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Outline 
• 11 Advanced Cache Optimizations 
• What inside DRAM? 
• Summary  
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Why More on Memory Hierarchy? 
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Review: 6 Basic Cache Optimizations 
• Reducing hit time 
1. Giving Reads Priority over Writes  

• E.g., Read complete before earlier writes in write buffer 
2. Avoiding Address Translation during Cache 

Indexing 
 

• Reducing Miss Penalty 
3. Multilevel Caches 

 
• Reducing Miss Rate 
4. Larger Block size (Compulsory misses) 
5. Larger Cache size (Capacity misses) 
6. Higher Associativity (Conflict misses) 
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11 Advanced Cache Optimizations 

• Reducing hit time 
1.Small and simple 

caches 
2.Way prediction 
3.Trace caches 

 
• Increasing cache 

bandwidth 
4.Pipelined caches 
5.Multibanked caches 
6.Nonblocking caches 

• Reducing Miss Penalty 
7. Critical word first 
8. Merging write buffers 

 
• Reducing Miss Rate 
9. Compiler optimizations 

 
• Reducing miss penalty 

or miss rate via 
parallelism 

10.Hardware prefetching 
11.Compiler prefetching 
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1. Fast Hit times via  
Small and Simple Caches 
• Index tag memory and then compare takes time 
• ⇒ Small cache can help hit time since smaller memory 

takes less time to index 
– E.g., L1 caches same size for 3 generations of AMD microprocessors: 

K6, Athlon, and Opteron 
– Also L2 cache small enough to fit on chip with the processor avoids 

time penalty of going off chip 
• Simple ⇒ direct mapping 

– Can overlap tag check with data transmission since no choice 
• Access time estimate for 90 nm using CACTI model 4.0 

– Median ratios of access time relative to the direct-mapped caches are 
1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches 
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2. Fast Hit times via  Way Prediction 

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache?  

• Way prediction: keep extra bits in cache to predict the 
“way,” or block within the set, of next cache access.  

– Multiplexor is set early to select desired block, only 1 tag comparison 
performed that clock cycle in parallel with reading the cache data  

– Miss ⇒ 1st check other blocks for matches in next clock cycle 
 
 
 

• Accuracy ≈ 85% 
• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles 

– Used for instruction caches vs. data caches 

Hit Time 

Way-Miss Hit Time Miss Penalty 
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3. Fast Hit times via  Trace Cache 
(Pentium 4 only; and last time?) 

• Find more instruction level parallelism? 
How avoid translation from x86 to microops?  

• Trace cache in Pentium 4 
1. Dynamic traces of the executed instructions vs. static sequences 

of instructions as determined by layout in memory 
– Built-in branch predictor 

2. Cache the micro-ops vs. x86 instructions 
– Decode/translate from x86 to micro-ops on trace cache miss 

+ 1. ⇒ better utilize long blocks (don’t exit in middle of 
block, don’t enter at label in middle of block) 

- 1. ⇒ complicated address mapping since addresses no 
longer aligned to power-of-2 multiples of word size 

- 1. ⇒ instructions may appear multiple times in multiple 
dynamic traces due to different branch outcomes 



Our work: index-based FIFO trace 

• Reuse trace after 
execution: 

– Energy-efficient Trace 
Reuse Cache for 
Embedded Processor 

– IEEE Transactions on 
Very Large Scale 
Integration Systems,  
Vol. 19, No. 9, pp. 
1681-1694, September 
2011. 

 

2012/11/21 

Modified pipeline

WB
MEM

branch N
inst A

inst C
inst B

branch NIF

ID
EXE

TRC
mode?

