ESL-Based Full System Simulation
: Platform

fit @ 'fr'

Department of Electrical Engineering

Institute of Computer and Communication
Engineering
National Cheng Kung University

NCKU-CASLab

- Term Project-Preparation

e Lab1l: Building QEMU Experiment al Environment
e LAB 2: Building Linux Operating System Environment

— Create an environment that boots Linux kernel on ARM
Realview EB modeled by QEMU.

e LAB3: Virtual Machine & Linux Device Driver

— Design a virtual hardware running in ARM Realview EB and
interacting with Linux device driver and application

e LAB4: SystemC Module & Full System Simulation using
QEMU-SystemC

e LABS5: Full System Simulation using QEMU &
PlatformArchitect

— This lab is not included in this year.

2 NCKU EE CASLab

1 Proposal
-

* Due in three weeks.
* Proposal report due (11/23)
 Final report and presentation

3 NCKU EE CASLab

-~ Electronic System Level Design

e Traditional VLSI design flow
— Software debug begins at late hour.

System Design

Hardware Design I

Hardware Verification

Prototype Build i

Software Design

Software Coding h
4

]
<

NCKU EE CASLab

Software Debug

Project Deadline

- ESL

e Early interaction with software

System Design

Hardware Design

Hardware Verification

Prototype Build

Software Design

Software Coding

il

Software Debug

Project Deadline <>

5 NCKU EE CASLab

IWhat is Full System Simulation
_

* Full system simulation platform

— Hardware : processor cores, memaories,
interconnection buses, and peripheral
devices, ASICs, co-processor, etc.

— Software : operating system, device
drivers, and applications

6 NCKU EE CASLab

- Why full system simulation?

e Higher abstraction level, higher productivity.
e Make verification and optimization of complex systems possible.

Validate specification
requirements
Function & Performance

Interconnect topology, bus
hierarchy, mem organization,...

Optimize HW architecture J

HW/SW Partition
& optimization
/

HW offload/acceleration |)
or programs in DSP cores?

Multi-thread programming
in multi-core platform

| One Example
» TCP/IP offloads

L

s N
Applications
> /
: i h Host System
Operating System
_ C Device Driver))
HOST-SA Interface
(PCl-Express IDE, ,..)

<“—> Power
/0 110 SyStem(g\Z(;elerator <> DRAM Host Bus Adapter
Port < PHY |

8 NCKU EE CASLab

» 1 Limitation of Current ESL Simulation Tool

e ESL SystemC simulation tool
— CoWare Platform Architect

e Advantages

— Ready to use processor/bus models

— Multiple level of abstractions
» Transaction level
» Register transfer level

— Profiling tool
» Bus utilization, reads/writes, etc.

e However,
— Unacceptable OS booting time (half an hour)

NCKU EE CASLab

] Acceleration of OS Booting
-

e Take apart OS and CPU from ESL tool (CoWare)
e Use other tool to simulate CPU and to boot OS

/ Virtual machine \
Applications

Operating System

Device driver

1\ J
\ Bridge interface /
/ Bridge interface \

E $ Hardware design i

)]

1 1

l : I

: System-on-chip :

; |

I ———————————ref I
_ ESL tool (SystemC, HDL) -

10 NCKU EE CASLab

- What is a Virtual Machine

e Broad definition includes all emulation methods that
provide a standard software interface, such as the
Java VM

e "System Virtual Machines” provide a complete
system level environment at binary ISA

e VM is an AP of the host OS

e Underlying HW platform is called the host, and its
resources are shared among the guest VMs

11 NCKU EE CASLab

- Virtual Machine

* Virtual machine
— VM-Ware
— Virtual-PC
— Parallel Desktop for Mac
— QEMU (Quick Emulator)

e QEMU (http://bellard.org/gemu) (C/C++)
— Open source code
— Different ISAs support (x86,ARM,MIPS...etc)
— Fast simulation speed (Functional level)

e QEMU-SystemC (Extension of QEMU)

— Enable QEMU and SystemC modelling
through AMBA interface in ARM versatile
baseboard

12 NCKU EE CASLab

http://bellard.org/qemu

1 QEMU Architecture
s

e QEMU is made of several
subsystems
— CPU emulator (e.g. x86, ARM, MIPS)
— Emulator devices (e.g. VGA, IDE HD)

— Generic devices (e.g. network devices)

4 Connecting QEMU emulated devices to the
corresponding host devices.

— Machine descriptions
¢ Instantiating the emulated device.

