
Graduate Computer Architecture

Handout 2 – Instruction Level 
Parallelism, part A



2017/10/11 2

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• (Start) Tomasulo Algorithm
• Conclusion



Instruction Level Parallelism

• Pipelining become universal technique in 1985
– Overlaps execution of instructions
– Exploits “Instruction Level Parallelism”

• Beyond this, there are two main approaches:
– Hardware-based dynamic approaches

» Used in server and desktop processors

– Compiler-based static approaches (VLIW)
» Not as successful outside of scientific applications

Introduction



2017/10/11 4

Recall from Pipelining Review

• Pipeline CPI = Ideal pipeline CPI + Structural 
Stalls + Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI: measure of the maximum 
performance attainable by the implementation

– Structural hazards: HW cannot support this 
combination of instructions

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching 
of instructions and decisions about changes in control 
flow (branches and jumps)



2017/10/11 5

Instruction Level Parallelism
• Instruction-Level Parallelism (ILP): overlap the 

execution of instructions to improve 
performance

• 2 approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the parallelism 

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power) , and
2) Rely on software technology to find parallelism, statically at 

compile-time (e.g., Itanium 2)

• On this topic spend our time will.



2017/10/11 6

Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in 
except to the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25% 
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance 

enhancements, we must exploit ILP across 
multiple basic blocks

• Simplest: loop-level parallelism to exploit 
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];



2017/10/11 7

Loop-Level Parallelism
• Exploit loop-level parallelism to parallelism by 

“unrolling loop” either by 
1. dynamic via branch prediction or 
2. static via loop unrolling by compiler

(Another way is vectors)
• Determining instruction dependence is critical to 

Loop Level Parallelism
• If 2 instructions are

– parallel, they can execute simultaneously in a 
pipeline of arbitrary depth without causing any 
stalls (assuming no structural hazards)

– dependent, they are not parallel and must be 
executed in order, although they may often be 
partially overlapped



2017/10/11 8

• InstrJ is data dependent (aka true dependence) on 
InstrI: (aka: also known as)
1. InstrJ tries to read operand before InstrI writes it

2. or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot 
execute simultaneously or be completely overlapped

• Data dependence in instruction sequence 
⇒ data dependence in source code ⇒ effect of 
original data dependence must be preserved

• If data dependence caused a hazard in pipeline, 
called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3



2017/10/11 9

ILP and Data Dependencies,Hazards
• HW/SW must preserve program order: 

instructions would execute in order if executed 
sequentially as determined by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a 
hazard, but actual hazard and length of any stall is 
property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be 

exploited

• HW/SW goal: exploit parallelism by preserving program 
order only where it affects the outcome of the program



2017/10/11 10

• Name dependence: when 2 instructions use same 
register or memory location, called a name, but no 
flow of data between the instructions associated 
with that name; 2 versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline, 
called a Write After Read (WAR) hazard

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: Anti-dependence



2017/10/11 11

Name Dependence #2: Output dependence
• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If output-dependence caused a hazard in the pipeline, 
called a Write After Write (WAW) hazard

• Instructions involved in a name dependence can 
execute simultaneously if name used in instructions is 
changed so instructions do not conflict

– Register renaming resolves name dependence for regs
– Either by compiler or by HW

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7



2017/10/11 12

Control Dependencies

• Every instruction is control dependent on 
some set of branches, and, in general, these 
control dependencies must be preserved to 
preserve program order
if p1 {
S1;

};
if p2 {
S2;

}
• S1 is control dependent on p1, and S2 is 

control dependent on p2 but not on p1.



2017/10/11 13

Control Dependence Ignored

• Control dependence needs not be 
preserved
– willing to execute instructions that should not have been 

executed, thereby violating the control dependences, if
can do so without affecting correctness of the program 

• Instead, 2 properties critical to program 
correctness are 
1) exception behavior and 
2) data flow



2017/10/11 14

Exception Behavior
• Preserving exception behavior 
⇒ any changes in instruction execution order 
must not change how exceptions are raised in 
program 
(⇒ no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
– (Assume branches not delayed)

• Problem with moving LW before BEQZ?



