
NCKU-CASLab

ESL-Based Full System Simulation
Platform

Department of Electrical Engineering

Institute of Computer and Communication
Engineering

National Cheng Kung University

陳中和

NCKU EE CASLab

Term Project-Preparation

• Lab1: Building QEMU Experiment al Environment

• LAB 2: Building Linux Operating System Environment

 Create an environment that boots Linux kernel on ARM
Realview EB modeled by QEMU.

• LAB3: Virtual Machine & Linux Device Driver

 Design a virtual hardware running in ARM Realview EB and
interacting with Linux device driver and application

• LAB4: SystemC Module & Full System Simulation using
QEMU-SystemC

• LAB5: Full System Simulation using QEMU &
PlatformArchitect

 This lab is not included in this year.

2

NCKU EE CASLab

Proposal

• Due in three weeks.

• Proposal report due (11/23)

• Final report and presentation

3

NCKU EE CASLab4

Electronic System Level Design

• Traditional VLSI design flow

 Software debug begins at late hour.

System Design

Hardware Design

Hardware Verification

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline

NCKU EE CASLab5

ESL

• Early interaction with software

System Design

Hardware Design

Hardware Verification

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline

NCKU EE CASLab6

What is Full System Simulation

• Full system simulation platform
 Hardware : processor cores, memories,

interconnection buses, and peripheral
devices, ASICs, co-processor, etc.

 Software : operating system, device
drivers, and applications

NCKU EE CASLab7

Why full system simulation?

• Higher abstraction level, higher productivity.

• Make verification and optimization of complex systems possible.

Function Verification Architecture Exploration

HW/SW Partition

& optimization
Virtual Platform

for SW development

ESL

Validate specification

requirements

Function & Performance

Optimize HW architecture

Interconnect topology, bus

hierarchy, mem organization,…

HW offload/acceleration

or programs in DSP cores?
Multi-thread programming

in multi-core platform

NCKU EE CASLab8

One Example

• TCP/IP offloads

HOST-SA Interface

(PCI-Express, IDE, …)

Applications

Operating System

Device Driver

I/O

Port

System Accelerator

(SA)
DRAM

I/O

PHY

Power

Host System

Host Bus Adapter

NCKU EE CASLab9

Limitation of Current ESL Simulation Tool

• ESL SystemC simulation tool
 CoWare Platform Architect

• Advantages
 Ready to use processor/bus models

 Multiple level of abstractions
 Transaction level

 Register transfer level

 Profiling tool
 Bus utilization, reads/writes, etc.

• However,
 Unacceptable OS booting time (half an hour)

9

NCKU EE CASLab10

Acceleration of OS Booting

• Take apart OS and CPU from ESL tool (CoWare)

• Use other tool to simulate CPU and to boot OS

10

Applications

Operating System

Virtual machine

Device driver

Bridge interface

Bridge interface

System-on-chip

ESL tool (SystemC, HDL)

Hardware design

NCKU EE CASLab11

What is a Virtual Machine

• Broad definition includes all emulation methods that
provide a standard software interface, such as the
Java VM

• “System Virtual Machines” provide a complete
system level environment at binary ISA

• VM is an AP of the host OS

• Underlying HW platform is called the host, and its
resources are shared among the guest VMs

11

NCKU EE CASLab12

Virtual Machine

• Virtual machine
 VM-Ware
 Virtual-PC
 Parallel Desktop for Mac
 QEMU (Quick Emulator)

• QEMU (http://bellard.org/qemu) (C/C++)
 Open source code
 Different ISAs support (x86,ARM,MIPS…etc)
 Fast simulation speed (Functional level)

• QEMU-SystemC (Extension of QEMU)
 Enable QEMU and SystemC modelling

through AMBA interface in ARM versatile
baseboard

12

http://bellard.org/qemu

NCKU EE CASLab13

QEMU Architecture

• QEMU is made of several
subsystems
 CPU emulator (e.g. x86, ARM, MIPS)

 Emulator devices (e.g. VGA, IDE HD)

 Generic devices (e.g. network devices)
 Connecting QEMU emulated devices to the

corresponding host devices.

 Machine descriptions
Instantiating the emulated device.

