Dr. Albert Liu

Kneron Inc




Convolutional Neural Network
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» Hardware Challenges

>

vV vV v v Vv

Massive parallel processing
Reconfigurable network
Network pruning

Memory bandwidth
Processing element

Sparse matrix support

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.




Intel Scalable Xeon Processor (CPU)

Intel Xeon Scalable Processor

Support 28 physical cores per sockets at 2.5GHz and up to 3.8 GHz at turbo mode

Six memory channels support up to 1.5Tb of DDR4 memory

1Mb private cache and 38.5Mb shared cache
Operate at 3.57 TFLOPS (FP32) up to 5.18 TOPS (INT8) per socket and max 41.44 max TOPS (I
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Train ResNet-50 in 31 minutes only

T. Allred, A Survey Paper Comparing modern CPU, GPU & TPU Hardware in Relation to Neural Network Trainin



Intel Scalable Xeon Processor (CPU)
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Intel Quick Path Interconnect (QPI) Ring Architecture Intel Ultra Path Interconnect (UPI) Mesh Architecture

» Upgrade Intel Quick Path Interconnect (QPI) ring architecture to Intel Ultra Path
Interconnect (UPI) mesh architecture to resolve the latency and bandwidth issues

» Integrate Caching and Home Agent together to form new Combined Home Agent (CHA)
to remove the memory access bottleneck

D. Mulnix, Intel® Xeon® Processor Scalable Family Technical Overview, Sept 2017.



Intel Scalable Xeon Processor (CPU)
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Two Socket Configuration

Eight Socket Configuration

Four Socket Configuration

Every core has its CHA that provides the routing information to reach destination address

Intel QPI allows one core to communicate with the other one only and it occupies the whole path duri
data transfer resulted in high latency.

Intel UPI allows the data transverse from one core to another through the shortest path using eithes
or horizontal paths. Multiple data can be transfer at the same time.

New approach provides 10.4 GT/s transfer speed with new packetization format



Intel Scalable Xeon Processor (CPU)
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AVX 512 Instruction Example

zmml

Develop new Intel Advanced Vector Extension 512 (AVX-512)

Support 2 floating point Fused Multiply Add (FMA) operation

Enhance doubleword/quadword integer and floating point vectorization operation on 512bit vectors (i.e
or 8 64bit elements), it significantly reduces additional load/store operations to improve the overal

» Utilize the computational resource using Math Kernel Library for Deep Neural Network (MKL-D
Compressed Sparse Row (CSR)* to eliminate the zero value computations. It optimize for Caffe, Te
Apache MXNet, PyTorch, CNTK, etc.

» Improve the training performance by 100x and inference by 39X

* Compressed Sparse Row (CSR) will be discussed more detail in Microsoft DNN processor



Nvidia GV100 Graphics Processing Unit

Tesla V100 accelerator with new Volta GV100 GPU architecture
Boot up arithmetic operation to 15 TFLOPS (FP32)

Speed up deep learning training by 12x and inference by 6x
Support 6 high speed NVLink2 to deliver 300 Gb/s bandwidth

Apply HBM2 (High Bandwidth Memory) to provide 900 Gb/s bandwidth through 3D-IC interposer
implementation

Total power: 300W
Nvidia Tesla V100 GPU Architecture, Nvidia, Aug 2017




Nvidia Tesla Graphics Processor

GPU

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) | GM200 (Maxwell) | GP100 (Pascal) | GV100 (Volta)
SMs 15 24 56 80

TPCs 15 24 28 40

FP32 Cores / SM 192 128 64 64

FP32 Cores / GPU 2880 3072 3584 5120

FP64 Cores / SM 64 4 32 32

FP64 Cores / GPU 960 96 1792 2560

Tensor Cores / SM NA NA NA 8

Tensor Cores / GPU NA NA NA 640

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1530 MHz
Peak FP32 TFLOPS?! S 6.8 106 15.7

Peak FP64 TFLOPS! 17 .21 5.3 7.8

Peak Tensor TFLOPS! NA NA NA 125

Texture Units 240 192 224 320

Memory Interface 384-bit GDDRS 384-bit GDDRS 4096-bit HBM2 | 4096-bit HBM2
Memory Size Upto 12 GB Up to 24 GB 16 GB 16 GB

