Handout 2 — ILP: Part B

Review from Last Time #1

Leverage Implicit Parallelism for Performance:
Instruction Level Parallelism

Loop unrolling by compiler to increase ILP
Branch prediction to increase ILP
Dynamic HW exploiting ILP

— Works when can’t know dependence at compile time
— Can hide L1 cache misses
— Code for one machine runs well on another

2012/9/26

Review from Last Time #2

Reservations stations: renaming to larger set of
registers + buffering source operands

— Prevents registers as bottleneck
— Avoids WAR, WAW hazards
— Allows loop unrolling in HW

Not limited to basic blocks
(integer units gets ahead, beyond branches)

Helps cache misses as well

Lasting Contributions
— Dynamic scheduling
— Register renaming
— Load/store disambiguation

360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, ...

2012/9/26

Outline

o ILP

e Speculation

« Speculative Tomasulo Example
 Exceptions

e Issue Window vs. Reorder Buffer
« Simultaneous Multi-threading

2012/9/26

Speculation to greater ILP

« Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct

— Speculation = fetch, issue, and execute instructions as if
branch predictions were always correct

— Dynamic scheduling = deal with instruction scheduling

« Essentially a data flow execution model:
— Operations execute as soon as their operands are available

2012/9/26 S

Speculation to greater ILP

« 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
Instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2012/9/26

Adding Speculation to Tomasulo

Must separate execution from allowing
Instruction to finish or “commit”

This additional step called instruction commit

When an instruction is no longer speculative,
allow it to update the register file or memory

Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

2012/9/26

Reorder Buffer (ROB)

 In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
Instructions will find result in the register file

 With speculation, the register file is not updated
until the instruction commits

— (we know definitively that the instruction should execute)

 Thus, the ROB supplies operands in interval
between completion of instruction execution and
Instruction commit

— ROB is a source of operands for instructions, just as

reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS

2012/9/26

Reorder Buffer Entry

« Each entry in the ROB contains four fields:

1. Instruction type

« abranch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination

 Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
 Value of instruction result until the instruction commits
4. Ready

* Indicates that instruction has completed execution, and the
value is ready

2012/9/26

Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

Instructions commit =values at head of ROB placed in

registers §

As aresult, easy to undo Reorder

speculated instructions FP Buffer

on mispredicted branches Op

or on exceptions M
Commit path si

Res Stations] [Res Stations]
[EP_Adder [EP_Adder

2012/9/26 10

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—qget instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer: mark reservation station available.

4.Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation™)

2012/9/26 11

Tomasulo With Reorder buffer:

Reorder Buffer

Registers

Dest

- Reservation
Stations
0 9/20

Done?
FP Op | I=F ROE
Queue ROB6
ROB5

ROB4
ROB3

ROBZ§ O|dest
N [roB1

FO LD FO,10(R2)

To
I Memory
from
Dest Memory
Dest *

1 |10+R2

FP Op|

Queue

Tomasulo With Reorder buffer:

Dest

Reorder Buffer

Registers

2

IADDD

R(F4) ,ROB1

=

Reservation
Stations

Done?

ROB6

ROB5

ROB4

ROB3

F1G

ADDD F10,F4,FO

N | rOB2

Oldest

FO LD FO,10(R2)

Dest

=

N | roB1

To

Memory

from

M
Dest

emory

.

1 |10+R2

Tomasulo With Reorder buffer:

FP Op|

Queue

Reorder Buffer

Registers

Dest
2 JADDD

L]

R(F4) ,ROB1

Reservation
Stations

Done?

