
Graduate Computer Architecture

 Handout 4B – Cache optimizations
and inside DRAM

2012/11/21 2

Outline
• 11 Advanced Cache Optimizations
• What inside DRAM?
• Summary

2012/11/21 3

Why More on Memory Hierarchy?

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

Pe
rf

or
m

an
ce

Memory

Processor Processor-Memory
Performance Gap
Growing

2012/11/21 4

Review: 6 Basic Cache Optimizations
• Reducing hit time
1. Giving Reads Priority over Writes

• E.g., Read complete before earlier writes in write buffer
2. Avoiding Address Translation during Cache

Indexing

• Reducing Miss Penalty
3. Multilevel Caches

• Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)

2012/11/21 5

11 Advanced Cache Optimizations

• Reducing hit time
1.Small and simple

caches
2.Way prediction
3.Trace caches

• Increasing cache

bandwidth
4.Pipelined caches
5.Multibanked caches
6.Nonblocking caches

• Reducing Miss Penalty
7. Critical word first
8. Merging write buffers

• Reducing Miss Rate
9. Compiler optimizations

• Reducing miss penalty

or miss rate via
parallelism

10.Hardware prefetching
11.Compiler prefetching

2012/11/21 6

1. Fast Hit times via
Small and Simple Caches
• Index tag memory and then compare takes time
• ⇒ Small cache can help hit time since smaller memory

takes less time to index
– E.g., L1 caches same size for 3 generations of AMD microprocessors:

K6, Athlon, and Opteron
– Also L2 cache small enough to fit on chip with the processor avoids

time penalty of going off chip
• Simple ⇒ direct mapping

– Can overlap tag check with data transmission since no choice
• Access time estimate for 90 nm using CACTI model 4.0

– Median ratios of access time relative to the direct-mapped caches are
1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches

-

0.50

1.00

1.50

2.00

2.50

16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB

Cache size

A
cc

es
s

tim
e

(n
s) 1-way 2-way 4-way 8-way

2012/11/21 7

2. Fast Hit times via Way Prediction

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

• Way prediction: keep extra bits in cache to predict the
“way,” or block within the set, of next cache access.

– Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data

– Miss ⇒ 1st check other blocks for matches in next clock cycle

• Accuracy ≈ 85%
• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

– Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty

2012/11/21 8

3. Fast Hit times via Trace Cache
(Pentium 4 only; and last time?)

• Find more instruction level parallelism?
How avoid translation from x86 to microops?

• Trace cache in Pentium 4
1. Dynamic traces of the executed instructions vs. static sequences

of instructions as determined by layout in memory
– Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions
– Decode/translate from x86 to micro-ops on trace cache miss

+ 1. ⇒ better utilize long blocks (don’t exit in middle of
block, don’t enter at label in middle of block)

- 1. ⇒ complicated address mapping since addresses no
longer aligned to power-of-2 multiples of word size

- 1. ⇒ instructions may appear multiple times in multiple
dynamic traces due to different branch outcomes

Our work: index-based FIFO trace

• Reuse trace after
execution:

– Energy-efficient Trace
Reuse Cache for
Embedded Processor

– IEEE Transactions on
Very Large Scale
Integration Systems,
Vol. 19, No. 9, pp.
1681-1694, September
2011.

2012/11/21

Modified pipeline

WB
MEM

branch N
inst A

inst C
inst B

branch NIF

ID
EXE

TRC
mode?

Discard the oldest instruction

Instruction Cache

Tag
Unit

Data
Unit

PC

TR Cache

 TET

 HTB

#7 PC,inst C

#2 PC,inst E
#3 PC,inst F
#4 PC,branch N
#5 PC,inst A
#6 PC,inst B

#1 PC,inst D

PC(M), #1
PC(N), #5

#0 PC,branch M

empty

Update TET
If branch

PC

PC of
Control
Transfers

http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�
http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�
http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�

2012/11/21 10

4: Increasing Cache Bandwidth by
Pipelining

• Pipeline cache access to maintain bandwidth, but
higher latency

• Instruction cache access pipeline stages:
 1: Pentium
 2: Pentium Pro through Pentium III
 4: Pentium 4
- ⇒ greater penalty on mispredicted branches
- ⇒ more clock cycles between the issue of the load

and the use of the data

2012/11/21 11

Pipeline Cache Access

2012/11/21 12

5. Increasing Cache Bandwidth:
Non-Blocking Caches

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires Memory Status Holding Registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