— Debugger
— User interface

13 NCKU EE CASLab

1 Add New Virtual Hardware
i

e QEMU allows us to write a virtual
hardware and emulate it

e Steps
— Design your virtual machine in C

code

+including initialization of the hardware ,
low level read/write (commands to
hardware) functions for the hardware

— Design device driver for that hardware

14 NCKU EE CASLab

» 1 A Fast Hybrid Full System Simulation Platform

* QEMU
— Boot and run OS with much less time (less 1 min)
— Only functional simulation

e CoWare

— SystemC based simulator & design environment in
addition to C/C++, HDL

— Detailed profiling
— Booting Linux OS — long booting time
e Integration (QEMU & CoWare)
— QEMU runs OS, upon which users develop AP

— CoWare simulates hardware design
* Accurate level (RTL)
» Higher level

15 NCKU EE CASLab

- What is needed?

e Host Computer
— Personal computer with Linux OS

e CoWare

— Platform Architect v2007.1.2
e QEMU

— QEMU-SystemC v0.91

16 NCKU EE CASLab

Platform Overview

AP

Host OS Socket (): for interprocess 1 communication

ommunication Mechani

AP

QEMU
(C, C++)

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

QEMU-SystemC

Wrapper

Communication Mechanism

VM bridge
interface

CoWare PA
(SystemC, HDL)

CoWare-SystemC Wrapper

VM Access Interrupt DRAM
Port Controller SystemC Module
M | s [s [s]
A % K

A 4 A 4

A 4

A 4

On-Chip-Bus (AHB, AXI, OCP,...)

A

A

A A 4

A

17

NCKU EE CASLab

) QEMU Side Details

e Simulated machine
— ARM Versatile baseboard
— Debian Linux 2.6.18
e Integration schemes for QEMU and CoWare
— AHB interface virtual hardware
— Character device driver (API) for design in CoWare
— Interrupt service routine

ARM System Emulator (ARM Versatile baseboard)

ARM926EJS
Qe mu PL190 Vectored Interrupt Controller

(C C++) Four PLO11 UARTS
! SMC 91¢111 Ethernet adapter
PL050 KMI with PS/2 keyboard and mouse.

AHB Interface Virtual Hardware

Qemu-SystemC Wrapper

Socket Interface (Client/Server)

18 NCKU EE CASLab

] CoWare Side Details
%
Socket Interface (Server/Client)
o H a rd ware . < Coy;re-Systemc wrapper 1.
ovvare Access Port Lz [E'—%] PAC
. AH B BUS (SystemC, HDL \,‘M#S‘ Controller % T
B D SP / ASI CS C On-Chip-Bus (A;HB,AXI,OCP...))
s |
— Other devices oo

— VM interface bridge

* VM interface bridge

— VM access port

* Read/write data from QEMU AP to slave
modules in CoWare

— Interrupt controller
» Bypass interrupt signal to QEMU OS
19

NCKU EE CASLab

1 Communication Mechanism
_

e Socket call
— Easy to use

— Flexible
+ Other ESL simulation tool

— Multiple computer support

=) =)

Network

20 NCKU EE CASLab

1 System Memory Allocation

e Allocate physical memory space of CoWare
hardware into memory space of QEMU virtual
platform (simulated platform)

L

0
QEMU ARM System Emulator (ARM Versatile baseboard)
(C, C++)
AHB Interface Virtual Hardware
QEMU-SystemC Wrapper
Qemu Physical Socket Interface
Memory Space i
Socket Interface
CoWare-SystemC Wrapper
VM Access Interrupt DRAM
Port Controller SystemC Module
. M S S S
CoWare Physical L l l 1
Memory Space Y 3
(On-Chip-Bus (AHB, AXI, OCP,...))
M [s
CoWare PA PAC
(SystemC, HDL)
4G

