From Application to Technology
OpenCL Application Processors

Chung-Ho Chen

Computer Architecture and System Laboratory (CASLab)
Department of Electrical Engineering and
Institute of Computer and Communication Engineering
National Cheng-Kung University
Tainan, Taiwan

Welcome to this talk

 From Application

—OpenCL Platform Model
 To Technology

—Micro-architecture implications

—An OpenCL runtime on a many-core
system

« Summary

Welcome to this talk

OpenCL Platform Model

Micro-architecture implications

An OpenCL RunTime on a Many-core system
Summary

Parallel Processing Platform

Multi-core CPU
DSPs
GPU

— Data parallelism
Portability

—OpenCL is a
framework for
building parallel
applications that
are portable across
heterogeneous
platforms.

CPUs

Multiple cores driving
performance increases

GPUs

Increasingly general purpose
data-parallel computing
Improving numerical precision

Emerging
Intersection

JouadQ Jo uonoNpoJU|

OpenCL

Heterogenous
Computing

Multi-processor
programming -
e.g. OpenMP

Graphics APls
and Shading
Languages

OpenCL - Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

Khronos Standards Ecosystem

3D Authoring

3D Asset Interchange
Format

7ouado

JO UoI1ONpPOo.IU|

Embedded Media Application APIs

Gerotlse @penGL

Safety Critical 3D Cross platform desktop 3D

Open G
@ Vector 2

OpenCL

Heterogeneous
Computing

MlAL synch abstraction (‘\pens Li ES§

| Streaming Media Enhanced Audio

Parallel Computing,
Visualization and
Image Processing

Hundreds of man years invested
by industry experts to create
coordinated ecosystem

EGL-based graphics and mediastack QPN KCSGS
OpenKOGS plus 08 portabilty QP €N KCODE

Umbrella specifications to increase code portability

OperMAX|DL OpenMAX|IL. perWF

CODEC and media Streaming Media Cross platform APls
component portability System Integration for window systems

Embedded Media System Integration APIs

Key Players

NAVAIBIV:

Apple
ARM
IBM

Intel

AMD

BROADCOM

SAMSUNG

2013/12/26

FPGA

vendors

SOC
designer

OpenCL Specification

OpenCL

 Open Computing Language (OpenCL) is a framework for writing
programs that execute across heterogeneous platforms consisting
of central processing unit (CPUSs), graphics processing unit (GPUS),
and other processors.

7Houad(Q Jo uononpo|

« Language: OpenCL defines an OpenCL C language for
writing kernels (functions that execute on OpenCL devices) also
define many built-in functions.

* OpenCL defines application programming interfaces (APIs

» Platform Layer API. hardware abstraction layer; query, select
and initialize compute devices; create compute contexts and
work queues

* Runtime API:. execute kernels, manage thread scheduling and
memory resources

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface

Common Hardware Abstraction

 Abstraction makes life easier for those above

« An OpenCL device is viewed by the OpenCL programmer as a
single virtual processor.
Instruction Set Architecture

N
gD software ﬁ\// \j\%

|||

cti S e

s [[1Stru

NI L S AT L T T T T T T T T T T T T T T

[TS = T T T T T T T T T T T T T T T T
DT A A T T T T T T T T T T T T T T T

[T T 1 FT T T T T T T T T T T T T TTLT]]
[T T T T T T T T T T T T TTTTTTTT]

Processor of

600MHz Processor of

1GHz , hardware Non-pipelined
' Pipelined

2GHz, etc Superscalar

000, etc

From Sequential to Parallel

/* C function */
volid array_add(int* a, int* b, int* c¢)

=h
for(i=0;i<array_size;i++)
5
c[i] = a[i] + b[i];
)
} Define N-dimensional computation system (N=, 1, 2, 3)

Execute a kernel code for each point in the system

/* OpenCL */
_kernel void add(_global int* a, _global int* b, global int* c)
{

int 1 = get_global _id(9);

c[i] = a[i] + b[i];

OpenCL Platform Model

* Hierarchical System

« A host with one or
more compute
devices [on H
—A compute r’me
device: one or procfssin n
more compute e AT Host
units \| i H“
— A compute unit: HHHH
one or more , // el |
processing Compubé Unit Compute Device
elements

OpenCL Execution Model

Application runs on a host

Host submits the work to the compute devices through enqueue
operation

7ouadQ Jo uononpoU]

Work item: basic unit of work (the work or data a thread to work on)

Kernel: the code for a work item

* An invocation of the kernel is a thread

Program: Collection of kernels + lib functions

Context: the environment in which work-items execute, including
command queues, memories used, and devices

Work-items specified in N-dimension:

N=2

« Work-items are
group into
workgroups, e.g.,
64x64

« Kernels executed
across a global
domain of work-
items

* Synchronization
btw work-items
can be done
within
workgroups:
barrier ...