2017/10/11 15

Data Flow

• Data flow: actual flow of data values among 
instructions that produce results and those that 
consume them

– branches make flow dynamic, determine which instruction is 
supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU? 
Must preserve data flow on execution



2017/10/11 16

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• (Start) Tomasulo Algorithm
• Conclusion



2017/10/11 17

Software Techniques - Example

• This code, add a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;
• Assume following latencies for all examples

– Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles
FP ALU op Another FP ALU op 4 3
FP ALU op Store double 3 2 
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0



2017/10/11 18

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1);F0=vector element
ADD.D F4,F0,F2;add scalar from F2
S.D 0(R1),F4;store result
DADDUI R1,R1,-8;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero

• First translate into MIPS code: 
-To simplify, assume 8 is lowest address



2017/10/11 19

FP Loop Showing Stalls

• 9 clock cycles: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element
2 stall
3 ADD.D F4,F0,F2 ;add scalar in F2
4 stall
5 stall
6 S.D 0(R1),F4 ;store result
7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
8 stall ;assumes can’t forward to branch
9 BNEZ R1,Loop ;branch R1!=zero



2017/10/11 20

Revised FP Loop Minimizing Stalls

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop 
overhead; How make  faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: L.D F0,0(R1)
2 DADDUI R1,R1,-8
3 ADD.D F4,F0,F2
4 stall

5 stall

6 S.D 8(R1),F4 ;altered offset when move DSUBUI

7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D



2017/10/11 21

Unroll Loop Four Times 
(straightforward way)

Rewrite loop to 
minimize stalls?

1 Loop:L.D F0,0(R1)
3 ADD.D F4,F0,F2
6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16(R1)
15 ADD.D F12,F10,F2
18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24(R1)
21 ADD.D F16,F14,F2
24 S.D -24(R1),F16
25 DADDUI R1,R1,#-32 ;alter to 4*8
26 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)

1 cycle stall
2 cycles stall



2017/10/11 22

Unrolled Loop Detail
• Do not usually know upper bound of loop
• Suppose it is n, and we would like to unroll the 

loop to make k copies of the body
• Instead of a single unrolled loop, we generate a 

pair of consecutive loops:
– 1st executes (n mod k) times and has a body that is the 

original loop
– 2nd is the unrolled body surrounded by an outer loop that 

iterates (n/k) times

• For large values of n, most of the execution time 
will be spent in the unrolled loop



2017/10/11 23

Unrolled Loop That Minimizes Stalls

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration



2017/10/11 24

5 Loop Unrolling Decisions
• Requires understanding how one instruction depends on 

another and how the instructions can be changed or 
reordered given the dependences:

1. Determine loop unrolling useful by finding that loop 
iterations were independent (except for maintenance code) 

2. Use different registers to avoid unnecessary constraints 
forced by using same registers for different computations 

3. Eliminate the extra test and branch instructions and adjust 
the loop termination and iteration code

4. Determine that loads and stores in unrolled loop can be 
interchanged by observing that loads and stores from 
different iterations are independent 
• Transformation requires analyzing memory addresses and finding 

that they do not refer to the same address
5. Schedule the code, preserving any dependences needed 

to yield the same result as the original code



2017/10/11 25

3 Limits to Loop Unrolling
1. Decrease in amount of overhead amortized with 

each extra unrolling
• Amdahl’s Law

2. Growth in code size 
• For larger loops, concern it increases the instruction cache 

miss rate

3. Register pressure: potential shortfall in 
registers created by aggressive unrolling and 
scheduling
• If not be possible to allocate all live values to registers, may 

lose some or all of its advantage

• Loop unrolling reduces impact of branches on 
pipeline; another way is branch prediction



2017/10/11 26

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

co
mpre

ss
eq

nto
tt

es
pre

ss
o gc

c li

do
du

c ea
r

hy
dro

2d

mdlj
dp

su
2c

or

M
is

pr
ed

ic
tio

n 
R

at
e

Static Branch Prediction
• Previous lecture showed scheduling code around 

delayed branch
• To reorder code around branches, need to predict 

branch statically when compile 
• Simplest scheme is to predict a branch as taken

– Average misprediction = untaken branch frequency = 34% SPEC

• More accurate 
scheme predicts 
branches using 
profile 
information 
collected from 
earlier runs, and 
modify 
prediction 
based on last 
run:

Integer Floating Point



2017/10/11 27

Dynamic Branch Prediction
• Why does prediction work?

– Underlying algorithm has regularities
– Data that are being operated on have regularities
– Instruction sequence has redundancies that are artifacts of 

way that humans/compilers think about problems

• Is dynamic branch prediction better than static 
branch prediction?