21 NCKU EE CASLab

- Examples of Application

e Heterogeneous Multi-Core
— ARM + PAC (DSP)

* GPU (OpenGL/ES) + Multi-view
generation

e Network SCTP/IP offload design

22 NCKU EE CASLab

- DSP Runs FFT Program

e Develop applications using driver API

e Use FFT program for example

— Functions for designer

+ We should open the device first and close the device
after using it.
m IO_init() /*standard I/O initialization operation*/
m JO_exit()
+» After opening the device , the FFT main program can
use these functions to call APIs to read/write data
from/to hardware in CoWare.
m IO_read_byte , IO_read_half , I0_read_word
s IO_write_byte, I0_write_half, I0_write_word

23 NCKU EE CASLab

- Heterogeneous Multi-Core

— FFT main program runs in QEMU OS
+» First open device using I0_init()
» Send PAC binary and data(fft.img) to CoWare
s IO_write_word(0xa0000000, send_data)

+ Call function fft()

= use IO_write_word to set PAC to run fft
= use IO_read_word to read data calculated by PAC

+» Close the device, use I0_exit()
* Check FFT results

24 NCKU EE CASLab

FULL SYSTEM VERIFICATION PLATFORM FOR
- | MULTI-VIEW GPU

J QEMU
OpenGL|ES Application . .
Qemu — OpenGL ES Application
(C, C++) Debian GNU/Linux OS i))
Device driver — Customized device driver
ARM System Emulator (ARM Versatile baseboard) . ;
AHB Interface Virtual Hardware ¢ SystemC/ RTL Co—SlmuIatlon
Qemu-SystemC Wrapper - GPU core
Socket Interface (Client) * Geometry module
1 + Rasterization module
Socket Interface (Server) - Multi-View generation
Qemu-SystemC Wrapper * Depth—Image Based
G t .
CoWare Nold nterupt |t Engine Rendering
(SystemC, HDL) - Controller T
(AHB)
s] T J M T s
SDRAM Rasterizer DIBR
Module Engine d Engine B

25 NCKU EE CASLab

GPU in System C

GPU with SystemC
encapsulation

L

OpenGL|ES Application
Qemu |
(C, C++) Debian GNU/Linux OS
Device driver
ARM System Emulator (ARM Versatile baseboard) \~>
AHB Interface Virtual Hardware
Qemu-SystemC Wrapper
Socket Interface (Client)
Socket Interface (Server) Syéte m C
Qemu-SystemC Wrapper / J
Geomet
CoWare ARl Interrupt e
Master [P« fP] Engine
(SystemC’ HDL) — Controller TS
C A/)
s] W T s M T/ s
SDRAM Rasterizer [5] IBR]
Module Engine Engine

26 NCKU EE CASLab

GPU in fresh RTL modules

GPU with RTL
encapsulation

L

OpenGL|ES Application
Qemu | ™~

(C, C++) Debian GNU/Linux OS
Device driver

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu-SystemC Wrapper

Socket Interface (Client)

4

v

Socket Interface (Server)

Qemu-SystemC Wrapper

CoWare AHB Interrupt Geometry
(SystemC, HDL) ﬁMaSter Controliex. (P1[E]_Engine
' M

Rasterizer

P I
’ Engine Engine

SDRAM
‘ Module

27 NCKU EE CASLab

100 % FULL SYSTEM VERIFICATION

OpenGL|ES Application

Qemu
(C, C++) Debian GNU/Linux OS
Device driver
ARM System Emulator (ARM Versatile baseboard) N
AHB Interface Virtual Hardware
Qemu-SystemC Wrapper
Socket Interface (Client)
Socket Interface (Server)
Qemu-SystemC Wrapper
Geomet
CoWare ARl Interrupt e
Master [Pl«-[F] Engine
(SystemC, HDL)] Controller T T
AHB)
s] W T s IRRVE
SDRAM Rasterizer [5] IBR]
Module Engine Engine

GPU with RTL
encapsulation

RTL verification confirmed

L

Qemu
(C, C+4)