Cannot synchronize outside a workgroup

A

y

A

Whole problem space

v

/

D Work group

OpenCL Memory Model

Private memory:
per work-item

Local memory:
shared within a
workgroup

Global/constant
memory: visible
to all workgroups

Host memory :
on the host CPU

OpenCL 1.2: move data from host to global to...
OpenCL 2.0: shared virtual memory btw host and

Compute Davice
Compute unit 7 /workgroup Compuite unit
SIMT Engine
Private Private Private Private
memory { memary M memory 1 memory M
I nnn I nnn I nmn I
PE 1 Work PE 1 PEM
Local Local
memory 1 memory N

Global/Constant Memory Data Cache

A

A

Global Memory

device

Constant Memory

Compute Device Memory

Compilation

 Dynamic runtime
compilation model

 |ntermediate

Representation (IR)

— Assembly based
on avirtual
machine (done
once)

IR is compiled into
machine code

— App loads IR and |

compiles it.

CUDA OpenCL |
— i v i
my_k3m0l.cu my_k3m0l.cl
N R/ R R
CUDA Toolkit "/ STREAMSDK | | Apple LLVM
RN G S R

PTX L R
I I
binary binary binary
R G A A
kN\/IDIA FermiJ ATl I Multicore J

LLVM example

Virtual Machine

— Front-end
compiler:
source code to
IR

— Back-end
compiler: IR to
target code

— IR to CPU ISA

- IR (PTX) to
GPU ISA

{ ARM Assembly }

Back-End Compiler

Y

Hardware Device Source Scheduler

Device Driver

{ ARM Binary }

Hardware

A Simple Example

* Built-in function get_global id(0) returns the
thread id.

« Each PE executes the same kernel code and uses
Its thread 1d to access its data. Hence, SIMT.

/* OpenCL */ .CL code
_kernel void add(_global int* a, _global int* b, _global int* c¢)

{

int i = get_Xlobal id(2e); Get processor ID. This is one dimension example.
c[i] = a[i] +Y[i];

}

void array_add()
a{

host C code: Run control thread

/% create memory object a,c;*/ memory objects created using clCreateMemODbj
global_size[?] = array si;ei ’ Create this number of threads
- = -— 3

dim = 1; \
clEnqueueNDRangeKernel(queue, add, dim, NULL, &global size, &local size, &, NULL, NULL);
/* Copy the result from device */ T

}

Workgroup size

Host control thread example

Setup Execution Environment

Create Memory/Program Objects

Prepare Parameters and Copy Data for
Execution

Enqueue for Execution and Read Back

2013/12/26

17

Setup Execution Environment:
prepare environment

Get Available Devices

* clGetPlatformIDs

« Return the number of available platforms and the pointers of the
platforms

 clGetDevicelDs
* Return the list of devices available on a platform

Create Context

* clCreateContext

« Return the pointer of context structure used by runtime for
managing objects such as memory, command-queue, program
and kernels

Create Command Queue

» clCreateCommandQueue

« Return the pointer of command-queue that programmer uses to
gueue a set of operations

Create Memory/Program Objects

Create Memory objects

e clCreateBuffer

* Return the pointer of the memory object which
contains the relationship between host memory and
device memory region

Create Program and Kernel Objects

« clCreateProgramWithSource
« Use the CL source code to generate a program object
« clBuildProgram

« Compile the source code of the target program object;
each program has more than one kernel source

» clCreateKernel
« Designate the kernel that is going to run

Prepare Parameters and Copy Data for
Execution

Setup Kernel Parameters

» clSetKernelArg
« Set up the parameters of the kernel function

Copy Data from Main Memory to

Target Device

* clEnqueueWriteBuffer

* Write the data from main memory to target
device

Enqueue for Execution and Read Back

Execute the Kernel in N-dimension

* clEnqueueNDRangeKernel

* Declare a N-dimensional work-space
(global_size) for executing

« Subdivide the work-space into work-group by
means of setting local size

Read Back Results from Target Device

* clEnqueueReadBuffer

 Read the data from target device to main
memory

Executed in-order or out-of-order

Setup Execution Environment

Create Memory/Program Objects

Prepare Parameters and Copy Data for Execution

Enqueue for Execution

Command Queues
10Q, O00Q

Runtime
support O0O0Q?