ROB6

ROB5

ROB4

Dest
3 IDIVD]

=

F2 DIVD F2,F10,F6 | N [|ROB3
F10 ADDD F10,F4,FO0 [N lroBz | oigest
FO LD FO,10(R2) ROB1

Tomasulo With Reorder buffer:

FP Op|

Queue

Reorder Buffer

Registers

Dest

2 JADDD [R(F4) ,ROBT
6 _JADDD |[ROBS ., R(F6)

- Reservation
Stations

ROB6

ROB5

ROB4

ROB3

ROBZ R Oldest

Dest
3 IDIVD]

=

fr'om

Done?
FO ADDD FO,F4,F6 N
F4 LD F4,0(R3) N
—— BNE F2,<.> N
F2 DIVD F2,F10,F6 | N
F1C ADDD F10,F4,FO | N
FO LD FO,10(R2) N

ROB1

Memory

- emor'y

Dest *

10+R2

O0+R3

Tomasulo With Reorder buffer:

FP Op|

Queue

Reorder Buffer

Dest

Registers

2 JADDD

R(F4) ,ROB1

6 JADDD

ROBo, R(F6)

-]

Reservation
Stations

Dest
3 IDIVD]

=

Done?
—-] ROB5 [ST 0(R3),F4 N JIROE
FO ADDD FO,F4,F6 N | ROB6
F4 LD F4,0(R3) N | roB5
—— BNE F2,<.> N | ROB4
F2 DIVD F2,F10,F6 | N J ROB3
F1C ADDD F10,F4,FO | N |roB2 Oldest
FO LD FO,10(R2) N | roe1

Memory

fr'om
- Memory

Dest *

10+R2

O0+R3

Tomasulo With Reorder buffer:

Done?
FP Op | -—| M[10] | ST O(R3),F4 Y PROE
Queue FO ADDD FO,F4,F6 | N JROB6
F4| M[10] | LD F4,0(R3) Y JROB5
- BNE F2,<.> N [|ROB4
Reorder Buffer F2 DIVD F2,F10,F6 | N |Roe3
10 ADDD F10,F4,FO | N [roB2 | 5idest
FO LD FO,10(R2) N |irog1
Registers To
Memory
Dest
Dest fr'om
2 JADDD[R(F4 ROBl
G JADDD [MI IO .F 3 JPTVD JROBZ, R(FE i
Dest*

=

Reservation

Stations

10+R2

Tomasulo With Reorder buffer:

FP Op|

Queue

Reorder Buffer

Dest

Registers

2 JADDD

R(F4) ,ROBT

L]

Done?
—-[v[107 [ST 0(R3),F4 Y JjroE
FO|<val2>| ADDD FO,F4,F6 |Ex]ROB6
F4]1 M[10] |LD F4,0(R3) ROB5

BNE F2,<.>

ROB4

ROB3

ROB2

Oldest

F2 DIVD F2,F10,F6
F1G ADDD F10,F4,FO
FO LD FO,10(R2)

ZI1Z1Z2|1Z2]<

ROB1

To
I Memory
Dest from
Dest *
1 |I10+R2

Reservation
Stations

Avoiding Memory Hazards

« WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

« RAW hazards through memory are maintained
by two restrictions:

1. not allowing a load to initiate the second step of its execution
If any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.
 these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2012/9/26 19

Exceptions and Interrupts

 IBM 360/91 invented “imprecise interrupts”
— Computer stopped at this PC; its likely close to this address
— Not so popular with programmers
— Also, what about Virtual Memory? (Not in IBM 360)

* Technique for both precise interrupts/exceptions
and speculation: in-order completion and In-
order commit

— If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

— This is exactly same as need to do with precise exceptions

* Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

— If a speculated instruction raises an exception, the exception
Is recorded in the ROB

— This is why reorder buffers are in all new processors

2012/9/26

20

Tomasulo With Reorder buffer:

FP Op|

Queue

Reorder Buffér
What about memory
hazards???

Registers

Dest
2 JADDD

R(F4) ,ROB1

L]

Reservation
Stations

Done?

M[10]

ST 0(R3),F4

<val2>

ADDD FO,F4,F6

M| 1€

LD F4,0(R3)

2NE F2,<.>

DIVQ F2,F10,F6

F1G

ADDD ®10,F4,FO

Oldest

LD FO,19(R2)

Dest
3 IDIVD]

—

Speculation: Register Renaming vs. ROB

e Alternative to ROB is a larger physical set of
registers combined with register renaming

— Extended registers replace function of both ROB and
reservation stations

e Instruction iIssue maps names of architectural
registers to physical register numbers in
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

