
Handout 3 – Multiprocessor and thread
level parallelism

2017/10/11 2

Outline
• Review
• MP Motivation
• SISD v. SIMD (SIMT) v. MIMD
• Centralized vs. Distributed Memory
• MESI and Directory Cache Coherency
• Synchronization and Relaxed Program Order
• Conclusion

2017/10/11 3

Speculation: Register Renaming vs. ROB
• Alternative to ROB is a larger physical set of

registers combined with register renaming
– Extended registers replace function of both ROB and

reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

Terminology: Barrel threading
• Interleaved multi-threading
• Cycle i+1: an instruction from thread B is issued
• Cycle i+2: an instruction from thread C is issued
• The purpose of this type of multithreading is to remove all data

dependency stalls from the execution pipeline. Since one thread is
relatively independent from other threads, there's less chance of one
instruction in one pipe stage needing an output from an older
instruction in the pipeline.

• Conceptually, it is similar to pre-emptive multi-tasking used in
operating systems. One can make the analogy that the time-slice
given to each active thread is one CPU cycle.

• Terminology
• This type of multithreading was first called Barrel processing, in which

the staves of a barrel represent the pipeline stages and their executing
threads. Interleaved or Pre-emptive or Fine-grained or time-
sliced multithreading are more modern terminology.

2017/10/11 4

http://en.wikipedia.org/wiki/Data_dependency
http://en.wikipedia.org/wiki/Pipeline_(computing)
http://en.wikipedia.org/wiki/Preemption_(computing)

2017/10/11 5

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

2017/10/11 6

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

3X

2017/10/11 7

Other factors that favor
Multiprocessors
• Growth in data-intensive applications

– Data bases, file servers, …

• Growing interest in servers, server perf.
• Increasing desktop perf. less important

– Outside of graphics

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment
by replication

– Rather than unique design

2017/10/11 8

Flynn’s Taxonomy
• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data Level Parallelism or SIMT
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Single Instruction Single
Data (SISD)
(Uniprocessor)

Single Instruction Multiple
Data SIMD
(single PC: Vector, CM-2)

Multiple Instruction Single
Data (MISD)
(????)

Multiple Instruction Multiple
Data MIMD
(Clusters, SMP servers)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

2017/10/11 9

Back to Basics
• “A parallel computer is a collection of processing

elements that cooperate and communicate to
solve large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1.
• BW demands ⇒ Memory distributed among processors

2017/10/11 10

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory Distributed Memory

Scale

2017/10/11 11

Centralized Memory Multiprocessor
• Also called symmetric multiprocessors (SMPs)

because single main memory has a symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of
processors

• Can scale to a few dozen processors by using
a switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

2017/10/11 12

Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale
memory bandwidth
• If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con: Communicating data between
processors more complex

• Con: Must change software to take
advantage of increased memory BW

2017/10/11 13

2 Models for Communication and
Memory Architecture
1. Communication occurs by explicitly passing

messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared

address, centralized memory MP
• NUMA (Non Uniform Memory Access time

multiprocessor) for shared address, distributed
memory MP

• In past, confusion whether “sharing” means
sharing physical memory (Symmetric MP) or
sharing address space

2017/10/11 14

Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to
multiple processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data,
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

2017/10/11 15

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and it’s frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

2017/10/11 16

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

– Unlike I/O, where it’s rare

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and
used there in a transparent fashion

– Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

• Replication – for shared data being simultaneously
read, since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

2017/10/11 17

Two Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium

(a bus or switch)
• All cache controllers monitor or snoop on the medium

to determine whether or not they have a copy of a
block that is requested on a bus or switch access

2017/10/11 18

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

2017/10/11 19

Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

2017/10/11 20

Architectural Building Blocks
• Cache block state transition diagram

– FSM specifying how disposition of block changes
» invalid, valid, dirty, shared

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or
write accesses ⇒ Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same

cache block
• Also need to find up-to-date copy of cache block

2017/10/11 CA 2007 21

MESI Protocol

Snp hit read
Snoop hit on write

S

EM

I

Each cache line will be associated with one of 4 states.
Invalid (I); Modified (M); Exclusive (E) or Shared (S)

Write-allocate

2017/10/11 CA 2007 22

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache

block, it provides it in response to a read request
and aborts the memory access

– Complexity from retrieving cache block from a processor
cache, which can take longer than retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back

2017/10/11 23

Cache behavior in response to bus
• Every bus transaction must check the cache-

address tags
– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1

cache to update the state and possibly retrieve the data, which
usually requires a stall of the processor

2017/10/11 24

Scalable Approach: Directory

• Every memory block has associated directory
information

– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory
information

Directory Protocol
• Similar to Snoopy Protocol: Three states

– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date

• In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

2017/10/11 25

2017/10/11 26

Scalable Approach: Directory

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ...

