Handout 4 — Memory Hierarchy

Outline

« Memory hierarchy

 Locality

« Cache design

 Virtual address spaces

« Page table layout

e TLB design options (MMU Sub-system)
e Conclusion

2017/10/11

Since 1980, CPU has outpaced DRAM ...

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories

Performance between CPU and DRAM.
(1/latency) Create a “memory hierarchy”. CPU
4000 cru 60% per yr
2X1n 1.5yrs
700 \
Gap grew 50% per
year
A0 DRAM
9% per yr
,,,,,,,,,,,,,,,,, D,RAM 2X1n 10 yrs
A9 A\9 20
%0 o0 o0

Year

But in 1977: DRAM faster than
MICroprocessors

iAo
£502 PROCESSOR'S
@y CLOLK SHOWING

wHEN AHD BY WwHES
MEMDAY rh SLCESHED

X

! b'lﬁl—.'l

[- 1

F g

WIDED BLLESE

FRDLCE LSO

& KD MEMDMT ACCESS AND
REFRESH PROGRAM
EXECHTION

WIDED GENEMARON / WEMERY ¢ FHOCE 5908 TIMING ARD SDMTEES

@, maw an

'

T

COLUMN SELECT

7

‘

i

FrASL

COLOR
GrMEnATOm

PEOGRANBARLE d AMIFTLHE
=l WEMoRY 1]
= [ak 10 48K BYTESI '
f
> ar CHARACTER
' s : =Y SEmALITER
AL BGR Y q
®nawW AMD COLUEN BATA i GEMERATOR
ADDAESSES ol | {
; SE AL
) E. WEMOAT | ?-'TI;I-I:.I'JL VIDED
— — — = Gt ST | iy fCRiAn b
mocesson (' BIBIRCETIONAL STSTEM 808 gt e e semiren [ORATS!
W
1 B B
THMUE s BULTFILENEM
: VIBLO MODE CONTROL :gmﬁn
1 VIOED MK
il Stephen
Steve Wozniak

Jobs

Apple founders!

RAM Apple I

Complement| System
4k 5 1,298.00
48K 2638.00

ifirrirrrerrreerTe

Apple][(1977)

CPU: 1000 ns
DRAM: 400 ns

(AEREEEERRRNRRRNED

Exploiting Memory Hierarchy

 Users want large and fast memories!

Flip-flops
SRAM
CPU
« DRAM I
Disk
 Try and give it to them anyway /.. ereasing disance -

— build a memory hierarchy access fime
Levels in the / Level 2 \
memory hierarchy/ \
/ Level n \

[
»

Size of the memory at each level

Levels of the Memory Hierarchy

2017/10/11

Registers

4

' Instr. Operands

v

Caches

4

" Blocks

\4

Memory

I Pages

\4

Disk

Files

Staging
Xfer Unit

prog./compiler

1-8 bytes

cache cntl
8-128 bytes

(0))

512-4K-16K bytes

256MB

user/operator

Mbytes

Upper Level

+ faster

v

Larger

Lower Level

Memory Hierarchy: Apple iMac G5

Managed Managed Managed by OS,
by compiler by hardware hardware,
\ // \\ appliciation
07 Reg L1 Inst @ L1 Data DRAM Disk
Size 1K | 64K | 32K | 512K | 256M | 80G)
Latency |4 3, 3, 1, 88, | 107, @ iMac G5
Cycles,

T 0.6ns 1.9ns 1.9ns 6.9 ns 55ns 12ms 1.6 GHz

Goal: lllusion of large, fast, cheap memory

Let programs address a memory space that
scales to the disk size, at a speed that is
usually as fast as register access

IMac’s PowerPC 970: All caches on-chip
L1 (64K |nStrUCtiOn)l |

(o R

U]

= E‘;—:} H
r- i

The Principle of Locality

« The Principle of Locality:
— Program access arelatively small portion of the address space at
any instant of time.
 Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

« Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

2017/10/11 9

Hits vs. Misses

« Misses: compulsory misses (cold miss), capacity
misses, conflict misses.

e Read hits

— this is what we want!

e Read misses

— stall the CPU, fetch block from memory, deliver to cache,
restart

 Write hits:

— can replace data in cache and memory (write-through)
— write the data only into the cache (write-back the cache later)

e Write misses:

— read the entire block into the cache, then write the word (write
allocate)

— or just write around the cache

Write policy

o Write hit
— Write-through (WT)
— Write-back (WB)

e Write miss

— Write allocate (or write allocation)
» Read the missing block into cache first
» then WT or WB

— Write around
» Write the data into the next level memory

Example: A Direct Mapped Cache

 Taking advantage of spatial locality: longer line size

Address (showing bit positions)
31:++1615- - -4%2 1:0 Line size = 16 byteS (24)

Hit o el ik il Data
Index Block offset
16 bits 128 bits
V Tag Data

entries

N-way set associative

 Tag::index::line size
N direct mapped caches in parallel
 An index gets N blocks

Way 0 Way 1 Way 2 Way 3

index 0 Set 0

I I I I
I I I I
| | | | Set 199
I I I I
I I I I

Fully set associative

e Tag::line size
« 256 comparators for tag matching

Tag

memory

255

Which block should be replaced on a miss?