Discard the oldest instruction

Instruction Cache

Tag
Unit

Data
Unit

PC

TR Cache

        TET

           HTB

#7 PC,inst C

#2 PC,inst E
#3 PC,inst F
#4 PC,branch N
#5 PC,inst A
#6 PC,inst B

#1 PC,inst D

PC(M), #1
PC(N), #5

#0 PC,branch M

empty

Update TET
If  branch

PC

PC of 
Control 
Transfers 

http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�
http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�
http://caslab.ee.ncku.edu.tw/research/publications/CASLab_2011_JNL_02.pdf�


2012/11/21 10 

4: Increasing Cache Bandwidth by 
Pipelining 

• Pipeline cache access to maintain bandwidth, but 
higher latency 

• Instruction cache access pipeline stages: 
 1: Pentium 
 2: Pentium Pro through Pentium III  
 4: Pentium 4 
- ⇒ greater penalty on mispredicted branches  
- ⇒ more clock cycles between the issue of the load 

and the use of the data 
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Pipeline Cache Access 
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5. Increasing Cache Bandwidth:  
Non-Blocking Caches 

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss 

– requires Memory Status Holding Registers or out-of-order execution 
– requires multi-bank memories 

• “hit under miss”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests 

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by overlapping 
multiple misses 

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses 

– Requires muliple memory banks (otherwise cannot support) 
– Penium Pro allows 4 outstanding memory misses 
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6: Increasing Cache Bandwidth via 
Multiple Banks 

• Rather than treat the cache as a single monolithic 
block, divide into independent banks that can support 
simultaneous accesses 

– E.g.,T1 (“Niagara”) L2 has 4 banks 

• Banking works best when accesses naturally spread 
themselves across banks ⇒ mapping of addresses to 
banks affects behavior of memory system 

• Simple mapping that works well is “sequential 
interleaving”   

– Spread block addresses sequentially across banks 
– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 

is 0; bank 1 has all blocks whose address modulo 4 is 1; … 
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7. Reduce Miss Penalty:  
Early Restart and Critical Word First 

• Don’t wait for full block before restarting CPU 
• Early restart—As soon as the requested word of the 

block arrives, send it to the CPU and let the CPU 
continue execution 

– Spatial locality ⇒ tend to want next sequential word 

• Critical Word First—Request the missed word first 
from memory and send it to the CPU as soon as it 
arrives; let the CPU continue execution while filling 
the rest of the words in the block 

– Long blocks more popular today ⇒ Critical Word 1st Widely used  

block 
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8. Merging Write Buffer to  
Reduce Miss Penalty 
• Write buffer to allow processor to continue 

while waiting to write to memory 
• If buffer contains modified blocks, the 

addresses can be checked to see if address of 
new data matches the address of a valid write 
buffer entry  

• If so, new data are combined with that entry 
• Increases block size of write for write-through 

cache of writes to sequential words, bytes since 
multiword writes more efficient to memory 

• The Sun T1 (Niagara) processor, among many 
others, uses write merging 
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9. Reducing Misses by Compiler 
Optimizations 

 
• Instructions 

– Reorder procedures in memory so as to reduce conflict misses 
– Profiling to look at conflicts(using tools they developed) 

• Data 
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays 
– Loop Interchange: change nesting of loops to access data in order 

stored in memory 
– Loop Fusion: Combine 2 independent loops that have same looping 

and some variables overlap 
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows 
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Merging Arrays Example 

/* Before: 2 sequential arrays */ 
int val[SIZE]; 
int key[SIZE]; 
 
/* After: 1 array of stuctures */ 
struct merge { 
 int val; 
 int key; 
}; 
struct merge merged_array[SIZE]; 

 
 

Reducing conflicts between val & key;  
improve spatial locality 

 



2012/11/21 18 

Loop Interchange Example 

/* Before */ 
for (k = 0; k < 100; k = k+1) 
 for (j = 0; j < 100; j = j+1) 
  for (i = 0; i < 5000; i = i+1) 
   x[i][j] = 2 * x[i][j]; 
/* After */ 
for (k = 0; k < 100; k = k+1) 
 for (i = 0; i < 5000; i = i+1) 
  for (j = 0; j < 100; j = j+1) 
   x[i][j] = 2 * x[i][j]; 