 Debugger

 User interface

NCKU EE CASLab14

Add New Virtual Hardware

• QEMU allows us to write a virtual
hardware and emulate it

• Steps

 Design your virtual machine in C
code

 including initialization of the hardware ,
low level read/write (commands to
hardware) functions for the hardware

 Design device driver for that hardware

NCKU EE CASLab15

A Fast Hybrid Full System Simulation Platform

• QEMU
 Boot and run OS with much less time (less 1 min)
 Only functional simulation

• CoWare
 SystemC based simulator & design environment in

addition to C/C++, HDL
 Detailed profiling
 Booting Linux OS – long booting time

• Integration (QEMU & CoWare)
 QEMU runs OS, upon which users develop AP
 CoWare simulates hardware design

 Accurate level (RTL)
 Higher level

15

NCKU EE CASLab16

What is needed?

• Host Computer

 Personal computer with Linux OS

• CoWare

 Platform Architect v2007.1.2

• QEMU

 QEMU-SystemC v0.91

16

NCKU EE CASLab17

Platform Overview

CoWare-SystemC Wrapper

On-Chip-Bus (AHB, AXI, OCP,…)

VM Access

Port
DRAM

SystemC Module

M S S

PAC

M S

Interrupt

Controller

S

Communication Mechanism

Communication Mechanism

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

QEMU

(C, C++)

CoWare PA

(SystemC, HDL)

Host OS

17

Socket (): for interprocess communication

AP

AP

VM bridge
interface

NCKU EE CASLab18

QEMU Side Details

• Simulated machine

 ARM Versatile baseboard

 Debian Linux 2.6.18

• Integration schemes for QEMU and CoWare

 AHB interface virtual hardware

 Character device driver (API) for design in CoWare

 Interrupt service routine

18

Socket Interface (Client/Server)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
ARM926EJS

PL190 Vectored Interrupt Controller

Four PL011 UARTs

SMC 91c111 Ethernet adapter

PL050 KMI with PS/2 keyboard and mouse.

...

AHB Interface Virtual Hardware

Qemu

(C, C++)

NCKU EE CASLab19

CoWare Side Details

• Hardware

 AHB Bus

 DSP/ASICs

 Other devices

 VM interface bridge

• VM interface bridge

 VM access port

 Read/write data from QEMU AP to slave
modules in CoWare

 Interrupt controller

 Bypass interrupt signal to QEMU OS
19

CoWare-SystemC Wrapper

On-Chip-Bus (AHB,AXI,OCP...)

VM

Access Port

SDRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server/Client)

CoWare

(SystemC, HDL)
PAC

M

PP

SS

NCKU EE CASLab20

Communication Mechanism

• Socket call

 Easy to use

 Flexible

Other ESL simulation tool

 Multiple computer support

20

NCKU EE CASLab21

System Memory Allocation

• Allocate physical memory space of CoWare
hardware into memory space of QEMU virtual
platform (simulated platform)

0

4G

Qemu Physical

Memory Space

CoWare-SystemC Wrapper

On-Chip-Bus (AHB, AXI, OCP,…)

VM Access

Port
DRAM

SystemC Module

M S S

PAC

M S

Interrupt

Controller

S

Socket Interface

Socket Interface

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

QEMU

(C, C++)

CoWare PA

(SystemC, HDL)

CoWare Physical

Memory Space

NCKU EE CASLab22

Examples of Application

• Heterogeneous Multi-Core

 ARM + PAC (DSP)

• GPU (OpenGL/ES) + Multi-view
generation

• Network SCTP/IP offload design

NCKU EE CASLab23

DSP Runs FFT Program

• Develop applications using driver API

• Use FFT program for example
 Functions for designer

 We should open the device first and close the device
after using it.

 IO_init() /*standard I/O initialization operation*/

 IO_exit()

 After opening the device , the FFT main program can
use these functions to call APIs to read/write data
from/to hardware in CoWare.

 IO_read_byte , IO_read_half , IO_read_word

 IO_write_byte, IO_write_half, IO_write_word

23

NCKU EE CASLab24

 FFT main program runs in QEMU OS

 First open device using IO_init()

 Send PAC binary and data(fft.img) to CoWare

 IO_write_word(0xa0000000, send_data)

 Call function fft()

 use IO_write_word to set PAC to run fft

 use IO_read_word to read data calculated by PAC

 Close the device, use IO_exit()

 Check FFT results

Heterogeneous Multi-Core

24

NCKU EE CASLab25

FULL SYSTEM VERIFICATION PLATFORM FOR
MULTI-VIEW GPU

• QEMU

 OpenGL ES Application

 Customized device driver

• SystemC/RTL Co-Simulation

 GPU core

 Geometry module

 Rasterization module

 Multi-View generation

 Depth-Image Based

Rendering

Qemu-SystemC Wrapper

AHB

AHB

Master

SDRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu

(C, C++)