. Flexibility

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu-SystemC Wrapper

Socket Interface (Client)

t

CoWare
(SystemC, HDL)

v

Socket Interface (Server)

Qemu-SystemC Wrapper

AHB Geometry

Interrupt Endl
] Controller [« 8] Engine

] Tmls

AHB)

s M | s J M [s
SRAM Rasterizer [p] DBR [
Module Engine Engine

29

QEMU (fast emulator)
— OpenGL ES benchmark

suite

— Customized device driver
For GPU + DIBR

Co-simulation

Module name
AMBA AHB
AMBA bridge
SRAM
Geometry Engine
Rasterizer Engine

DIBR Engine

Design level
Timed TLM
Timed TLM

Untimed TLM

RTL
RTL

RTL

NCKU EE CASLab

- SCTP/IP Offload System

SCTP: Stream Control Transmission Protocol 1. Functional

Virtual Network

CoWare (SystemC, C/C++, HDL)

Computer 1 Computer 2 verification
2. Connection with
QEMU QEMU
real world

9 DY::‘;:?L';:;:;;M? @ N (path1)
e s 3. Performance
é Networkpffload E E Networkpffload evaluatlon for
P : : g 10 Gb (path 2)
V Virtual MAC ' » Virtual MAC

Raw Socket API

NIC (Network Interface Card)

30 NCKU EE CASLab

1 SCTP/IP Offload System

e CoWare on PC 1, Host QEMU on PC 2
— Network Offload Engine (SCTP, IP, MAC)

— FTP client (run on your design) talks to FTP server (real
world)

— Virtual MAC (model bit rates)

Computer 1 Computer 2

QEMU
Virtual Host

]

-

8 T < 5
I x 3 o«

ARMIZE [} [£ 0 C W
o - ovvare TP Cli

PCI_Bidy2_AHB i.PC_Bridge_AHB_ F P I I e nt

super_SCTF _MPSTER_TLY Slave_TLM

coordingtor

Qemu-SystemC
Interface

L}
s Qemu-SystemC
s Interface

i_Clock l clk
S

I_Reset Tl st

(]
Network Offload En§ine
[}

Virtual MAC

AFTP Server

_ARM%26
FRH Source~evel Debugger. CC Yersion r3p6-00rel3 [build Jun 3 2065]

IRH Cycle-Callable Hodel, Version r3:5-(0rel3 [build lun 3 2005]
IPRHGZGEJS_revO, [Blockss ‘BIU DBIU T.B IHHU DHHU DTCH ITCH IEAT DEXT ICACHE

File Edit View Teminal Tabs Help

Network Interface ard Neilvorlg Interface Card

00022 00300243 00000000 00000016 ICAEIE (PIS] , 4k T-Cache, &b D-Cache, Coiuraale 1-TH, Corfigurabls 170y, || Dest host 140.116.177.157

00002 00300200 00000045 0000DD00 Hemory Haragenent, Unit, LB, (Physizal newry, BLJ, CCH [AMIA H-AHB]), Source,Dest ports 19002,15000

007 00000000 COOCODCD 03007043 4 | JLitt:e endion, Debug Coms Chamncl, 30T Codzsequences (v1) [ihres_nops], packet length = 47

1 g e 00000074 (Colare Bus ARHEDSEISAE, HultiLover], Collae (01 dandler [ASEEISPHE], i _

1 D000103 193 00000025 r]bzg;ézgmméxzz Tracer. SenthostitgfNGE. ClockeReal Tine Source HAG aivomn: 0016017

000C0010 83 0000000e 00000000 i_ARNI2E: g0 Destination WAC address: 00:15:f2:ec:25:4)
P Errort Progran finished in step Seurce host 140.116.177.150
i_aRiane;] 16.177 15