– Seems to be 
– There are a small number of important branches in programs 

which have dynamic behavior



2017/10/11 28

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address 

index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two 
mispredictions):

For branch xx   

T T T T T T T NT T T T  (true behavior of branch xx)

1 1 1 1  1 1 1  1             (misprediction for NT))      

0            (change to 0 for misprediction, and misprediction for T now)

1        (change to 1 for misprediction of T)



2017/10/11 29

• Solution: 2-bit scheme where change prediction 
only if gets misprediction twice

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
Taken

Strongly taken

Strongly not taken

T

NT
T

NT



2017/10/11 30

18%

5%

12%
10% 9%

5%

9% 9%

0% 1%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

eq
nto

tt

es
pre

ss
o gc

c li
sp

ice
do

du
c

sp
ice

fpp
pp

matr
ix3

00
na

sa
7

M
is

pr
ed

ic
tio

n 
R

at
e

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when indexing the table

• 4096 entry table:

Integer Floating Point



2017/10/11 31

Correlated Branch Prediction
• Idea:  record m most recently executed branches 

as taken or not taken, and use that pattern to 
select the proper n-bit branch history table

• In general, (m,n) predictor means record last m
branches to select between 2m history tables, 
each with n-bit counters

– Thus, old 2-bit BHT is a (0,2) predictor

• Global Branch History:  m-bit shift register 
keeping T/NT status of last m branches.



2017/10/11 32

Correlating Branches

(2,2) predictor

– Behavior of recent 
branches selects 
between four 
predictions of next 
branch, updating just 
that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4



2017/10/11 33

0%

Fr
eq

ue
nc

y 
of

  M
is

pr
ed

ic
tio

ns

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries:  2-bits per entry Unlimited entries:  2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

na
sa

7

m
at

rix
30

0

do
du

cd

sp
ic

e

fp
pp

p

gc
c

ex
pr

es
so

eq
nt

ot
t li

to
m

ca
tv



2017/10/11 34

Tournament Predictors
• Multilevel branch predictor

• Use n-bit saturating counter to choose between 
predictors

• Usual choice between global and local predictors

0/0 both are wrong
1/0 P1 correct, P2 wrong
1/1 both are correct
0/1 P1 wrong, P2 correct



2017/10/11 35

Tournament Predictors

Tournament predictor using, say, 4K 2-bit counters 
indexed by local branch address.  Chooses 
between:

• Global predictor
– 4K entries index by history of last 12 branches (212 = 4K)

– Each entry is a standard 2-bit predictor 

» (not correlated)

• Local predictor: two-level predictor (correlated)
– Local history table: 1024 10-bit entries recording the most recent 

10 branch outcomes of that branch, index by branch address. 
Output 10 bits.

– The pattern of the last 10 occurrences of that particular branch 
used to index table of 1K entries with 3-bit saturating counters

12 last br
2 bits

10 bits 3 bits

bi
10 bits

Local HT



2017/10/11 36

Comparing Predictors 
• Advantage of tournament predictor is ability to 

select the right predictor for a particular branch
– Particularly crucial for integer benchmarks. 
– A typical tournament predictor will select the global predictor 

almost 40% of the time for the SPEC integer benchmarks and 
less than 15% of the time for the SPEC FP benchmarks



2017/10/11 37

Pentium 4 Misprediction Rate 
(per 1000 instructions, not per branch)

11

13

7

12

9

1
0 0 0

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cra
fty

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
7.

m
es

a

B
ra

n
ch

 m
is

p
re

d
ic

ti
on

s 
p

er
 1

0
0

0
 I

n
st

ru
ct

io
n

s

SPECint2000 SPECfp2000

≈6% misprediction rate per branch SPECint 
(19% of INT instructions are branch)

≈2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)



• Branch target calculation is costly and stalls the 
instruction fetch.