2012/11/21 13

6: Increasing Cache Bandwidth via
Multiple Banks

• Rather than treat the cache as a single monolithic
block, divide into independent banks that can support
simultaneous accesses

– E.g.,T1 (“Niagara”) L2 has 4 banks

• Banking works best when accesses naturally spread
themselves across banks ⇒ mapping of addresses to
banks affects behavior of memory system

• Simple mapping that works well is “sequential
interleaving”

– Spread block addresses sequentially across banks
– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4

is 0; bank 1 has all blocks whose address modulo 4 is 1; …

2012/11/21 14

7. Reduce Miss Penalty:
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU
• Early restart—As soon as the requested word of the

block arrives, send it to the CPU and let the CPU
continue execution

– Spatial locality ⇒ tend to want next sequential word

• Critical Word First—Request the missed word first
from memory and send it to the CPU as soon as it
arrives; let the CPU continue execution while filling
the rest of the words in the block

– Long blocks more popular today ⇒ Critical Word 1st Widely used

block

2012/11/21 15

8. Merging Write Buffer to
Reduce Miss Penalty
• Write buffer to allow processor to continue

while waiting to write to memory
• If buffer contains modified blocks, the

addresses can be checked to see if address of
new data matches the address of a valid write
buffer entry

• If so, new data are combined with that entry
• Increases block size of write for write-through

cache of writes to sequential words, bytes since
multiword writes more efficient to memory

• The Sun T1 (Niagara) processor, among many
others, uses write merging

2012/11/21 16

9. Reducing Misses by Compiler
Optimizations

• Instructions

– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order

stored in memory
– Loop Fusion: Combine 2 independent loops that have same looping

and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

2012/11/21 17

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
 int val;
 int key;
};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

2012/11/21 18

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
 for (j = 0; j < 100; j = j+1)
 for (i = 0; i < 5000; i = i+1)
 x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)
 for (i = 0; i < 5000; i = i+1)
 for (j = 0; j < 100; j = j+1)
 x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding

through memory every 100 words; improved
spatial locality

2012/11/21 19

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 { a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;

improve spatial locality

2012/11/21 20

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {r = 0;
 for (k = 0; k < N; k = k+1){
 r = r + y[i][k]*z[k][j];};
 x[i][j] = r;
 };

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Idea: compute on BxB submatrix that fits

2012/11/21 21

Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1)
 {r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {
 r = r + y[i][k]*z[k][j];};
 x[i][j] = x[i][j] + r;
 };

• B called Blocking Factor

2012/11/21 22

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

2012/11/21 23

10. Reducing Misses by Hardware
Prefetching of Instructions & Data
• Prefetching relies on having extra memory bandwidth that can

be used without penalty
• Instruction Prefetching

– Typically, CPU fetches 2 blocks on a miss: the requested block and the
next consecutive block.

– Requested block is placed in instruction cache when it returns, and
prefetched block is placed into instruction stream buffer

• Data Prefetching
– Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8

different 4 KB pages
– Prefetching invoked if 2 successive L2 cache misses to a page,

if distance between those cache blocks is < 256 bytes

1.16

1.45

1.18 1.20 1.21 1.26 1.29 1.32 1.40 1.49

1.97

1.00
1.20
1.40
1.60
1.80
2.00
2.20

ga
p

mcf
fam

3d

wupw
ise

ga
lgel

fac
erec sw

im
ap

plu
luc

as
mgri

d

eq
ua

kePe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

SPECint2000 SPECfp2000

2012/11/21 24

11. Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache

(MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

2012/11/21 25

Technique Hit Time Band-
width

Mi
ss
pe
nal
ty

Miss
rate

HW cost/
complexity Comment

Small and simple caches + – 0 Trivial; widely used

Way-predicting caches + 1 Used in Pentium 4

Trace caches + 3 Used in Pentium 4

Pipelined cache access – + 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + 1
Used in L2 of Opteron and
Niagara