 
Sequential accesses instead of striding 

through memory every 100 words; improved 
spatial locality 
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Loop Fusion Example 

/* Before */ 
for (i = 0; i < N; i = i+1) 
 for (j = 0; j < N; j = j+1) 
  a[i][j] = 1/b[i][j] * c[i][j]; 
for (i = 0; i < N; i = i+1) 
 for (j = 0; j < N; j = j+1) 
  d[i][j] = a[i][j] + c[i][j]; 
/* After */ 
for (i = 0; i < N; i = i+1) 
 for (j = 0; j < N; j = j+1) 
 { a[i][j] = 1/b[i][j] * c[i][j]; 
  d[i][j] = a[i][j] + c[i][j];} 

 
2 misses per access to a & c vs. one miss per access; 

improve spatial locality 



2012/11/21 20 

Blocking Example 
/* Before */ 
for (i = 0; i < N; i = i+1) 
 for (j = 0; j < N; j = j+1) 
  {r = 0; 
   for (k = 0; k < N; k = k+1){ 
   r = r + y[i][k]*z[k][j];}; 
   x[i][j] = r; 
  }; 

• Two Inner Loops: 
– Read all NxN elements of z[] 
– Read N elements of 1 row of y[] repeatedly 
– Write N elements of 1 row  of x[] 

• Idea: compute on BxB submatrix that fits 
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Blocking Example 

/* After */ 
for (jj = 0; jj < N; jj = jj+B) 
for (kk = 0; kk < N; kk = kk+B) 
for (i = 0; i < N; i = i+1) 
  for (j = jj; j < min(jj+B-1,N); j = j+1) 
  {r = 0; 
   for (k = kk; k < min(kk+B-1,N); k = k+1) { 
   r = r + y[i][k]*z[k][j];}; 
   x[i][j] = x[i][j] + r; 
  }; 

 

• B called Blocking Factor 
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Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky
(nasa7)
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merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand) 
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10. Reducing Misses by Hardware 
Prefetching of Instructions & Data 
• Prefetching relies on having extra memory bandwidth that can 

be used without penalty 
• Instruction Prefetching 

– Typically, CPU fetches 2 blocks on a miss: the requested block and the 
next consecutive block.  

– Requested block is placed in instruction cache when it returns, and 
prefetched block is placed into instruction stream buffer 

• Data Prefetching 
– Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 

different 4 KB pages  
– Prefetching invoked if 2 successive L2 cache misses to a page,  

if distance between those cache blocks is < 256 bytes 
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11. Reducing Misses by  
Software Prefetching Data 

• Data Prefetch 
– Load data into register (HP PA-RISC loads) 
– Cache Prefetch: load into cache  

(MIPS IV, PowerPC, SPARC v. 9) 
– Special prefetching instructions cannot cause faults; 

a form of speculative execution 
 

• Issuing Prefetch Instructions takes time 
– Is cost of prefetch issues < savings in reduced misses? 
– Higher superscalar reduces difficulty of issue bandwidth 
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Technique Hit Time Band-
width 

Mi
ss 
pe
nal
ty 

Miss 
rate 

HW cost/ 
complexity Comment 

Small and simple caches + – 0 Trivial; widely used 

Way-predicting caches  + 1 Used in Pentium 4 

Trace caches  + 3 Used in Pentium 4 

Pipelined cache access – + 1 Widely used 

Nonblocking caches + + 3 Widely used 

Banked caches + 1 
Used in L2 of Opteron and 
Niagara 

Critical word first and early 
restart + 2 Widely used 

Merging write buffer + 1 
Widely used with write 
through 

Compiler techniques to reduce 
cache misses + 0 

Software is a challenge; 
some computers have 
compiler option 

Hardware prefetching of 
instructions and data + + 

2 instr., 3 
data 

Many prefetch instructions; 
AMD Opteron prefetches 
data 

Compiler-controlled 
prefetching + + 3 

Needs nonblocking cache; in 
many CPUs 
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Main Memory Background 

