

 Handout 2 – ILP: Part B

2012/9/26 2

Review from Last Time #1
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

2012/9/26 3

Review from Last Time #2
• Reservations stations: renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, …

2012/9/26 4

Outline

• ILP
• Speculation
• Speculative Tomasulo Example
• Exceptions
• Issue Window vs. Reorder Buffer
• Simultaneous Multi-threading

2012/9/26 5

Speculation to greater ILP
• Greater ILP: Overcome control dependence by

hardware speculating on outcome of branches
and executing program as if guesses were correct
– Speculation ⇒ fetch, issue, and execute instructions as if

branch predictions were always correct
– Dynamic scheduling ⇒ deal with instruction scheduling

• Essentially a data flow execution model:
– Operations execute as soon as their operands are available

2012/9/26 6

Speculation to greater ILP
• 3 components of HW-based speculation:
1. Dynamic branch prediction to choose which

instructions to execute
2. Speculation to allow execution of instructions

before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2012/9/26 7

Adding Speculation to Tomasulo
• Must separate execution from allowing

instruction to finish or “commit”
• This additional step called instruction commit
• When an instruction is no longer speculative,

allow it to update the register file or memory
• Requires additional set of buffers to hold results

of instructions that have finished execution but
have not committed

• This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

2012/9/26 8

Reorder Buffer (ROB)
• In Tomasulo’s algorithm, once an instruction

writes its result, any subsequently issued
instructions will find result in the register file

• With speculation, the register file is not updated
until the instruction commits

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

– ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

2012/9/26 9

Reorder Buffer Entry
• Each entry in the ROB contains four fields:
1. Instruction type

• a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

2012/9/26 10

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒values at head of ROB placed in
registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
Buffer FP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

2012/9/26 11

Recall: 4 Steps of Speculative Tomasulo
Algorithm
1. Issue—get instruction from FP Op Queue

 If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2. Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch

CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.
4. Commit—update register with reorder result

 When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

2012/9/26 12

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1 F0 LD F0,10(R2) N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2012/9/26 13

2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10
F0

ADDD F10,F4,F0
LD F0,10(R2)

N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2012/9/26 14

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2012/9/26 15

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N
F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

5 0+R3

2012/9/26 16

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

ROB5

ST 0(R3),F4
ADDD F0,F4,F6

N
N

F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R2
5 0+R3

2012/9/26 17

3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]

ST 0(R3),F4
ADDD F0,F4,F6

Y
N

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)

2012/9/26 18

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2012/9/26 19

Avoiding Memory Hazards
• WAW and WAR hazards through memory are

eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained
by two restrictions:
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2012/9/26 20

Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions
and speculation: in-order completion and in-
order commit

– If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions
• Exceptions are handled by not recognizing the

exception until instruction that caused it is ready
to commit in ROB

– If a speculated instruction raises an exception, the exception
is recorded in the ROB

– This is why reorder buffers are in all new processors

2012/9/26 21

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

2012/9/26 22

Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of
registers combined with register renaming

– Extended registers replace function of both ROB and
reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

Reservation
Station and
ROB

23 Intel Nehalem Microarchitecture

Dispatch 6 uops

Fetch/decode 4 instructions

128 reservation station entries

Instruction Fetch and Decode

Issue
window

Register Rename

Execution
unit

Execution
unit

Execution
unit

Execution
unit

add r1, r3, #1 ldr r2, [r2] add r2, r2, #4 add r1, r2, r3

Issue Window-Based OOO Processor
Architecture

2

Issue window based

25

Cortex A9 Microarchitecture(single core variant)

Dispatch 4
instructions
per clock
cycle,

fetch and
decode 2
instructions

2012/9/26 26

Performance beyond single thread ILP

• There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data
Level Parallelism

• Thread: process with own instructions and
data

– thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

2012/9/26 27

Thread Level Parallelism (TLP)
• ILP exploits implicit parallel operations

within a loop or straight-line code
segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

2012/9/26 28

Do both ILP and TLP?
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented at ILP to

exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
Two threads, 8 units

2012/9/26 30

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and
keeping separate PCs

– Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

2012/9/26 31

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Instru

cache

Power 5 data flow ...

Why only 2 threads? With 4, one of the
shared resources (physical registers, cache,
memory bandwidth) would be prone to
bottleneck

2012/9/26 35

Design Challenges in SMT
• Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

2012/9/26 36

In Conclusion …

• Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

	�� Handout 2 – ILP: Part B �
	Review from Last Time #1
	Review from Last Time #2
	Outline
	Speculation to greater ILP
	Speculation to greater ILP
	Adding Speculation to Tomasulo
	Reorder Buffer (ROB)
	Reorder Buffer Entry
	Reorder Buffer operation
	Recall: 4 Steps of Speculative Tomasulo Algorithm
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Avoiding Memory Hazards
	Exceptions and Interrupts
	Tomasulo With Reorder buffer:
	Speculation: Register Renaming vs. ROB
	Reservation Station and ROB
	Issue Window-Based OOO Processor Architecture
	Issue window based
	Performance beyond single thread ILP
	Thread Level Parallelism (TLP)
	Do both ILP and TLP?
	Simultaneous Multi-threading ...
	Simultaneous Multithreading (SMT)
	Multithreaded Categories
	Power 4
	投影片編號 33
	Power 5 data flow ...
	Design Challenges in SMT
	In Conclusion …