• BTB stores PCs the same way as caches
• The PC of a branch is sent to the BTB
• When a match is found the corresponding 

Predicted PC is returned
• If the branch was predicted taken, instruction 

fetch continues at the returned predicted PC

Branch Target Buffers (BTB)



Branch Target Buffers



2017/10/11 40

Dynamic Branch Prediction Summary
• Prediction becoming important part of execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated 

with next branch
– Either different branches (GA)
– Or different executions of same branches (PA), Per-Address

• Tournament predictors take insight to next level, by 
using multiple predictors 

– usually one based on global information and one based on local 
information, and combining them with a selector

– In 2006, tournament predictors using ≈ 30K bits are in processors 
like the Power5 and Pentium 4

• Branch Target Buffer: include branch address & 
prediction



2017/10/11 41

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• (Start) Tomasulo Algorithm
• Conclusion



2017/10/11 42

Advantages of Dynamic Scheduling
• Dynamic scheduling - hardware rearranges the 

instruction execution to reduce stalls while 
maintaining data flow and exception behavior

• It handles cases when dependences unknown at 
compile time 

– it allows the processor to tolerate unpredictable delays such 
as cache misses, by executing other code while waiting for 
the miss to resolve

• It allows code that compiled for one pipeline to 
run efficiently on a different pipeline 

• It simplifies the compiler 
• Hardware speculation, a technique with 

significant performance advantages, builds on 
dynamic scheduling (next lecture)



2017/10/11 43

HW Schemes: Instruction Parallelism
• Key idea: Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-
order completion (e.g., SUBD)

– In a dynamically scheduled pipeline, all instructions still pass
through issue stage in order (in-order issue)

• Will distinguish when an instruction begins
execution and when it completes execution; between
2 times, the instruction is in execution

• Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder



2017/10/11 44

Dynamic Scheduling Step 1

• Simple pipeline had 1 stage to check both 
structural and data hazards: Instruction 
Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

• Issue—Decode instructions, check for
structural hazards

• Read operands—Wait until no data hazards,
then read operands



2017/10/11 45

A Dynamic Algorithm: Tomasulo’s

• For IBM 360/91 (before caches!)
– ⇒ Long memory latency

• Goal: High Performance without special compilers
• Small number of floating point registers (4 in 360) 

prevented interesting compiler scheduling of operations
– This led Tomasulo to try to figure out how to get more effective registers 

— renaming in hardware!

• Why Study 1966 Computer? 
• The descendants of this have flourished!

– Alpha 21264, Pentium 4, AMD Opteron, Power 5, …



2017/10/11 46

Tomasulo Algorithm

• Control & buffers distributed with Function Units (FU)
– FU buffers called “reservation stations”; have pending operands

• Registers in instructions replaced by values or pointers 
to reservation stations(RS); called  register renaming ; 

– Renaming avoids WAR, WAW hazards
– More reservation stations than registers, so can do optimizations 

compilers can’t
• Results to FU from RS, not through registers, over 

Common Data Bus that broadcasts results to all FUs
– Avoids RAW hazards by executing an instruction only when its 

operands are available
• Load and Stores treated as FUs with RSs as well
• Integer instructions can go past branches (predict 

taken), allowing FP ops beyond basic block in FP queue



2017/10/11 47

Tomasulo Organization

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6



2017/10/11 48

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source 
registers (value to be written)

– Note: Qj,Qk=0 => ready
– Store buffers only have Qj for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit 
will write each register, if one exists. Blank when no 
pending instructions that will write that register. 



2017/10/11 49

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

• Normal data bus: data + destination (“go to” bus)
• Common data bus: data + source (“come from” bus)

– 64 bits of data + 4 bits of Functional Unit  source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast

• Example speed: 
3 clocks for Fl .pt. +,-; 11 for * ; 41 clks for /



2017/10/11 50

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle 
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.



2017/10/11 51

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1



2017/10/11 52

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding



2017/10/11 53

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation 
Stations; MULT issued

• Load1 completing; what is waiting for Load1? 



2017/10/11 54

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2? 



2017/10/11 55

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1



2017/10/11 56

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6? 



2017/10/11 57

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it? 



2017/10/11 58

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2



2017/10/11 59

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
1 Add2 Yes ADDD (M-M) M(A2)

Add3 No
6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

9 FU Mult1 M(A2) Add2 (M-M) Mult2



2017/10/11 60

Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it? 



2017/10/11 61

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!



2017/10/11 62

Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

12 FU Mult1 M(A2) (M-M+M(M-M) Mult2



2017/10/11 63

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

13 FU Mult1 M(A2) (M-M+M(M-M) Mult2



2017/10/11 64

Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

14 FU Mult1 M(A2) (M-M+M(M-M) Mult2



2017/10/11 65

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it? 