Devices

2013/12/26 22

Welcome to this talk

OpenCL Platform Model

Micro-architecture implications

An OpenCL RunTime on a Many-core system
Summary

Now Device

« Architecture implication for OpenCL Program
Model

—SIMT ISA
—SIMT instruction scheduling

SIMT Machine

« What architecture features are useful/critical for
OpenCL-based computation?

« SIMT: single instruction multiple threading
e Same instruction stream works on different data

/* OpenCL */
_kernel void add(_global int* a, _global int* b, global int* ¢)

{
int 1 = get global id(2);
c[i] = a[i] + b[i];

Single Instruction Multiple Threading

Single Instruction Multi-

Threadi ng Single stream on N Cores
A thread == a workitem 5

Get one instruction and 14

dispatch to every processor :g’

units.

11
Fetch one stream -> N threads

(of the same code) in execution

Each thread is independent to
each other. l

All cores execute instructions
in lockstep mode.

Core Core Core Core

Data 1 Data 2 Data N

SIMT: Single Instruction Multiple Threading

« Clarify what is what
« What is S?

Single stream on N Cores

 What are threads or workitems?

12
— AN INSTRUCTION STREAM IN EXECUTION 13

14
\ 4
v
Core Core Core Core
Data 1 Data 2 Data N

Thread 2

Fetching Mechanism for SIMT

_ * Need an instruction fetcher
[glsiietfeiilolgl to let each core or PE get

Fetching their instruction
« Each PE may free run also.

Data * Need an efficient way to get
ni per-PE’s data from global
Fetching memory (DRAM).

ISA Issues for SIMT PE

 Branch problem in
Sll\/lT Single stream on N Cores

11
12

— Can not use “regular
branches” in SIMT

because
BEQ xx

— If some PE gets 13 etc 3

and some PE get |5, "
— then there is no single XX 15

instruction stream

anymore.

Core Core Core Core

Datal Data?2 Data N

Conditional Execution for SIMT

4 If-conversion uses predicates to transform a conditional branch into a
single control stream code.

if(rl == 0)
add r2, r3,r4
else
sub r2, r7,r4
mov r5, r2
code using br If-converted code
f0: cmp r1, #0 cmp rl, #0
f4: beq 0x100 addeq r2,r3,r4
f8: sub r2, r7,r4 subne r2,r7,r4
fc: bne 0x104 mov r5, r2
100: add r2, r3, rd
104: mov r5, r2

ISA Issues for SIMT

No branch in SIMT.

Each PE simply executes
the same instruction stream

If the condition is met,

Single instruction stream on N Cores

commit the result otherwise cmp rl, #0
nop. addeq r2,r3,rd4
Problem: subne r2,r7,r4
— Low Utilization of PE mov r5, r2
— Poor performance for
branch rich App. ‘L
— Poor performance in SISD:
clEnqueueTask: the kernel is
executed using a single work- Core Core Core Core
item.

Data 1 Data 2 Data N

Now Device

« Architecture implication of OpenCL Program
Model

—SIMT ISA
—SIMT instruction scheduling

SIMT: SIMD Streaming Machine

* Pipelined PE/Core

 How to tolerate long
latency instructions?

— Cache miss

— Complex integer
Instructions

— Expensive floating
point operations

SIMD streaming unit

cmp
addeq
subne
mov
|dr

rl, #0
r2, r3,r4
r2, r7,r4
r5, r2

rd4, r2, 32#

!

Core

Core

Data 1

Data 2

Core

Core

Data N

Multithreaded Categories

+— Time (processor cycle

Simultaneous

~—> Superscalar Fine-Grained Coarse-Grained Multipro|cessing Multithreading
I I I NENY AN
L] N N [] []
I I N
I I N NI
I N VNN I [N
== NEN0 ST N
L] AN N
I BN N
1 ONN
I N BN L]
I N :&s N
] Thread 1 Thread 3 Thread 5
N Thread 2 , Thread 4 dle slot

m.. ,ww .m."Mum.ﬂ .mu =
ke m.m e
?ﬁ}u OF. A u

= .w@mubumuaaﬂmmwrmmg

MMR ﬂhm: a3 ﬂﬂl : -.

o) .

p ‘m‘a . ”Iﬂoﬁ@?ﬁb u;ﬁ.m

= Hr
..*““fwr'n;o ﬂh ?.1 n,”

ﬂumﬂﬂ

ML

Warp

ERETEAE

Warp

Terminology: Barrel threading

* Interleaved multi-threading

* Cycle i+1: an instruction from instruction stream
(warp) A is issued

* Cycle i+2: an instruction from instruction stream
(warp) B is issued

» The purpose of this type of multithreading is to
remove all data dependency stalls from the
execution pipeline. Since one warp is independent
from other warps.