L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size / | 16 KB/32 KB/48 | 96 KB 64 KB Configurable up
SM KB to 96 KB
Register File Size /SM | 256 KB 256 KB 256 KB 256KB
Register File Size / 3840KB 6144 KB 14336 KB 20480 KB
GPU

TDP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
GPU Die Size 551 mm? 601 mm?2 610 mm? 815 mm?
Manufacturing 28 nm 28 nm 16 nm FinFET+ 12 nm FFN
Process

! peak TFLOPS rates are based on GPU Boost Clock

Nvidia Tesla GPU Comparison




Nvidia Tesla Graphics Processor (GPU)

Volta GV100 Architecture with 84 SM Volta GV100 Stream Multiprocessor

» Six GPU Processing Cluster (GPC)
» 7 Texture Processing Cluster (TPC) and 14 Stream Multiprocessor (SM)

» 84 Volta Stream Multiprocessor (SM)
» 64 FP32 core, 64 INT32 core, 32 FP64 core, 8 Tensor Core, 4 Texture Unit

» Eight 512bit memory controller




Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

PASCAL VOLTA TENSOR CORES

Tensor Core 4x4x4 Matrix Operation Pascal Core vs Tensor Core

Tensor Core perform 4x4x4 matrix Multiply and Accumulate operation
D=AxB+C

Different from Pascal core, it multiplies the matrix row-by-row, Tensor core multiplies two
matrix at the same time using Simultaneous Multithreading (SMT) approach

It speeds up overall arithmetic operation: FP16(8X), INT8(16X) and INT4(32X)

Perform input FP16 multiplication result in FP32 full precision product then accumulate using
FP32 addition as well as other intermediate product




Nvidia Tesla Graphics Processor (GPU)

TENSOR SYNCHRONIZATION

Full Warp 16x16 Matrix Math

T

Composed Matrix Multiply and
Accumulate for 16x16 matrices

—————————————————————————— Result distributed across warp

$4650990000904008668585555558560

» Simultaneous Multithreading (SMT) first divides the matrix into multiple group, then
perform the matrix-multiply in particular patchwork pattern for all subset (fragments)
in parallel, each subset are not interacted with others

» After the matrix-multiply, it regroups the subset into same group to obtain the results
» With multiple tensor core, it speeds up the overall matrix operation

» The major drawback is the peak power increase

The Nvidia Titan V Deep Learning Deep Dive: It’s All About The Tensor Cores, AnandTech, Jul 2018.



Nvidia Tesla Graphics Processor (GPU)
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Google Tensor Processing Unit (TPU)

Die Benchmarked Servers
Model o Lo = op Measured | TOPS/s GB/s On-Chip Dies DRAM Si=e TDP Measured
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Tensor Processing Unit has 256x256 MAC for 8~64bit Multiplication
Employ 8Gb DRAM for Weight FIFO with Gen3 x16 bus

15x~30X faster than Nvidia K80 GPU

35X MAC and 3.5X memory more than Nvidia K80 GPU

180 TFLOPS via four 45 TFLOPS chip configuration

vV v . v v Vv



Google Tensor Processing Unit (TPU)

Local Unified Buffer for Matrix Multiply Unit
Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip

Host
Interf. 2%

Tensor Processing Unit Architecture

» Tensor Processing Unit (TPU) targets for TensorFlow for data center using FPGA approach

> Todconvert FP32 floating point to INT8 integer to speed up overall operation as well as power
reduction

» Architecture
» Systolic Array Matrix Multiplier Unit (MMU)
» 24Mb Unified Buffer (UB)
» 4Mb 32bit Accumulator (ACC)

» 16bit Activation Unit (AU)
Jouppi et al., In-Datacenter Performance Analysis of a Tensor Unit, ISCA, 2017.