Critical word first and early
restart + 2 Widely used

Merging write buffer + 1
Widely used with write
through

Compiler techniques to reduce
cache misses + 0

Software is a challenge;
some computers have
compiler option

Hardware prefetching of
instructions and data + +

2 instr., 3
data

Many prefetch instructions;
AMD Opteron prefetches
data

Compiler-controlled
prefetching + + 3

Needs nonblocking cache; in
many CPUs

2012/11/21 26

Main Memory Background

• Performance of Main Memory:
– Latency: Cache Miss Penalty

» Access Time: time between request and word arrives
» Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

2012/11/21 27

Main Memory Deep Background

“Out-of-Core”, “In-Core,” “Core Dump”?
• “Core memory”?
• Non-volatile, magnetic
• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
• Access time 750 ns, cycle time 1500-3000 ns

2012/11/21 28

Structure: DRAM from bit to chip

Sense amplifier

2012/11/21 29

DRAM logical organization (4 Mbit)

• Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A1 0

…
1 1 D

Q

W ord Line Storage Cell

Addressing a DRAM chip
• A DRAM chip composes of several banks,

e.g., 8 banks.
• A bank is a set of cells that share

peripheral circuitry such as address
decoder (row and column)

• A subarray, which is a two-dimensional
array, is a set of cells that share bitlines
and sense amplifiers

2012/11/21 30

Where are the rest of address bits ?

bank Row address Column address

row

column

2012/11/21 31

Basic: bitline and wordline
• Cell, bitline, wordline, sense amp.

– A cell consists of a capacitor which
stores electrical charge and a
transistor which is turned on or
turned off to connect or disconnect
the capacitor to the wire called
bitline.

– Electrical change on a capacitor-
based cell represents the bit value.

– Many cells connected to one bitline
to share one sense AMP.

– One of the cells on a bitline is
turned on by asserting its wordline
(row address, in general).

2012/11/21 32

Basic: current (charge) sensing
• Sense amp.

– Due to the small size of the
capacitor, a sense-amplifier is
required to sense the small amount
of charge held by the cell and
amplify it to a full logic value.

– A sense amplifier is up to three
orders of magnitude larger than a
cell. (103)

– A bitline may connect up to 512
cells, i.e. 512 rows

Timeline of accessing DRAM (1)

• 3 phases: activation, I/O, and precharging
– 1. Activation: a wordline within a subarray is asserted,

connecting a row of cells to the bitlines, then data (the
entire row) are copied onto the sense amps of the
subarray.

2012/11/21 33

Timeline of accessing DRAM (2)

• 3 phases: activation, I/O, and precharging
– 2. I/O phase: the data in the sense amps are transferred

through the peripheral to the DRAM’s I/O circuitry and
onto the memory bus

2012/11/21 34

Timeline of accessing DRAM (3)

• 3 phases: activation, I/O, and precharge
– 3. precharge: the raised wordline in the subarray is

lowered, disconnecting the cells from the bitlines, also
the sense amps and bitlines are initialized.

2012/11/21 35

Fallacy: DDR is high-speed DRAM
• DDR3-1066

– Memory clock: 133
Mhz

– I/O bus clock: 533 Mhz
– Data rate 1066 MT

• Trick for DDR
– Memory latency is still

long
– But transfer rate is

increased.

2012/11/21 36

2012/11/21 37

Quest for DRAM Performance
1. Fast Page mode

– Add timing signals that allow repeated accesses to row buffer
without another row access time

– Such a buffer comes naturally, as each array will buffer 1024 to
2048 bits for each access

2. Synchronous DRAM (SDRAM)
– Add a clock signal to DRAM interface, so that the repeated

transfers would not bear overhead to synchronize with DRAM
controller

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the

DRAM clock signal ⇒ doubling the peak data rate
– DDR2 lowers power by dropping the voltage from 2.5 to 1.8

volts + offers higher clock rates: up to 400 MHz
– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

• Improved Bandwidth, not Latency

2012/11/21 38

DRAM name based on Peak Chip Transfers / Sec
DIMM name based on Peak DIMM MBytes / Sec
Stan-

dard
Clock Rate

(MHz)
M transfers

/ second
DRAM

Name
Mbytes/s/

DIMM
DIMM
Name

DDR 133 266 DDR266 2128 PC2100

DDR 150 300 DDR300 2400 PC2400

DDR 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

DDR3 533 1066 DDR3-1066 8528 PC8500

DDR3 666 1333 DDR3-1333 10664 PC10700

DDR3 800 1600 DDR3-1600 12800 PC12800
x 2 x 8

2012/11/21 39

Need for Error Correction!
• Motivation:

– Failures/time proportional to number of bits!
– As DRAM cells shrink, more vulnerable

• Went through period in which failure rate was low
enough without error correction that people didn’t
do correction

– DRAM banks too large now
– Servers always corrected memory systems

• Basic idea: add redundancy through parity bits
– Common configuration: Random error correction

» SEC-DED (single error correct, double error detect)
» One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well
» Organization is multiple DRAMs/DIMM, multiple DIMMs
» Want to recover from failed DRAM and failed DIMM!
» “Chip kill” handle failures width of single DRAM chip

2012/11/21 40

MRAM (Magnetic RAM = SRAM (access
time) + Flash (non-volatile)
• It wasn't long ago that IBM promised to unleash its racetrack

MRAM (magnetoresistive RAM) on a power and speed-hungry
computing public, but now Toshiba says its 1GB MRAM chips
are "almost ready". The chips use Spin-RAM (STT-RAM) and
Toshiba fully expects them to take over where DRAM left off by
2015. They say their new chips use about 10 percent the
energy used by DRAM and, like MRAM is supposed to do,
retain memory even after the power supply has been cut off. So
what does this mean? Instant boot-up, fast access times, and
super-low power consumption. While MRAM has been
announced by others, capacities and speeds promised by this
1GB job by from Toshiba will certainly make things worthwhile.
(Jun 2nd 2008)

http://www.engadget.com/2008/04/11/ibms-racetrack-memory-dashing-towards-commercialization/�
http://www.engadget.com/2006/07/10/freescale-first-to-market-with-mram-chips/�
http://www.engadget.com/2006/07/10/freescale-first-to-market-with-mram-chips/�

2012/11/21 41

And in Conclusion …

• Memory wall inspires optimizations since so much
performance lost there

– Reducing hit time: Small and simple caches, Way prediction,
Trace caches

– Increasing cache bandwidth: Pipelined caches, Multibanked
caches, Nonblocking caches

– Reducing Miss Penalty: Critical word first, Merging write buffers
– Reducing Miss Rate: Compiler optimizations
– Reducing miss penalty or miss rate via parallelism: Hardware

prefetching, Compiler prefetching

• DRAM – Continuing Bandwidth innovations: Fast
page mode, Synchronous, Double Data Rate

	Graduate Computer Architecture�� Handout 4B – Cache optimizations and inside DRAM �
	Outline
	Why More on Memory Hierarchy?
	Review: 6 Basic Cache Optimizations
	11 Advanced Cache Optimizations
	1. Fast Hit times via �Small and Simple Caches
	2. Fast Hit times via Way Prediction
	3. Fast Hit times via Trace Cache (Pentium 4 only; and last time?)
	Our work: index-based FIFO trace
	4: Increasing Cache Bandwidth by Pipelining
	Pipeline Cache Access
	5. Increasing Cache Bandwidth: �Non-Blocking Caches
	6: Increasing Cache Bandwidth via Multiple Banks
	7. Reduce Miss Penalty: �Early Restart and Critical Word First
	8. Merging Write Buffer to �Reduce Miss Penalty
	9. Reducing Misses by Compiler Optimizations
	Merging Arrays Example
	Loop Interchange Example
	Loop Fusion Example
	Blocking Example
	Blocking Example
	Summary of Compiler Optimizations to Reduce Cache Misses (by hand)
	10. Reducing Misses by Hardware Prefetching of Instructions & Data
	11. Reducing Misses by �Software Prefetching Data
	投影片編號 25
	Main Memory Background
	Main Memory Deep Background
	Structure: DRAM from bit to chip
	DRAM logical organization (4 Mbit)
	Addressing a DRAM chip
	Basic: bitline and wordline
	Basic: current (charge) sensing
	Timeline of accessing DRAM (1)
	Timeline of accessing DRAM (2)
	Timeline of accessing DRAM (3)
	Fallacy: DDR is high-speed DRAM
	Quest for DRAM Performance
	DRAM name based on Peak Chip Transfers / Sec�DIMM name based on Peak DIMM MBytes / Sec
	Need for Error Correction!
	MRAM (Magnetic RAM = SRAM (access time) + Flash (non-volatile)
	And in Conclusion …