« Terminology

» This type of multithreading was first called Barrel
processing, in which the staves of a barrel represent
the pipeline stages and their executing
threads. Interleaved or Pre-emptive or Fine-
grained or time-sliced multithreading are more
modern terminology.

http://en.wikipedia.org/wiki/Data_dependency
http://en.wikipedia.org/wiki/Pipeline_(computing)

Warp scheduler

SIMT machine fetcher
fetches warps of
Instructions and store
them into awarp
gueue.

Warp scheduler issues
(broadcasts) one
instruction from a
ready warp to the PEs
in the SIMT machine.

See acore in the system
time |g N stages in a FU

C1 11

C2 1 |n

CN z1 ‘ J1 ‘ 11

After N cycles,

1 completes

Warp back to

Issue 12 of warpl, and etc.
So, if 12 depends on 11,

It has aroom of N cycles
for execution latency.

warp1: 11121314 15...
warp2: J1J2J3J4 J5..

warpN: z1 z2 z3....

Example: Fermi GPU Architecture

SMEM: shared memory in Fermi term, but this is actually a private local scratchpad memory
for a thread block communication (workgroup)

Data memory hierarchy: register, L1, L2, global memory

L1 + Local Scratchpad = 64KB configurable

SM - Streaming multi-processors with multiple processing cores
Each SM contains 32 processing cores
Execute in a Single Instruction Multiple Thread (SIMT) fashion
Up to 16 SMs on a card for a maximum of 512 compute cores

31N10911Y2JVY 1WiaH

Example:

40-bit address space
40 nm TSMC
3x10°T

> Nehalem-Ex(2.3)
1.x GHz

16 multithreaded
SIMD processors

Thread Block
Distributor:
Workgroup
distributor

This GPU is a
multiprocessor
composed of
multithreaded
SIMD processors

2013/12/26

Fermi Floor Plan

Host Interfa

L2 Cache

=
o
=
[1+]
)
o

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

64-bits

oY

91N10911Y21V Wi

A Streaming Multiprocessor
le., a Multithreaded SIMD
Processor

An SM consists of 32 CUDA
cores + some 16 Load/Store
unit + 4 special functional units

Registers: 32K x words

L1 data cache private to each
SM

L1 Instruction cache

L2 unified for data and texture,
instruction(?), shared globally,
coherent for all SMs.
Instruction dispatch

(A, B) fs

(A+B) fd

(A, C)

(B, C)

(A, D)

(B, D), (C, D), etc

2013/12/26

Fermi Streaming Multiprocessor (SM)

91N10911Y21V Wi

Warp Scheduler in Fermi

32 threads form a warp
Instructions are issued per warp

If an operand is not ready the
warp will stall

Context switch between warps
when stalled

Context switch must be very fast

A warp is simply an
instruction stream of
SIMD instructions.

A workgroup | =several warps

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit | Instruction Dispatch Unit

A
AMARAAMARARAARAARARAARAL AMAAMARAAAARAARARAARARRARARALR

> Warp 8 instruction 11 Warp ¢ instruction 11

Warp 2 instruction 42 Warp 3 instruction 33
Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12

time:

tl + xx cycles

Pick instruction from ready warps

Warp 14 instruction 96 Warp 3 instruction 34
r Warp 2 instruction 43 Warp 15 instruction 96

A cycle for issuing an instruction from warp 8

31N10911Y2JVY 1WiaH

Welcome to this talk

OpenCL Platform Model

Micro-architecture implications

An OpenCL RunTime on a Many-core system
Summary

Runtime Implementation Example

* On an 1-to-32 ARM-core system,
« Build an OpenCL runtime system

—Resource management + On-the-fly
compiling
* To evaluate
—Work-item execution methods

—Memory management for OpenCL
memory models

Target Platform —
ARM multi-core virtual platform

« Homogeneous many-core with shared main
memory

SystemC Simulation Platform

IPC :
Channel
Handler Channels:

OpenCL Runtime System —
Software Stack

OpenCL
Application
Programming
Interface

* A unified programming
interface for various
platforms

For Programmer

* Resource manager
OpenCL * Device, memory, execution
Runtime kernel ... etc.

