner loop

LV Vk, Rk ;load K, vector Vk now has the offset vector

LVI Va, (Ra+Vk) ;load A[K[]], gather, base Ra

LV Vm, Rm ;load M, Vm is the offset vector

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]], scatter



Programming Vector Architectures

• Compilers can provide feedback to programmers

• Programmers can provide hints to compiler

Cray- Y-MP 1991

Without hint from programmers

Level

of vectorization



SIMD Extensions

• Media applications operate on data types 
narrower than the native word size

–Disconnect carry chains to “partition” 
adder is of little overheads

256-bit-wide operations



SIMD Extensions v.s. Vector

• Number of data operands encoded into op code, 
fixed operands in SIMD 

• While in vector CPU, it is variable and specified 
in vector length register 

• No sophisticated addressing modes (strided, 
scatter-gather) in SIMD

• Often no mask registers in SIMD  (means no 
support of conditional execution)

• Vector is much more complicated than SIMD ext.



SIMD Implementations

• Implementations:

– Intel MMX (1996): 64-bit FP registers

» Eight 8-bit integer ops or four 16-bit integer ops

– Streaming SIMD Extensions (SSE) (1999): 128-bit reg

» Sixteen 8-bit ops, eight 16-bit integer ops

» Four 32-bit integer/fp ops or two 64-bit integer/fp
ops

– Advanced Vector Extensions (2010): 256-bit reg

» Four 64-bit integer/fp ops

– Intel®  Advanced Vector Extensions 512 / Intel®  AVX-
512 (2013): 512-bit reg

» Programs can pack eight double precision or sixteen single 
precision floating-point numbers, or eight 64-bit integers, or 
sixteen 32-bit integers within the 512-bit vectors.

– Operands must be consecutive and aligned memory 
locations, within  page boundary 

Future => 1024 bits reg



Example SIMD Code, 256-bit reg
4D:  operate on 4 double-precision operands 

• Example DXPY:
L.D F0,a ;load scalar a

MOV F1, F0 ;copy a into F1 for SIMD MUL

MOV F2, F0 ;copy a into F2 for SIMD MUL

MOV F3, F0 ;copy a into F3 for SIMD MUL

DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]

DADDIU Rx,Rx,#32 ;increment index to X

DADDIU Ry,Ry,#32 ;increment index to Y

DSUBU R20,R4,Rx ;compute bound

BNEZR20,Loop ;check if done



Roofline Performance Model

• Basic idea:

–Plot peak floating-point throughput as a 
function of arithmetic intensity

– Ties together floating-point performance and 
memory performance for a target machine

• Arithmetic intensity

– Floating-point operations per byte read: 
FLOPs/byte

High Arithmetic Intensity



Examples

• Attainable GFLOPs/sec Min = (Peak Memory BW 
× Arithmetic Intensity, Peak Floating Point Perf.)

FLOPs/byte

Hit the roof by 

computations

Hit the roof by 

by memory BW

3.2 GHz, with eight-way replicated vector pipes



Summary

• Vector processor 

–More flexible but complicated  in 
context switching, vector ISA, memory 
systems

• SIMD extensions

–Less expensive, fixed vector size, 
compatibility issues grow as more 
registers are added
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