
Handout 4 – Memory Hierarchy 



2017/10/11 2

Outline
• Memory hierarchy
• Locality
• Cache design 
• Virtual address spaces
• Page table layout
• TLB design options (MMU Sub-system)
• Conclusion 



Since 1980, CPU has outpaced DRAM ...

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

DRAM

CPU

Performance
(1/latency)

Year

Gap grew 50% per 
year

Q. How do architects address this gap? 
A. Put smaller, faster “cache” memories 

between CPU and DRAM. 
Create a “memory hierarchy”.



But in 1977: DRAM faster than 
microprocessors

Apple ][ (1977)

Stephen 
WozniakSteve 

Jobs

CPU: 1000 ns
DRAM: 400 ns

Apple founders



• Users want large and fast memories! 
Flip-flops
SRAM 

• DRAM 
Disk 

• Try and give it to them anyway
– build a memory hierarchy

Exploiting Memory Hierarchy

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance 

from the CPU in 


access time 

Size of the memory at each level



2017/10/11 6

Levels of the Memory Hierarchy

Registers

Caches

Memory

Disk

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K-16K bytes
256MB

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger



Memory Hierarchy: Apple iMac G5

iMac G5
1.6 GHz

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G
Latency
Cycles, 
Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,
12 ms

Let programs address a memory space that 
scales to the disk size, at a speed that is 

usually as fast as register access

Managed 
by compiler

Managed 
by hardware

Managed by OS,
hardware,
application

Goal: Illusion of large, fast, cheap memory



iMac’s PowerPC 970: All caches on-chip

(1K)

R
eg
ist
er
s 512K

L2

L1 (64K Instruction)

L1 (32K Data)



2017/10/11 9

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.



• Misses: compulsory misses (cold miss), capacity 
misses, conflict misses.

• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, deliver to cache, 

restart 

• Write hits:
– can replace data in cache and memory (write-through)
– write the data only into the cache (write-back the cache later)

• Write misses:
– read the entire block into the cache, then write the word (write 

allocate)
– or just write around the cache

Hits vs. Misses



Write policy 
• Write hit

– Write-through (WT)
– Write-back  (WB)

• Write miss
– Write allocate (or write allocation)

» Read the missing block into cache first
» then WT or WB

– Write around
» Write the data into the next level memory



Example: A Direct Mapped Cache
• Taking advantage of spatial locality: longer line size

Line size  =  16 bytes (24)



N-way set associative 
• Tag::index::line size
• N direct mapped caches in parallel
• An index gets N blocks 

0

1

2

index

Way 0 Way 1 Way 2 Way 3

Set 0

Set 199



Fully set associative 
• Tag::line size
• 256 comparators for tag matching

Tag 

0 

255

memory



2017/10/11 15

Which block should be replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way
Size LRU     Ran    LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



What happens on a write?

Write-Through Write-Back

Policy

Data written to cache 
block

also written to lower-
level memory

Write data only to the 
cache

Copy-back when 
replacing a dirty copy

Debug Easy Hard

Do read misses 
produce writes? No Yes

Do repeated writes 
make it to lower 

level?
Yes No

Additional option -- let writes to an un-cached address 
allocate a new cache line (“write-allocate”). 



Write Buffers for Write-Through Caches

Q. Why a write buffer ? 

Processor
Cache

Write Buffer

Lower 
Level 

Memory

Holds data awaiting write-through to 
lower level memory

A. So CPU doesn’t stall 

Q. Why a buffer, why 
not just one register ?

A. Bursts of writes are
common.

Q. Are Read After Write 
(RAW) hazards an issue 
for write buffer?

A. Yes!  Drain buffer before 
next read, or send read 1st

after check write buffers.



Advanced issue in write buffer
• A buffer for 

– Write through data into the next level memory or
– for the replaced block due to write back
– Read-bypassing write buffer
– Exception handling: if write buffer still has data and an 

exception occurs.
– Depth of write buffer

Data 0Addr

Bus Master: Memory bus

Cache

Write buffer : 4 entries



2017/10/11 19

Hit time and Miss penalty 
• Hit: data appears in some block in the upper level 

(example: Block X) 
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y



2017/10/11 20

Memory System Performance

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty 

• Miss penalty: cache line filling latency
– access time: time to lower level 

= f(latency to lower level)
– transfer time: time to transfer block 

=f(BW between upper & lower levels)



2017/10/11 21

5 Basic Cache Optimizations
• Reducing Miss Rate
1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches

• Reducing hit time
5. Giving Reads Priority over Writes 

• E.g., Read complete before earlier writes in write buffer



• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality 
in code:

Line size and locality 

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
iss

 ra
te

64164

Block size (bytes)



2017/10/11 23

Outline
• Review
• Redo Geomtric Mean, Standard Deviation
• Memory hierarchy
• Locality
• Cache design
• Virtual address spaces
• Page table layout
• TLB design options
• Conclusion 