System * CL source code compiling
for target device

OpenCL * Provide driver API to
DEV[ADIIYISI@ runtime

To Platform

OpenCL Source Code Compilation

 LLVM compiler framework
Translate the Front-end compiler: Intermediate

representation
I(?(I;nbelInCa?Se - Back-end compiler: Assembly

code of target device
code « ARM Cross Compiler
« Target Binary

CL kernel
source code

(IR)

LLVM Compiler

I

I

I

I

I

I Intermediate Assembly Code o
: Representation Target Device

I

I

I

Runtime: Program & Kernel
Management

 More than one kernel in a program

— clCreateProgramWithSource/cIBuildProgram

» Use LLVM compiler and ARM cross compiler to build the object
code by the program source code

— clEnqueueNDRangeKernel
» This APl decides the kernel which is going to run.
* Object code linking

OpenCL clCreateProgramW,ithSource() clsSetKernelArg()
APIs clBuildProgram() clEnqueueNDRangeKernel()
Program Source Code Program Object Code Execution Code
Kernel Source Code Kernel Binary
main()
i {
Kernel Source Code Kernel Binary i S PR
- // Branch to the kernel
Kernel Source Code Kernel Binary }
Kernel Source Code Kernel Binary Kernel Binary
Compilers LLVM Compiler ARM GCC

ARM GCC ARM LD

Runtime: Memory Mapping

« Mapping OpenCL Progam Memory to Physical Memories

— Created by clCreateBuffer (Global, constant, local)

» Runtime se(stem creates a memo_rg object through
memor%/ allocation function provided by device driver.
(Map physical to OpenCL memories)

» This APl returns a pointer of the buffer descriptor for
the mapping table. RunTime keeps this table.

— Local memory can be also declared by kernel
source

» LLVM compiler uses .bss section for variables
declared with __local key word.

» Memory mapping in MMU set by work-item
management thread per CPU core.

— Kernel’s private memory
» Use stack memory
» Stack set by work-item management thread

Runtime: Data transfer

Buffer descriptor

clEnqueueWriteBuffer() /
« Data transfer between IEnqueueReadBuffer(
host and target Z
d eVi ce by OpenCL Application £rogramming Interface Layer
— clEnqueueWriteBuffer
- C I En q u eu e Read B u ffer MemObject MemOhject MemOhject MemObject
— For these APl calls, j ten [l ten 1) tem ||t 1 e | e) e || e
th erun t| me SyStem (Host) (vaice) (Host) || (Device) (Host) || (Device) (Host) || (Device)

copies the data
between host memory
and target device
memory through the

mapping table kept in /

runtime.

Device Memory

/

Memory Mapping Table

Runtime: Compute Unit Management

« Each ARM core is mapped to a compute unit
(CU).

« A CU executes awork-group at a time.

Runtime Scheduler Device Driver Device

I I : CU Status : L, 888 CU |
| Command Queues | | Registers S :
| (From Application | |

| (PP) | DEEEE E%cu |
I _ L 1R |
| ! | %% cu |
| N I: : |||---||“” :
I I |

- i | > 999 CU
: Issue Assign AN TT I : “5 :
I :

| | IReady Queue I I |
i - : | o
I B N TTE L

Work Groups

Device and Memory Mapping

OpenCL Progam Model

Map onto CASLAB multi-core Platform

Host Processor

Host CPU (INTEL i7)

Host Memory

Host main memory

Compute Device

SystemC ARM Multicore (1 to 32 core)

Compute Unit

SystemC ARMv7a ISS

Process Element

Work-item coalescing to a thread running on
an ARMv7a core

Global/Constant Memory

Mulit-core Shared Memory

Local Memory

Per ARM’s memory (in shared memory)

Private Memory

Each Work-item’s Stack Memory

Simulation Platform for OpenCL
runtime development

OpenCL Application Layer SystemC Simulation Platform

CL Program

ComputeUnit | | Compute Unit |

(R — Inepnans SRR]

Platform Resource
Manager

IPC
Channel

Channels

Host Application

IPC Channel
(Share Memory)

Work-item coalescing

« Work-items in a workgroup are emulated in a
CPU core.

« Context switching overheads occur when
switching work-item for execution.

—Combine the work-items in a

workgroup in to a single execution
thread.

—Need to translate the original CL code.

New Features in OpenCL 2.0

* OpenCL 1.0
e OpenCL 1.1
« OpenCL 1.2
« OpenCL 2.0 (July, 2013)

—Extended image support (2D/3D, depth,
read/write on the same image, OpenGL)

—Shared virtual memory

—Pipes (transfer data btw multiple
Invocation of kernels, enable data flow
operations)

—Android Driver

Summary

 From Application
—OpenCL

 To Technology
—Architectural support

—Runtime implementation