Google Tensor Processing Unit (TPU)

Range Accuracy

1038 - 1038 .000006%
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Relative Energy Cost
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Operation: Energy
(pJ)
8b Add 0.03 |
16b Add 0.05
32b Add 0.1
16b FP Add 04
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult it
32b FP Mult 3.7

1640

32b SRAM Read (8KB)

7700

32b DRAM Read

640

N/A

N/A
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Cost of Operation

1

e

Relative Area Cost
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Quantize the input data from FP32 to INT8 with the advantage of speed, area and power.

Floating point hardware involves additional exponent alignment, normalization, rounding and long

carrier propagation

» The major drawback of quantization is the integer truncation errors and numerical instabilit

required Deep Learning to avoid numerical issues:

» Max pooling

» Normalization

B. Dally, Hardware for Deep Learning, Stanford and Nvidia, Jun 2016.




Google Tensor Processing Unit (TPU)
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TPU Multiply-Accumulate Unit (MAC) Systolic Array - Matrix Multiplication

» Systolic array is a highly pipeline computational network with less latency for Single Instruction
Multiple Data (SIMD) operation.

» It is analogy to how blood rhythmically flows through a biological heart as the data flows from
memory in a rhythmic fashion passing through processing element (PE)

» All the data is skewed and synchronized by global clock, then feed into the systolic array for
computation. The results are available in pipeline fashion with high throughput rate. It is suit
for matrix multiplication.



Microsoft Catapult DNN Processor

WCS 2.0 Server Blade Catapult V2

» Support Brainwave datacenter application using F
DDN processor (Catapult fabric)

» Local computational accelerator

» Network/storage accelerator

» Remote computational accelerator

» 8Gb DRAM supports for local computation

48 FPGA are organized into two half racks called pods
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A. Putnam et al., A Reconfigurable Fabric for Accelerating Large-Scale Data Center Services, ACM, 2014.



Microsoft Catapult DNN Processor

4 GB DDR3-1333 4 GB DDR3-1333
ECC SO-DIMM ECC SO-DIMM

A2 2

256 Mb
4

QSPI
Config
Flash

Catapult fabric is a synthesized using “soft
processor” approach, it can reconfigured
using low-level software library without
RTL recompilation for desired applications.

FPGA is divided into two partitions: shell
and role. The shell is reusable portion of
programmable logic common to all logic
and the role is configured to perform
different applications

Two DRAM controller supports independent
memory access, four high speed serial link
connected with neighboring FPGA

PCle core supports CPU DMA

Single-event upset (SEU) logic to reduce
the network errors caused by soft errors




Microsoft Catapult DNN Processor

Matrix-Vector iplier |q | Top Level s
Scheduler H

g oo £ I
i » Catapult fabric is based on Single-Threaded SIMD IS
Network = . . . . .
3 architecture with Matrix-Vector-Multiplier (MVM) to
2 matrix-vector or vector-vector operations
: » Vector arbitration network manages data transfer amo
oy 0. pipeline register files, DRAM and network |/0 queues
«----- Operations Functions Sub/Max
» Top level scheduler controls the function unit operation a
TRTm— - e vector arbitration network based on input instruction chai
Multiplier lleiEngine Register File

Fan-Out Tree

» MVM employs dot product engine (DPE), the matrix register
(MRF) and vector register file (VRF) for matrix computati

Tile Engine Tile Engine |... | Tile Engine

' ! !

" Accumulator >‘ Accumulator JJ Accumulator

Scheduler

DPE

xN

Fan-In Tree
xL

BFP to Float16
Converter

Float16 Vector Output

. Vector Output
XL = Number of Data Lanes
XN = Number of Dot Product Engines (DPEs)

Fowers et al., A Configurable Cloud-Scale DNN Processor for Real Time Al, ISCA 18




Microsoft Catapult DNN Processor
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Fowers et al., A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication, FCCM, 201

Intel Xeon processor applies Compressed Sparse Row
(CSR) approach for sparse matrix computation

Microsoft Catapult fabric is based on new sparse
vector multiplication scheme - Condensed Interle
Sparse Representation (CISR) encoding approach t
up matrix operation

CISR encoding consists of three arrays, the first enco
non-zero values, the second encodes their correspon
columns and the last one stores the length of each ro
and breaks the data dependences between rows and
simplifies the parallelization