• Performance of Main Memory:  
– Latency: Cache Miss Penalty 

» Access Time: time between request and word arrives 
» Cycle Time: time between requests 

– Bandwidth: I/O & Large Block Miss Penalty (L2) 

• Main Memory is DRAM: Dynamic Random Access Memory 
– Dynamic since needs to be refreshed periodically (8 ms, 1% time) 
– Addresses divided into 2 halves (Memory as a 2D matrix): 

» RAS or Row Access Strobe 
» CAS or Column Access Strobe 

• Cache uses SRAM: Static Random Access Memory 
– No refresh (6 transistors/bit vs. 1 transistor 
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Main Memory Deep Background 

“Out-of-Core”, “In-Core,” “Core Dump”? 
• “Core memory”? 
• Non-volatile, magnetic 
• Lost to 4 Kbit DRAM (today using 512Mbit DRAM) 
• Access time 750 ns, cycle time 1500-3000 ns 
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Structure: DRAM from bit to chip 

Sense amplifier  
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DRAM logical organization (4 Mbit) 

• Square root of bits per RAS/CAS 

Column Decoder 

Sense  Amps & I/O 

Memory  Array 
(2,048 x 2,048) 

A0…A1 0 

… 
1 1 D 

Q 

W ord Line Storage  Cell 



Addressing a DRAM chip 
• A DRAM chip composes of several banks, 

e.g., 8 banks. 
• A bank is a set of cells that share 

peripheral circuitry such as address 
decoder (row and column) 

• A subarray, which is a two-dimensional 
array, is a set of cells that share bitlines 
and sense amplifiers  
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Where are the rest of address bits ? 

bank Row address Column address 

row 

column 
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Basic: bitline and wordline 
• Cell, bitline, wordline, sense amp. 

– A cell consists of a capacitor which 
stores electrical charge and a 
transistor which is turned on or 
turned off to connect or disconnect 
the capacitor to the wire called 
bitline. 

– Electrical change on a capacitor-
based cell represents the bit value.  

– Many cells connected to one bitline 
to share one sense AMP. 

– One of the cells on a bitline is 
turned on by  asserting its wordline 
(row address, in general). 
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Basic: current (charge) sensing 
• Sense amp. 

– Due to the small size of the 
capacitor, a sense-amplifier  is 
required to sense the small amount 
of charge held by the cell and 
amplify it to a full logic value. 

– A sense amplifier is up to three 
orders of magnitude larger than a 
cell. (103) 

– A bitline may connect up to 512 
cells, i.e. 512 rows 



Timeline of accessing DRAM (1) 

• 3 phases: activation, I/O, and precharging  
– 1. Activation:  a wordline within a subarray is asserted, 

connecting a row of cells to the bitlines, then data (the 
entire row) are copied onto the sense amps of the 
subarray. 
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Timeline of accessing DRAM (2) 

• 3 phases: activation, I/O, and precharging  
– 2. I/O phase: the data in the sense amps are transferred 

through the peripheral to the DRAM’s I/O circuitry  and 
onto the memory bus 
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Timeline of accessing DRAM (3) 

• 3 phases: activation, I/O, and precharge  
– 3. precharge: the raised wordline in the subarray is 

lowered,  disconnecting the cells from the bitlines, also 
the sense amps and bitlines are initialized. 
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Fallacy: DDR is high-speed DRAM 
• DDR3-1066 

– Memory clock: 133 
Mhz 

– I/O bus clock: 533 Mhz 
– Data rate 1066 MT 

• Trick for DDR 
– Memory latency is still 

long 
– But transfer rate is 

increased. 
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Quest for DRAM Performance 
1. Fast Page mode  

– Add timing signals that allow repeated accesses to row buffer 
without another row access time 