e Easy for Direct Mapped

e Set Associative or Fully Associative:
— Random
— LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 4.7% 53% 4.4% 5.0%
64KB 1.9% 2.0% 15% 1.7% 14% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

2017/10/11 15

What happens on a write?
Write-Through Write-Back

Data written to cache Write data only to the

. blOCk Cache
Policy _
also written to lower- Copy-back when
level memory replacing a dirty copy
Debug Easy Hard
Do read mi_sses No Yes
produce writes?
Do repeated writes
make it to lower Yes No

level?

Additional option -- let writes to an un-cached address
allocate a new cache line (“write-allocate”).

Write Buffers for Write-Through Caches

- —-| Cache — Lower
Processor Level

Memory

rite Buffer,

Holds data awaiting write-through to
lower level memory

Q. Why a write buffer ? A. So CPU doesn’t stall

Q. Why a buffer, why A. Bursts of writes are
not just oneregister ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue nextread, or send read 15t
for write buffer? after check write buffers.

Advanced issue in write buffer

A buffer for

— Write through data into the next level memory or
— for the replaced block due to write back
— Read-bypassing write buffer

— Exception handling: if write buffer still has data and an

exception occurs.
— Depth of write buffer

Cache

Addr

Data O

Write buffer : 4 entries

Bus Master: Memory bus

Hit time and Miss penalty

. data appears in some block in the upper level
(example: Block X)
. the fraction of memory access found in the upper level
. Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

. data needs to be retrieved from a block in the
lower level (Block Y)
=1 - (Hit Rate)
. Time to replace a block in the upper level +
Time to deliver the block the processor

e Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor R BIk Y
2017/10/11 . 19

Memory System Performance

 Hit rate: fraction found iIn that level

— So high that usually talk about Miss rate

— Miss rate fallacy: as MIPS to CPU performance,
MIiss rate to average memory access time in memory

 Average memory-access time
= Hit time + Miss rate x Miss penalty

 Miss penalty: cache line filling latency
— access time: time to lower level
= f(latency to lower level)

— transfer time: time to transfer block
=f(BW between upper & lower levels)

2017/10/11

20

5 Basic Cache Optimizations

Reducing Miss Rate

Larger Block size (compulsory misses)
Larger Cache size (capacity misses)
Higher Associativity (conflict misses)

W N =

« Reducing Miss Penalty
4. Multilevel Caches

« Reducing hit time

5. Giving Reads Priority over Writes
E.g., Read complete before earlier writes in write buffer

2017/10/11

21

Line size and locality

Increasing the block size tends to decrease miss rate:

40%
35% -\

30%

25% \-\ /-
20% —

15% 7 \

10% o —
5% - 0\\:\;

Miss rate

-
I D — —2 3
4 16 64 256
Block size (bytes) m 1 KBLJ
® 8 KB
® 16 KB[J
¢ 64 KB
¥ 256 KB

Use split caches because there is more spatial locality
In code:

QOutline

 Review

« Redo Geomtric Mean, Standard Deviation
« Memory hierarchy

 Locality

« Cache design

 Virtual address spaces

« Page table layout

« TLB design options

e« Conclusion

2017/10/11 23

he Limits of Physical Addressing

“Physical-addresses”of-memorytocations

AO-A31 AO-A31

CPU Memory

DO0-D31 DO0-D31

Data I

All programs share one address space:
The physical address space

Machine language programs must be
aware of the machine organization

No way to prevent a program from
accessing any machine resource

Solution: Add a Layer of Indirection

“Virtual Addresses” “Physical |
Addresses” L
ARO-A3T Virtorat PhysTcat ARO-A3t
CPU Address Memory
Translation
DO-D31 DO-D31
Data I

User programs run in an standardized
virtual address space

Address Translation hardware
managed by the operating system (OS)
maps virtual address to physical memory

Hardware supports “modern” OS features:
Protection, Translation, Sharing

Three Advantages of Virtual Memory

— Program can be given consistent view of memory, even though physical
memory is scrambled

— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must be in
physical memory.

— Contiguous structures (like stacks) use only as much physical memory
as necessary yet still grow later.

— Different threads (or processes) protected from each other.
— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).
— Kernel data protected from User programs
— Very important for protection from malicious programs

— Can map same physical page to multiple users
(“Shared memory”)

2017/10/11 26

Detalls of Page Table

Page Table Physical
Memory Space

Virtual Address

12
V page no. offset
Page Table
Page Table
Base Reg] TN
index LY Rights! PA
virtual In;Oe
address ltoabgle table located v v
in physical |p page no. offset
memory 12

2017/10/11

Physical Address

 Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

e Virtual memory => treat memory ~ cache for disk

27

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address
space has 1M entries

Each process needs its own address space!