This approach enables simultaneous multiply-accum
operations on multiple rows of matrix without the
complex schedulers and load-balancers



UCLA DCNN Accelerator
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Du et al., A Reconfigurable Streaming Deep Convolutional Neural Network Accelerator for Inter

Implement Deep Convolution Neural Network Accelerat
(DCNN) using 65nm process with 5mm? die area, it achi
152 GOPS peak throughput and 434 GOPS/W energy ef
at 350mwW

Apply streaming data flow to minimize data access an
achieve high energy efficiency

Enable parallel computation for multiple output features
without input memory bandwidth increment using interlea
architecture

Decompose large-size filter computation to small size one
achieve high reconfigurability without additional hardw
penalty

Additional pooling functional unit to reduce main
unit (CU) engine load



UCLA DCNN Accelerator
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» Afilter decomposition algorithm is used to compute any large kernel-sized (> 3x3) convolution
through only 3x3 sized CU to minimize hardware usage

» Additional zero padding weights will be added to extend the original kernel boundary to be
of three



UCLA DCNN Accelerator
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» 3x3 convolution engine (CU) consists of 9 processing elements (PE) to perform matrix
multiplication, an adder is used to combine the output. Then, the partial sum is stored i

Accumulator (ACC) Buffer

enable parallel processing

Accumulate (ACC) Buffer includes a Ping-Pang buffer formed by Buffer A and Buffer B.
buffers are switched back and forth between accumulator and Readout/Max pool b




MIT Eyeriss DCNN Processor

Link Clock  Core Clock = Configuration Bits Accelerator

Top-Level Control &= Config Scan Chain 12x14

PE Arra
Filter X P'g:fn‘:,'::’

— Bl Spad
Off-Chip [ MAC
DRAM M . T8 Conteol
64

A spatial architecture with 168 processing elements (PE) and 4 level memory hierarchy minimizes the data acc

Row Stationary (RS) dataflow approach reconfigures the spatial architecture to map CNN shape for energy
optimization

Network-on-Chip (NoC) architecture uses both multicast and point-to-point single cycle data delivery to ‘s
RS dataflow

Run-length compression (RLC) and PE data gating exploit the zero data statistics to improve energy

Chen et al., An Energy-Efficient Reconfigurable Accelerator for Deep Learning Convolution Networks, JSSC
Emer et al., Hardware Architectures for Deep Neural Networks, ISCA Tutorial, 2017



MIT Eyeriss DCNN Processor

Convolution
2D Filter Feature Map Output
1]2 " . _ . » Mapping 2D convolution to matrix multiplicati
3|4 B to fully utilize hardware resource
» Convert 2D filter to 1D vector
Multiplication » Map the feature map to Toeplitz matrix
Toeplitz Matrix » Rearrange 1D output vector to 2D matrix
1D Vector - » Extend to multiple channel filter operations

L2 s &a] X

Multiplication




MIT Eyeriss DCNN Processor
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MIT Eyeriss DCNN Processor

» Data movement optimization

» Row of filter weights are reused across PEs horizc
» Row of feature map values are reused across PEs d

» Row of partial sum are reused across PEs vertically

» Processing Element Mapping

» New mapping strategy is proposed to map a PE set into
nearby PE array for local data sharing and partial sum
accumulation

» The dimension of PE set are the function of the s
layer and independent of the PE array physi



MIT Eyeriss DCNN Processor

Multiple Feature Map

Feature Map 1

Filter Feature Map 1 Partial Sum 1
— | [ ¢ T -

Filter /
D Feature Map 2

\ _ Filter Feature Map 2 Partial Sum 2

Share same filter row

Filter Reuse

Filter Feature Map 1 & 2 Partial Sum 1 & 2
] * =
» Filter Reuse
» For multiple feature maps, the feature map rows are concatenated together

» Each PE perform 1D operation with same filter row




MIT Eyeriss DCNN Processor

Multiple Filter
Filter 1 CRLUIUUU T UL
Filter 1 : Feature Map Partial Sum 1
g T
D \ Feature Map / _ :‘.': _
Filter 2
/ \ Filter 2 Feature Map Partial Sum 2
=] ¢ I = I
Sm——