The Limits of Physical Addressing

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations 

Data

All programs share one address space: 
The physical address space

No way to prevent a program from 
accessing any machine resource

Machine language programs must be
aware of the machine organization 



Solution:  Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

User programs run in an standardized
virtual address space

Address Translation hardware 
managed by the operating system (OS)

maps virtual address to physical memory

“Physical 
Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

Hardware supports “modern” OS features:
Protection, Translation, Sharing



2017/10/11 26

Three Advantages of Virtual Memory
• Translation:

– Program can be given consistent view of memory, even though physical 
memory is scrambled

– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be in 

physical memory.
– Contiguous structures (like stacks) use only as much physical memory 

as necessary yet still grow later.
• Protection:

– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

» (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)



2017/10/11 27

Physical
Memory Space

• Page table maps virtual page numbers to physical 
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory ≈ cache for disk

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset
12

Physical Address

frame
frame

frame

frame

virtual 
address

Page Table



Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address 
space has 1M entries 

Each process needs its own address space!

P1 index P2 index Page Offset
31 12 11 02122

32 bit virtual address

Top-level table wired in main memory

Subset of 1024 second-level tables in 
main memory; rest are on disk or 

unallocated 

Two-level Page Tables

pages

L2

L1



Virtual Memory System
• See the main memory as the cache of the disk 

storage system
• Features of this cache

– Write back cache
– Fully set associative 

2017/10/11 29



TLB Design Concepts



MIPS Address Translation: How does it work?

“Physical 
Addresses”

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains
protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
A small fully-associative cache of 

mappings from virtual to physical addresses

Fast common case: Virtual address is in TLB, 
process has permission to read/write it.  



Making Address Translation Fast
• A cache for address translations:  translation look-

aside buffer (TLB)



TLB and Translation: Physically 
addressed L1 cache, physically 
indexed  

• TLB: cache for page 
table

• TLB miss
– Hardware
– software



Physically addressed cache: virtually 
indexed

Index Byte Select

ValidCache Tags Cache Data

Data out

Virtual Page Number Page Offset

Translation
Look-Aside

Buffer
(TLB)

Virtual

Physical

=

Hit

Cache Tag

This works, but ...

Q. What is the downside?
A. Inflexibility. Size of cache 
limited by page size.

Cache Block

Cache Block



Virtually  addressed cache 

“Physical 
Addresses”

CPU Main Memory

A0-A31 A0-A31

D0-D31 D0-D31

Only use TLB on a cache miss !

Translation
Look-Aside

Buffer
(TLB)

Virtual Physical

“Virtual Addresses”

A. Synonym problem. If two address spaces 
share a physical frame, data may be in cache 

twice. Maintaining consistency is a nightmare. 

Cache
Virtual

D0-D31

Downside: a subtle, fatal problem. What is it?



2017/10/11 36

Summary #1/3: 
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B



2017/10/11 37

Summary #2/3: Caches
• The Principle of Locality:

– Program access a relatively small portion of the address space at any 
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses:  increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
• Write Policy: Write Through vs. Write Back
• Today CPU time is a function  of (ops, cache misses) 

This affects Compilers, Data structures, and 
Algorithms



2017/10/11 38

Summary #3/3: TLB, Virtual Memory
• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance
• Caches, TLBs, Virtual Memory all understood by 

examining how they deal with 4 questions: 
1) Where can a block be placed?
2) How is block found? 
3) What block is replaced on miss? 
4) How are writes handled?

• Today VM allows many processes to share single 
memory without having to swap all processes to 
disk; today VM protection is more important than 
memory hierarchy benefits


	�� Handout 4 – Memory Hierarchy �
	Outline
	Since 1980, CPU has outpaced DRAM ...
	But in 1977: DRAM faster than microprocessors
	Exploiting Memory Hierarchy
	Levels of the Memory Hierarchy
	Memory Hierarchy: Apple iMac G5
	iMac’s PowerPC 970: All caches on-chip
	The Principle of Locality
	Hits vs. Misses
	Write policy 
	Example: A Direct Mapped Cache
	N-way set associative 
	Fully set associative 
	Which block should be replaced on a miss?
	What happens on a write?
	   Write Buffers for Write-Through Caches
	Advanced issue in write buffer
	Hit time and Miss penalty 
	Memory System Performance
	5 Basic Cache Optimizations
	Line size and locality 
	Outline
	The Limits of Physical Addressing
	Solution:  Add a Layer of Indirection
	Three Advantages of Virtual Memory
	Details of Page Table
	Page tables may not fit in memory!
	Virtual Memory System
	投影片編號 30
	MIPS Address Translation: How does it work?
	Making Address Translation Fast
	TLB and Translation: Physically addressed L1 cache, physically indexed  
	Physically addressed cache: virtually indexed
	Virtually  addressed cache 
	Summary #1/3: �The Cache Design Space
	Summary #2/3: Caches
	Summary #3/3: TLB, Virtual Memory