2017/10/11 66

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete



2017/10/11 67

Faster than light computation
(skip a couple of cycles)



2017/10/11 68

Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

55 FU M*F4 M(A2) (M-M+M(M-M) Mult2



2017/10/11 69

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it? 



2017/10/11 70

Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result

• Once again: In-order issue, out-of-order execution and 
out-of-order completion.



2017/10/11 71

Why can Tomasulo overlap 
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for 

registers (dynamic loop unrolling).
• Reservation stations 

– Permit instruction issue to advance past integer control flow 
operations

– Also buffer old values of registers - totally avoiding the WAR 
stall 

• Other perspective: Tomasulo building data 
flow dependency graph on the fly



2017/10/11 72

Tomasulo’s scheme offers 2 major 
advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– If multiple instructions waiting on single result, & each 

instruction has other operand, then instructions can be 
released simultaneously by broadcast on CDB 

– If a centralized register file were used, the units would
have to read their results from the registers when
register buses are available

2. Elimination of stalls for WAW and WAR
hazards



2017/10/11 73

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264!

• Many associative stores (CDB) at high speed
• Performance limited by Common Data Bus

– Each CDB must go to multiple functional units 
⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle 
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores
• Non-precise interrupts!

– We will address this later



2017/10/11 74

And In Conclusion … #1
• Leverage Implicit Parallelism for Performance: 

Instruction Level Parallelism
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another



2017/10/11 75

And In Conclusion … #2
• Reservations stations: renaming to larger set of 

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks 
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Intel Pentium 4, IBM Power 5, 
AMD Athlon/Opteron, … 


	Graduate Computer Architecture�� Handout 2 – Instruction Level Parallelism, part A�
	Outline
	Instruction Level Parallelism
	Recall from Pipelining Review
	Instruction Level Parallelism
	Instruction-Level Parallelism (ILP)
	Loop-Level Parallelism
	Data Dependence and Hazards
	ILP and Data Dependencies,Hazards
	Name Dependence #1: Anti-dependence
	Name Dependence #2: Output dependence
	Control Dependencies
	Control Dependence Ignored
	Exception Behavior
	Data Flow
	Outline
	Software Techniques - Example
	FP Loop: Where are the Hazards?
	FP Loop Showing Stalls
	Revised FP Loop Minimizing Stalls
	Unroll Loop Four Times (straightforward way)
	Unrolled Loop Detail
	Unrolled Loop That Minimizes Stalls
	5 Loop Unrolling Decisions
	3 Limits to Loop Unrolling
	Static Branch Prediction
	Dynamic Branch Prediction
	Dynamic Branch Prediction
	Dynamic Branch Prediction
	BHT Accuracy
	Correlated Branch Prediction
	Correlating Branches
	Accuracy of Different Schemes�
	Tournament Predictors
	Tournament Predictors
	Comparing Predictors 
	Pentium 4 Misprediction Rate �(per 1000 instructions, not per branch)
	Branch Target Buffers (BTB)
	Branch Target Buffers
	Dynamic Branch Prediction Summary
	Outline
	Advantages of Dynamic Scheduling
	HW Schemes: Instruction Parallelism
	Dynamic Scheduling Step 1
	A Dynamic Algorithm: Tomasulo’s
	Tomasulo Algorithm
	Tomasulo Organization
	Reservation Station Components
	Three Stages of Tomasulo Algorithm
	Tomasulo Example
	Tomasulo Example Cycle 1
	Tomasulo Example Cycle 2
	Tomasulo Example Cycle 3
	Tomasulo Example Cycle 4
	Tomasulo Example Cycle 5
	Tomasulo Example Cycle 6
	Tomasulo Example Cycle 7
	Tomasulo Example Cycle 8
	Tomasulo Example Cycle 9
	Tomasulo Example Cycle 10
	Tomasulo Example Cycle 11
	Tomasulo Example Cycle 12
	Tomasulo Example Cycle 13
	Tomasulo Example Cycle 14
	Tomasulo Example Cycle 15
	Tomasulo Example Cycle 16
	Faster than light computation�(skip a couple of cycles)
	Tomasulo Example Cycle 55
	Tomasulo Example Cycle 56
	Tomasulo Example Cycle 57
	Why can Tomasulo overlap iterations of loops?
	Tomasulo’s scheme offers 2 major advantages
	Tomasulo Drawbacks
	And In Conclusion … #1
	And In Conclusion … #2