Dest host 140.116.177.157

t Successful- S-amBUTerFI5tF lled=10ed P! Source,Dest ports 19002,15000

31 NCKU EE CASLab

I Network Offload System

Computer 1 Computer 2

QEMU =%

100t@ pianoflute2;/home/image/mypic2-sctp-demo BEES

- ermitted by applicable law. E (SIN FUI = T () RHH
Virtual Host e ianc-n oo “homesctny ER0 MWD B0 BRROD X0 W0

i/homessctpUl 1s pack= -1

iver.c =
home/sctpUl cd driver Uing a now commaction
home/sctpUsdrivert s

FTP CI Ient app.c ; ORI |- tapianorlute? aypict-sctp-demo]? modproba sctp
a.out apphackupdS3i.c driverbackupdSai.c drivc e VA

Il

CoWare PA

Qemu-SystemC
Interface

sock= ¢
river.c i vc [
sotsocketopt = 0

Wwaiting a new comect ion

l PL:EJ@%«I&]E RQ 3 {ootapianoflute? nypici-sctp-deno]# . /sctpsrr
wpt ooaad b G -l (i1 - oS
frt N

- i 4688, ioend
Qemu SyStemC/ lebian: home sctpUsdrivert .ftp 148.116.177.157 . "
it for interrrupt & data to arrive!
Interface ived interrupt & data is recieved! o e M stronn 0 . fone 1951
8ag recv_count = 1 -
complete Fecttoe Tane 10
interrrupt & data to arrive! Receive Data frop

interrupt & data is recieved! racy_count = 2

app p.c
shomessctpUrsdrivert sh mk.sh
module license.’ adimtaints kernel.

eopoq

WS hypica-sctp-de
(B GEE RN #EG W

4 . kb . A
R A W

(]
Network Offload Engine
(]

v oor® pianofiiez;/opyad

SSOCIATE complete .
tovput 8. jpg mRE WRE Wrw sumo 5

name = /8. jpy WRITE: address = 40 2
FTP ATA WRITE to TOE memory SCLink: io_vrited addr=Oxd02¢ val-0s08b1745)
‘ erver it for interrrupt & data to arrive! ddress =

m
eceived interrupt & data is recieved! fo_nrited addr=0xd030 val=0x3a95 ba

address =

Virtual MAC

io_vrited

888
EMD complete

address = 32
io_vrited addr=Oxd0dc val

addrass

tpyput 1. jpg
a AL

Master Write

8
2ddr=0xd031 val=OslaZa b
L
AThH WRITE to TOE memory

y B
it for interrrupt & data to arrivet

] eceived interry ata is recieved! i 1 ¢ A
Nefworlg Interface Card Ty e) i &

Network Interface g:ard

END “eqmplete (o Tont) Lipg common.h
tp>quit DA RRITE g b7 15 —
it for interrrupt™edata to arrivet DUA NRITE (1o il a0t 12 {FE » T4 1.9 GB

DA RRITE 0

eceived interrupt & data 1$%maisued!
LY

HUTDOWN complete!?
lebian:/home/sctpU-driverd

foTwrited add

4000 v

=040 b

o -srgr?/ eF;I'P client in the virtual platform was uploading files to the

J ;J'he FTP s?_rver in the real world computer was receiving data
rom the client.

e Finally, the files had been received completely at the server.

32 NCKU EE CASLab

- Portability

* The same memory allocation and OS

— No need to change device driver and
application

e Different OS

— Only need to change device driver
» Header files, different system calls

— No need to change application

e Different memory allocation

— Need to change device driver and
application but only address dependent
statements

33 NCKU EE CASLab

] Performance Issue
_

e Simulation overhead

— Use socket call for communication
hetween QEMU and CoWare

— Hardware implementation (FPGA) uses no
socket call

e Performance improvement

— Reduce communication
+ Rbyte+Rbyte+Rbyte+Rbyte => Rword
+ Reconstruct Data flow

34 NCKU EE CASLab

] And in conclusion

md __ ANd In conciusion......

A full system simulation platform that enables
Application, Linux operating system, Host processor,
and RTL/SystemC design simulation.

A convenient and easy-to-use integrated platform
for software/hardware debugging and verification.

— Applications, drivers, RTLs.
An ESL tool that can tackle with designs of high
complexity.

Instruction profiling in QEMU

— Instruction count (PID-based), type, user/kernel mode
Power estimation

35 NCKU EE CASLab