Two-level Page Tables

32 bit virtual address

31 22 21 12 11 0
Plindex | P2index “Page Offset

Top-level table wired in main memory

Subset of 1024 second-level tables in

main memory; rest are on disk or
unallocated

Virtual Memory System

« See the main memory as the cache of the disk
storage system

e Features of this cache

— Write back cache
— Fully set associative

2017/10/11

29

TLB Design Concepts

MIPS Address Translation: How does it work?

“Virtual Addresses” “Physical
Addresses’
A0-A31 Virtual Physical AO:A31
Translation
CPU Look-Aside Memory
DO0-D31 ?_HIE{ DO0-D31
Data I

Translation Look-Aside Buffer (TLB)
A small fully-associative cache of
mappings from virtual to physical addresses

TLB also contains
protection bits for virtual address

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

Making Address Translation Fast

e A cache for address translations: translation look-
aside buffer (TLB)

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
[|
1/0]1 -
PENE g e
BERE! o . Physical memory
~1]0]1 .
0|00 "
1]10]1 a2l
Page table

24 Physical page

Valid Dirty Ref or disk address

—

—{1]0][1 e
1oto e Disk storage____-\ |
11011 - —_

{

1101 , |
oTOC - B
1[1]1 g e
H"/ ot
T

TLB and Translation: Physically
addressed L1 cache, physically

Indexed

TLB: cache for page
table

TLB miss
— Hardware
— software

Valid Dirty

Virtual address

313029 -+ rerrrurnnes 15141312111098++ -+ 3210

Virtual page number Page offset I

J2

Tag Physical page number

TLB

TLB hit

ot

N \20

Physical page number

Physical address tag

Physical address

| Page offset

Cache index

J16

“ ~_‘14

Valid

Tag

Data

Byte
offset

Cache

Cache hltf—G

H k32

Data

Physically addressed cache: virtually
Indexed

Virtual Page Number Page Offset
l Index Byte Select
Translation
| ook-Aside Cache Tags Valid Cache Data
Buffer
(TL B) Cache Block
Physical
Cache Tag :C;)— Cache Block |<—

. Hit
This works, but ...

Q. What is the downside?

A. Inflexibility. Size of cache |
limited by page size.

Data out

Virtually addressed cache

“Virtual Addresses” | “Physical
Addresses”
A0-A31 1 Virtual Physical A0-A31
Virtual :
Translation .
CPU Cache - Main Memor
ach! Look-Aside y
D0-D31 %-HffBe)r D0-D31

|

Only use TLB on a cache miss !

Downside: a subtle, fatal problem. What is it?

A. Synonym problem. If two address spaces
share a physical frame, data may be in cache
twice. Maintaining consistency is a nightmare.

Summary #1/3:
The Cache Design Space

e Several interacting dimensions Cache Size

A

— cache size
— block size Associativity
— associativity

— replacement policy

— write-through vs write-back
— write allocation

_ _ _ _ Block Size
« The optimal choice is a compromise
— depends on access characteristics
» workload Bad
» use (I-cache, D-cache, TLB)
— depends on technology / cost
: P - Fact Factor B
 Simplicity often wins Good | T =rer
Less More

2017/10/11 36

Summary #2/3. Caches

The Principle of Locality:

— Program access arelatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

Three Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Capacity Misses: increase cache size

— Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

Write Policy: Write Through vs. Write Back

Today CPU time is a function of (ops, cache misses)
This affects Compilers, Data structures, and
Algorithms

2017/10/11 37

Summary #3/3: TLB, Virtual Memory

 Page tables map virtual address to physical address
« TLBs are important for fast translation
« TLB misses are significant in processor performance

 Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions:
1) Where can a block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

« Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy benefits

2017/10/11 38

	�� Handout 4 – Memory Hierarchy �
	Outline
	Since 1980, CPU has outpaced DRAM ...
	But in 1977: DRAM faster than microprocessors
	Exploiting Memory Hierarchy
	Levels of the Memory Hierarchy
	Memory Hierarchy: Apple iMac G5
	iMac’s PowerPC 970: All caches on-chip
	The Principle of Locality
	Hits vs. Misses
	Write policy
	Example: A Direct Mapped Cache
	N-way set associative
	Fully set associative
	Which block should be replaced on a miss?
	What happens on a write?
	 Write Buffers for Write-Through Caches
	Advanced issue in write buffer
	Hit time and Miss penalty
	Memory System Performance
	5 Basic Cache Optimizations
	Line size and locality
	Outline
	The Limits of Physical Addressing
	Solution: Add a Layer of Indirection
	Three Advantages of Virtual Memory
	Details of Page Table
	Page tables may not fit in memory!
	Virtual Memory System
	投影片編號 30
	MIPS Address Translation: How does it work?
	Making Address Translation Fast
	TLB and Translation: Physically addressed L1 cache, physically indexed
	Physically addressed cache: virtually indexed
	Virtually addressed cache
	Summary #1/3: �The Cache Design Space
	Summary #2/3: Caches
	Summary #3/3: TLB, Virtual Memory