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit

Understanding Program Order
• Initially X = 2

P1 P2
….. …..
r0=Read(X) r1=Read(x)
r0=r0+1 r1=r1+1
Write(r0,X) Write(r1,X)
….. ……

• Possible execution sequences:

P1:r0=Read(X) P2:r1=Read(X)
P2:r1=Read(X), r1=2 P2:r1=r1+1 , r1 = 3
P1:r0=r0+1 P2:Write(r1,X)
P1:Write(r0,X) P1:r0=Read(X) , r0 = 3
P2:r1=r1+1 , r1=2+1 =3 P1:r0=r0+1 , r0 = 3+1=4
P2:Write(r1,X) P1:Write(r0,X)

x=3 in memory x=4 in memory

,3=2+1

Non-mutual exclusive access to shared item X results in different outcome- Data race

P1: r0 = R(x)
P1: r0 = r0+1
P1: W(r0, x)

P2: r1=R(x)
P2: r1 = r1 +1
P2: W(r1, x)

X = 4 in memory
Data race:
there is a variable modified by more than one process in a way such that the results depend on who gets there first.

Lock(L): L is a Lock at an address
• Two threads access one shared variable

2017/10/11 28

Thread 0 Thread 1

.
Lock(L)

X = X + 1;

Unlock(L)
.
.
.
.
.

.

.

.

.

.

.

.

Lock(L)

X = X + 1;

Unlock(L)
.

Acquire L

Release L

.

.

.

.
R(X)
ADD
W(X)

.

.

.

.

.

Synchronization through a barrier

2017/10/11 29

Thread 0 Thread 1

X = X +1;

X = X +1;

Barrier

Synchronization

• Why synchronization ?
– Processors communicate through shared variables.

• Hardware supports for synchronization
– Instruction that performs read-modify-write in an atomic

way. (in one instruction)
• Example instructions

– 0 : lock unclaimed, 1: taken
– Test and set
– Fetch-and-increment
– Exchange

Test and set the lock to 1

Enter critical session
(Shared resource)

Release the lock, reset to 0

Load-link and store-conditional
• Load-link and store-conditional (LL/SC) are a

pair of instructions used in multithreading to
achieve synchronization.

• Load-link returns the current value of a memory
location, while a subsequent store-conditional to
the same memory location will store a new value
only if no updates have occurred to that location
since the load-link.

• This implements a lock-free (meaning load and
store is separated) atomic read-modify-write
operation

2017/10/11 31

Spin lock

• A spin lock whose address is in R1
– R2 = 1, write 1 to Mem[R1], read Mem[R1] back to R2

(done before the write).
• Problem

– Spin lock ties up the processor.
– Spin lock does not scale.
– In cache coherence multiprocessor, a write of getting

the lock, will generate a write miss (each processor
wants to get the lock executing exch.) This may cause
huge traffic in the interconnection.

Spin on Local Copy

• Read it first. This causes the copy to reside in the
local cache (shared state).

Coherency vs Consistency

• A consistent memory means that the entire
address space as seen by a program (that may
be running as multiple processes on a single
processor or on multiple processors) will be
consistent.

• What does consistent mean?

• All processes/processor will see the entire
memory containing the same values at all times.

– You see what I see.

• Coherency is related to reads/writes of a single
data item. Cache coherence only requires a locally
(i.e. per-location) consistent view.

• If every single data item is coherent, then the
memory is consistent.

Relaxing Program Orders
• Divide memory operations into data operations and

synchronization operations
- Synchronization operations act like a fence:

- All data operations before synch in program order must
complete before synch is executed

- All data operations after synch in program order must wait for
synch to complete

- Synchs are performed in program order

- Implementation of fence: processor has counter
that is incremented when data op is issued, and
decremented when data op is completed

Relaxed Consistency Model

• Release consistency

= A (This is a read)

B= (This is a write)

Acquire (S)

C=

= D

Release (S)

E =

F=

SA-> R

SA->W

W->SR
R->SR
SA->SR

R/R, R/W, W/R, W/W
Can be OOO

And in Conclusion

• “End” of uniprocessors speedup =>
Multiprocessors

• Parallelism challenges: % parallalizable, long latency
to remote memory

• Centralized vs. distributed memory
– Small MP vs. lower latency, larger BW for Larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

• Snooping cache over shared medium for smaller MP
by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values returned
by a read), Consistency (when a written value will be
returned by a read)

• Shared medium serializes writes
⇒ Write consistency

	�� Handout 3 – Multiprocessor and thread level parallelism �
	Outline
	Speculation: Register Renaming vs. ROB
	Terminology: Barrel threading
	Multithreaded Categories
	Uniprocessor Performance (SPECint)
	 Other factors that favor Multiprocessors
	Flynn’s Taxonomy
	Back to Basics
	Centralized vs. Distributed Memory
	Centralized Memory Multiprocessor
	Distributed Memory Multiprocessor
	2 Models for Communication and Memory Architecture
	Symmetric Shared-Memory Architectures
	Example Cache Coherence Problem
	Basic Schemes for Enforcing Coherence
	Two Classes of Cache Coherence Protocols
	Snoopy Cache-Coherence Protocols
	Example: Write-thru Invalidate
	Architectural Building Blocks
	MESI Protocol
	Locate up-to-date copy of data
	Cache behavior in response to bus
	Scalable Approach: Directory
	Directory Protocol
	Scalable Approach: Directory
	Understanding Program Order
	Lock(L): L is a Lock at an address
	Synchronization through a barrier
	Synchronization
	Load-link and store-conditional
	Spin lock
	Spin on Local Copy
	Coherency vs Consistency
	Relaxing Program Orders
	Relaxed Consistency Model
	And in Conclusion