 Most Out-of-Order processors today use
extended registers with renaming

2012/9/26 22

Reservation
Station and
ROB

Dispatch 6 uops
Fetch/decode 4 instructions

128 reservation station entries

Intel Nehalem Microarchitecture

quadnuple associative | nstruction Cache 32 KByte,
128-entry TLB4K 7 TLB-2/4M per thread

1123

1

Branch
Prefetch Buffer (16 B
etch Buffer (16 Bytes) Predic fon
globalbimodal,
Predecode & loop, indirect
Instuction Length Decoder mp
433333 |
Instruction Queve
18 %86 Instructions
Alignment
MacmOp Fusion
Complex |S|"U|e Simple Simple
Decoder oder Decoder Decoder]
Loop l l Y
Stream —| Decoded Instru:tnn Queue (28 pOP entn&sj-l— Micro
Decoder i 1 i i I nstruction
| M lcroOp Fusion Sequencer
2X 1 1 1 1 |
RE“E?;E'"" 2 x Register Allocation Table (RAT)
ngilleer — Reorder Buffer (128-entry) fused

Reservation Station (128—entry} fused

Result Bus

Uncore

Quick Path
Inter-
connect

Y

A

[

|

>
4x 20 Bit
6,4 GTIs

AAA

8 MByte

YvYYy

3 x 64 Bit
1,33 GTis

ocfuple associative Data Cache 32 KByte
B4-entry TLB-4K 32-entry TLB-2/4M

Sway,

prvate
L2-Cache

256 KByte

; 64 Byte
Cacheline,

512-entry

L2-TLB-4K

258

Issue Window-Based OOO Processor
_Architecture ...~~~

addrl, r2, r3 1 l addr2, r2, #4

Instruction Fetch and Decode

|

Register Rename

|

Issue
window

Execution Execution Execution Execution
unit unit unit unit

Issue window based

Dispatch 4
instructions
per clock
cycle,

fetch and
decode 2
instructions

Cortex A9
Single core
Processor

PL310
L2 Cache
Controller

IRQ/FIQ

PL390

Interrupt
Controller

1.

* AMBA 3 AXI 64bit &

Cortex A9 Microarchitecture(single core variant)

25

Performance beyond single thread ILP

 There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

e Explicit Thread Level Parallelism or Data
Level Parallelism

e Thread: process with own instructions and
data

— thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

 Data Level Parallelism: Perform identical
operations on data, and lots of data

2012/9/26 26

Thread Level Parallelism (TLP)

 |ILP exploits implicit parallel operations
within a loop or straight-line code
segment

« TLP explicitly represented by the use of
multiple threads of execution that are
Inherently parallel

 Goal: Use multiple instruction streams to
iImprove

1. Throughput of computers that run many
programs

2. Execution time of multi-threaded programs

e TLP could be more cost-effective to
exploit than ILP

2012/9/26 217

Do both ILP and TLP?

« TLP and ILP exploit two different kinds of

parallel structure in a program

 Could a processor oriented at ILP to
exploit TLP?

— functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

« Could the TLP be used as a source of
Independent instructions that might keep
the processor busy during stalls?

« Could TLP be used to employ the
functional units that would otherwise lie
Idle when insufficient ILP exists?

2012/9/26

28

Simultaneous Multi-threading ...
One tfireaa, 8 units]

Cycle M M FX FX FP FP BRCC

1

2

3

Lo

d/St

ore,

EX =

Fi

ed F

oint

FP

'wWo threads, 8 units
Cycle M M FX FX FP FP BRCC

1

2

3

= Floating P¢

tion

Cod|es

Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the
register sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

— Qut-of-order completion allows the threads to execute out of
order, and get better utilization of the HW
e Just adding a per thread renaming table and
keeping separate PCs

— Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

2012/9/26 30

Multithreaded Categories

—————————————————————————————————SSimuitancous-

1) Superscalar Fine-Grained Coarse-Grained Multlpro|cessmg Multithreadin
o 4O o o AONN DN
o B N [] N B
= o o N
o OO0 - A E HEN
N NN
S EEEE DX Y EEEE
S BN NESC §8S
— O Y EAN
c HEEC E EEN
= ENN
' H []
l D N ¥ ©