CoWare

(SystemC, HDL)

Geometry

Engine

M

PP

S

Rasterizer

Engine

M

P

S

DIBR

Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS

Device driver

NCKU EE CASLab26

GPU in System C

• GPU with SystemC
encapsulation

Qemu-SystemC Wrapper

AHB

AHB

Master

SDRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu

(C, C++)

CoWare

(SystemC, HDL)

Geometry

Engine

M

PP

S

Rasterizer

Engine

M

P

S

DIBR

Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS

Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

SystemC

NCKU EE CASLab27

GPU in fresh RTL modules

Qemu-SystemC Wrapper

AHB

AHB

Master

SDRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu

(C, C++)

CoWare

(SystemC, HDL)

Geometry

Engine

M

PP

S

Rasterizer

Engine

M

P

S

DIBR

Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS

Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

• GPU with RTL
encapsulation

Debugging by
comparing with
SystemC models

NCKU EE CASLab28

100 % FULL SYSTEM VERIFICATION

Qemu-SystemC Wrapper

AHB

AHB

Master

SDRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu

(C, C++)

CoWare

(SystemC, HDL)

Geometry

Engine

M

PP

S

Rasterizer

Engine

M

P

S

DIBR

Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS

Device driver glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

• GPU with RTL
encapsulation

• RTL verification confirmed

NCKU EE CASLab29

Flexibility

Qemu-SystemC Wrapper

AHB

AHB

Master

SRAM

Module

M

S

Interrupt

Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

Qemu

(C, C++)

CoWare

(SystemC, HDL)

Geometry

Engine

M

PP

S

Rasterizer

Engine

M

P

S

DIBR

Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS

Device driver

• QEMU (fast emulator)

 OpenGL ES benchmark
suite

 Customized device driver
 For GPU + DIBR

• Co-simulation

Module name Design level

AMBA AHB Timed TLM

AMBA bridge Timed TLM

SRAM Untimed TLM

Geometry Engine RTL

Rasterizer Engine RTL

DIBR Engine RTL

NCKU EE CASLab30

SCTP/IP Offload System

1. Functional
verification

2. Connection with
real world
(path1)

3. Performance
evaluation for

10 Gb (path 2)

Qemu-SystemC

Interface

Network Offload

Engine

Virtual Host 1

(O/S, Driver, Application…)

Virtual MAC

NIC (Network Interface Card) NIC

Physical Host 2
(O/S, Driver,

Application…)

QEMU

Qemu-SystemC

Interface

Network Offload

Engine

Virtual Host 2

(O/S, Driver, Application…)

Virtual MAC

QEMU

CoWare (SystemC, C/C++, HDL)

Computer 2Computer 1

Physical Host 1

1

2

Ethernet

Virtual Network

Raw Socket API

SCTP: Stream Control Transmission Protocol

NCKU EE CASLab31

SCTP/IP Offload System

• CoWare on PC 1, Host QEMU on PC 2
 Network Offload Engine (SCTP, IP, MAC)
 FTP client (run on your design) talks to FTP server (real

world)
 Virtual MAC (model bit rates)

Qemu-SystemC

Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC

Interface

FTP Server

FTP Client

Virtual Host

Ethernet

NCKU EE CASLab32

Network Offload System

• The FTP client in the virtual platform was uploading files to the
server.

• The FTP server in the real world computer was receiving data
from the client.

• Finally, the files had been received completely at the server.

Qemu-SystemC

Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC

Interface

FTP Server

FTP Client

Virtual Host

Ethernet

FTP client

FTP server

NCKU EE CASLab33

Portability

• The same memory allocation and OS

 No need to change device driver and
application

• Different OS

 Only need to change device driver

Header files, different system calls

 No need to change application

• Different memory allocation

 Need to change device driver and
application but only address dependent
statements

NCKU EE CASLab34

Performance Issue

• Simulation overhead

 Use socket call for communication
between QEMU and CoWare

 Hardware implementation (FPGA) uses no
socket call

• Performance improvement

 Reduce communication

 Rbyte+Rbyte+Rbyte+Rbyte => Rword

 Reconstruct Data flow

34

NCKU EE CASLab35

And in conclusion……

• A full system simulation platform that enables
Application, Linux operating system, Host processor,
and RTL/SystemC design simulation.

• A convenient and easy-to-use integrated platform
for software/hardware debugging and verification.

 Applications, drivers, RTLs.

• An ESL tool that can tackle with designs of high

complexity.

• Instruction profiling in QEMU

 Instruction count (PID-based), type, user/kernel mode

• Power estimation

35

