Handout 2 — ILP: Part B



Review from Last Time #1

Leverage Implicit Parallelism for Performance:
Instruction Level Parallelism

Loop unrolling by compiler to increase ILP
Branch prediction to increase ILP
Dynamic HW exploiting ILP

— Works when can’t know dependence at compile time
— Can hide L1 cache misses
— Code for one machine runs well on another
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Review from Last Time #2

Reservations stations: renaming to larger set of
registers + buffering source operands

— Prevents registers as bottleneck
— Avoids WAR, WAW hazards
— Allows loop unrolling in HW

Not limited to basic blocks
(integer units gets ahead, beyond branches)

Helps cache misses as well

Lasting Contributions
— Dynamic scheduling
— Register renaming
— Load/store disambiguation

360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, ...
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Outline

o ILP

e Speculation

« Speculative Tomasulo Example
 Exceptions

e Issue Window vs. Reorder Buffer
« Simultaneous Multi-threading
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Speculation to greater ILP

« Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct

— Speculation = fetch, issue, and execute instructions as if
branch predictions were always correct

— Dynamic scheduling = deal with instruction scheduling

« Essentially a data flow execution model:
— Operations execute as soon as their operands are available
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Speculation to greater ILP

« 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
Instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks
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Adding Speculation to Tomasulo

Must separate execution from allowing
Instruction to finish or “commit”

This additional step called instruction commit

When an instruction is no longer speculative,
allow it to update the register file or memory

Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated
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Reorder Buffer (ROB)

 In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
Instructions will find result in the register file

 With speculation, the register file is not updated
until the instruction commits

— (we know definitively that the instruction should execute)

 Thus, the ROB supplies operands in interval
between completion of instruction execution and
Instruction commit

— ROB is a source of operands for instructions, just as

reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS
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Reorder Buffer Entry

« Each entry in the ROB contains four fields:

1. Instruction type

« abranch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination

 Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
 Value of instruction result until the instruction commits
4. Ready

* Indicates that instruction has completed execution, and the
value is ready
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Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

Instructions commit =values at head of ROB placed in

registers §

As aresult, easy to undo Reorder

speculated instructions FP Buffer

on mispredicted branches Op

or on exceptions M
Commit path si

Res Stations] [Res Stations]
[EP_Adder [EP_Adder
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Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—qget instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer: mark reservation station available.

4.Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation™)
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Tomasulo With Reorder buffer:
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Tomasulo With Reorder buffer:
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Tomasulo With Reorder buffer:
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Tomasulo With Reorder buffer:
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Tomasulo With Reorder buffer:
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Tomasulo With Reorder buffer:
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Avoiding Memory Hazards

« WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

« RAW hazards through memory are maintained
by two restrictions:

1. not allowing a load to initiate the second step of its execution
If any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.
 these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data
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Exceptions and Interrupts

 IBM 360/91 invented “imprecise interrupts”
— Computer stopped at this PC; its likely close to this address
— Not so popular with programmers
— Also, what about Virtual Memory? (Not in IBM 360)

* Technique for both precise interrupts/exceptions
and speculation: in-order completion and In-
order commit

— If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

— This is exactly same as need to do with precise exceptions

* Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

— If a speculated instruction raises an exception, the exception
Is recorded in the ROB

— This is why reorder buffers are in all new processors
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Tomasulo With Reorder buffer:
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Speculation: Register Renaming vs. ROB

e Alternative to ROB is a larger physical set of
registers combined with register renaming

— Extended registers replace function of both ROB and
reservation stations

e Instruction iIssue maps names of architectural
registers to physical register numbers in
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

 Most Out-of-Order processors today use
extended registers with renaming
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Reservation
Station and
ROB
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Issue Window-Based OOO Processor
_Architecture ...~~~
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Issue window based

Dispatch 4
instructions
per clock
cycle,

fetch and
decode 2
instructions

Cortex A9
Single core
Processor

PL310
L2 Cache
Controller

IRQ/FIQ

PL390

Interrupt
Controller

1.

* AMBA 3 AXI 64bit &

Cortex A9 Microarchitecture(single core variant)
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Performance beyond single thread ILP

 There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

e Explicit Thread Level Parallelism or Data
Level Parallelism

e Thread: process with own instructions and
data

— thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

 Data Level Parallelism: Perform identical
operations on data, and lots of data
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Thread Level Parallelism (TLP)

 |ILP exploits implicit parallel operations
within a loop or straight-line code
segment

« TLP explicitly represented by the use of
multiple threads of execution that are
Inherently parallel

 Goal: Use multiple instruction streams to
iImprove

1. Throughput of computers that run many
programs

2. Execution time of multi-threaded programs

e TLP could be more cost-effective to
exploit than ILP
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Do both ILP and TLP?

« TLP and ILP exploit two different kinds of

parallel structure in a program

 Could a processor oriented at ILP to
exploit TLP?

— functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

« Could the TLP be used as a source of
Independent instructions that might keep
the processor busy during stalls?

« Could TLP be used to employ the
functional units that would otherwise lie
Idle when insufficient ILP exists?
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Simultaneous Multi-threading ...
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Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the
register sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

— Qut-of-order completion allows the threads to execute out of
order, and get better utilization of the HW
e Just adding a per thread renaming table and
keeping separate PCs

— Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread
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Multithreaded Categories
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Power 4
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Power 5 data flow ...
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Design Challenges in SMT

e Since SMT makes sense only with fine-grained
Implementation, impact of fine-grained scheduling
on single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

o Larger register file needed to hold multiple contexts

* Not affecting clock cycle time, especially in

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to commit
may be challenging

 Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance
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In Conclusion ...

* Interrupts and Exceptions either interrupt the current
Instruction or happen between instructions
— Possibly large quantities of state must be saved before interrupting

« Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed

« Hardware techniques exist for precise exceptions even
In the face of out-of-order execution!
— Important enabling factor for out-of-order execution
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