I Thread 1 Thread 3 Thread 5

N Thread 2 Thread 4 Idle slot

2012/9/26 31

Power 4

Power 5. 8 execution units In
out-of-order engine, each may

1 .
1 Instruction fetch

1
BR

: — MP 7 1SS | RF H Ex WB — Xfer
'—+| IF ~| IC 4 BP H LD/ST -
ke -w—lss—RF—Ea—Dc—{Fm:—WE—xfer CP -,
I

|
| FX !
I DI]—DIHDEHDEHKI:EIHGD}"—L{F"ISS_R_F'_Ex WB [~ Xfer ['

|
i
i Instruction crack and :
: group formation —| MP [T] IS5 [RF [FP |

|
1
! Fé WE|—}'~.'_t‘er}— :

|

: Interrupts and flushes :

- | IF H IC BF —
L * | CP
I / !
: D0 — DI H D2 H D3 HXfer— GD H- |
: Instru Instruction crack and [
: group formation - :
' cache :
| :
: Interrupts and flushes :
2 commits
Branch redirects Power 5 Out-of-order processing (al'C h ”tected
| - i
| . sancn 1 €QISTEN sets)
| s we -issH ar Hex F-—222_Twg |xter]-
: Load/store
E-- Ic pipeline
b MP 1SS H AF H EA —{DC —IFrnt —|WB [—{Xfer CP
" B—
E 22 : — D2 [D3 Hxfer GD MP [TISSRF [EX Fixed-point WB —Xfer—
: Group formation and wp ss - ar pipeline
' instruction decode I __F-\
i 2 fet C h (PC) ~| F& Floating- WB [—Xfer
21nitial decodes point pipeline

e e e e e e e o e e e e e e e A G S S A N S e S e e

Power 5 data flow ...

~

L

Branch prediction

Return| | Target
stack cache

Program Branch
counter Ristory
tables
= z Alternate
! Instruction Lo
: buffer 0
Instruction
cache
Instruction
translation
Thread
priority

Group formation
Instruction decods
Dispatch

-]

Shared-

register

mappers

Dynarmic
instruction
selection
I Shared
=hanad exacution
issue
gueLes
| Data Data
|FKLJI:|| Translation Cache
|
R [T (- Group Store
; * 0 . completion queue
|
|B>{U|
| Data Data
Read Write translation | |cache
shared- shared-
register files register files L

| I shared by two threads [Thread 0 resources [Thread 1 resources |

Why only 2 threads? With 4, one of the
shared resources (physical registers, cache,
memory bandwidth) would be prone to
bottleneck

L2

cache

Design Challenges in SMT

e Since SMT makes sense only with fine-grained
Implementation, impact of fine-grained scheduling
on single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

o Larger register file needed to hold multiple contexts

* Not affecting clock cycle time, especially in

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to commit
may be challenging

 Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

2012/9/26 35

In Conclusion ...

* Interrupts and Exceptions either interrupt the current
Instruction or happen between instructions
— Possibly large quantities of state must be saved before interrupting

« Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed

« Hardware techniques exist for precise exceptions even
In the face of out-of-order execution!
— Important enabling factor for out-of-order execution

2012/9/26 36

	�� Handout 2 – ILP: Part B �
	Review from Last Time #1
	Review from Last Time #2
	Outline
	Speculation to greater ILP
	Speculation to greater ILP
	Adding Speculation to Tomasulo
	Reorder Buffer (ROB)
	Reorder Buffer Entry
	Reorder Buffer operation
	Recall: 4 Steps of Speculative Tomasulo Algorithm
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Tomasulo With Reorder buffer:
	Avoiding Memory Hazards
	Exceptions and Interrupts
	Tomasulo With Reorder buffer:
	Speculation: Register Renaming vs. ROB
	Reservation Station and ROB
	Issue Window-Based OOO Processor Architecture
	Issue window based
	Performance beyond single thread ILP
	Thread Level Parallelism (TLP)
	Do both ILP and TLP?
	Simultaneous Multi-threading ...
	Simultaneous Multithreading (SMT)
	Multithreaded Categories
	Power 4
	投影片編號 33
	Power 5 data flow ...
	Design Challenges in SMT
	In Conclusion …