– Such a buffer comes naturally, as each array will buffer 1024 to 
2048 bits for each access 

2. Synchronous DRAM (SDRAM) 
– Add a clock signal to DRAM interface, so that the repeated 

transfers would not bear overhead to synchronize with DRAM 
controller 

3. Double Data Rate (DDR SDRAM) 
– Transfer data on both the rising edge and falling edge of the 

DRAM clock signal ⇒ doubling the peak data rate 
– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 

volts + offers higher clock rates: up to 400 MHz 
– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz 

• Improved Bandwidth, not Latency 



2012/11/21 38 

DRAM name based on Peak Chip Transfers / Sec 
DIMM  name based on Peak DIMM MBytes / Sec 
Stan-

dard 
Clock Rate 

(MHz) 
M transfers 

/ second 
DRAM 

Name 
Mbytes/s/ 

DIMM 
DIMM 
Name 

DDR 133 266 DDR266 2128 PC2100 

DDR 150 300 DDR300 2400 PC2400 

DDR 200 400 DDR400 3200 PC3200 

DDR2 266 533 DDR2-533 4264 PC4300 

DDR2 333 667 DDR2-667 5336 PC5300 

DDR2 400 800 DDR2-800 6400 PC6400 

DDR3 533 1066 DDR3-1066 8528 PC8500 

DDR3 666 1333 DDR3-1333 10664 PC10700 

DDR3 800 1600 DDR3-1600 12800 PC12800 
x 2 x 8 
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Need for Error Correction! 
• Motivation: 

– Failures/time proportional to number of bits! 
– As DRAM cells shrink, more vulnerable 

• Went through period in which failure rate was low 
enough without error correction that people didn’t 
do correction 

– DRAM banks too large now 
– Servers always corrected memory systems 

• Basic idea: add redundancy through parity bits 
– Common configuration: Random error correction 

» SEC-DED (single error correct, double error detect) 
» One example: 64 data bits + 8 parity bits (11% overhead) 

– Really want to handle failures of physical components as well 
» Organization is multiple DRAMs/DIMM, multiple DIMMs 
» Want to recover from failed DRAM and failed DIMM! 
» “Chip kill” handle failures width of single DRAM chip 
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MRAM (Magnetic RAM = SRAM (access 
time) + Flash (non-volatile ) 
• It wasn't long ago that IBM promised to unleash its racetrack 

MRAM (magnetoresistive RAM) on a power and speed-hungry 
computing public, but now Toshiba says its 1GB MRAM chips 
are "almost ready". The chips use Spin-RAM (STT-RAM) and 
Toshiba fully expects them to take over where DRAM left off by 
2015. They say their new chips use about 10 percent the 
energy used by DRAM and, like MRAM is supposed to do, 
retain memory even after the power supply has been cut off. So 
what does this mean? Instant boot-up, fast access times, and 
super-low power consumption. While MRAM has been 
announced by others, capacities and speeds promised by this 
1GB job by from Toshiba will certainly make things worthwhile.  
(Jun 2nd 2008) 

http://www.engadget.com/2008/04/11/ibms-racetrack-memory-dashing-towards-commercialization/�
http://www.engadget.com/2006/07/10/freescale-first-to-market-with-mram-chips/�
http://www.engadget.com/2006/07/10/freescale-first-to-market-with-mram-chips/�
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And in Conclusion  … 

• Memory wall inspires optimizations since so much 
performance lost there 

– Reducing hit time: Small and simple caches, Way prediction, 
Trace caches 

– Increasing cache bandwidth: Pipelined caches, Multibanked 
caches, Nonblocking caches 

– Reducing Miss Penalty: Critical word first, Merging write buffers 
– Reducing Miss Rate: Compiler optimizations 
– Reducing miss penalty or miss rate via parallelism: Hardware 

prefetching, Compiler prefetching 

• DRAM – Continuing Bandwidth innovations: Fast 
page mode, Synchronous, Double Data Rate 
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