Share same feature map row

Filter Reuse

Filter 1 & 2 Feature Map Partial Sum 1 & 2
OTTTTTT] ~ ST - ]
» Feature Map Reuse

» For multiple filters, the filter rows are time interleaved

» Each PE perform 1D operation with same feature map




MIT Eyeriss DCNN Processor

Multiple Channel
Filter Feature Map Partial Sum
e * ] <
i / Rt ] = =]
\ Filter Feature Map Partial Sum
Crovi] * v =

Share same partial sum

Partial Sum Reuse

Filter 1 & 2 Feature Map Partial Sum 1 & 2
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» Partial Sum Reuse
» Both filter and feature map rows are time interleaved

» Each PE perform 1D operation with different channels and accumulate the partial sum together




MIT Eyeriss DCNN Processor

16
ltmap =]

Filt s
Scratch Pad Output
(224x16b SRAM) Psum
Input
Psum

Scratch Pad
(24x160 REG)

» DCNN PE datapath is pipelined into three stages, one stage for scratch pad access, the
other two are 16bit two-stage pipelined multiplier and adder, the multiplication results
are truncated from 32bit to 16bit.

» Data gating logic is used to exploit zero in feature map for power saving. If the zero
feature map is detected by zero buffer, the gating logic is disable to stop MAC
operating resulted in 45% power saving.



MIT Eyeriss DCNN Processor

Input: 0,0, 12,0,0,0,0, 53,0, 0, 22, ...
Run Level Run Level Run Level Term
Output (64b): (2| 12 [4| 53 [2| 22 |0

-+ >+ >4 >
5b 16b 5b 16b 5b 16b 1b

» Since RelLU function introduces many zeros in feature map by rectifying all negative
results to zero, then Run-Length Compression (RLC) approach is used to encode non-
zeros and reduce the memory bandwidth

» Consecutive zero with maximum run length of 31 are represented using 5bit number
followed by 16bit value for run starts, it is packed into a 64bit word to significantly
reduce the overall memory access

» RLC compression reduces memory access by 1.2X ~ 1.9X




MIT Eyeriss DCNN Processor

[Data, col], <row>

Multicast Controller
ID Ready Enable [Value]
: A

X-Bus 12  <1ag>Ready Enable [Value]

Y-Bus D (comes from config scan chain)

» Network-on-Chip (NoC) manages the data delivery between the Global Buffer (GLB) and PE array, it is
divided into Global Input Network (GIN) and Global Output Network (GON)

» GIN is optimized for a single-cycle multicast from GLB to PE array, it is implemented using two level of
hierarchy: Y-bus and X-bus.

» Vertical Y-bus consists of 12 horizontal X-bus, one at each row of PE array, each X-bus connects to
PEs in the row. Each X-bus has a row ID and each PE has a col ID. A unique ID is given to each gr
X-buses of PEs, they are all reconfigurable.

» Each data read from GLB with a (row,col) tag-ID and delivered to the destination. The tag-
decoded using Multicast Controller (MC)



MIT Eyeriss DCNN Processor
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GT Neurocube Architecture

57 Vault
Controller

Logic dic

» In-Memory Neuromorphic Processing

» Neurocube integrates a highly parallel, fine grained, computation layer within a 3D high density memory
package - Hybrid Memory Cube (HMC)

» Memory-Centric Neural Computing (MCNC)

» Apply programmable memory system to drive data flow enabled computation unit

» Programmable Neurosequence Generator (PNG)

» Programmable Neurosequence Generator (PNG) is a memory based programmable state machines to
generate PE connectivity as well as synaptic weights

Kim et al., Neurocube: A Programmable Digital Neuromorphic Architecture with High-Density 3D Memory, ISCA



GT Neurocube Architecture

» HMC connects multiple stacked DRAM dies
and single logic die using TSV

» Each DRAM die is divided into 16 partitions
to form a single vault and each vault is
connected to one Processing Element (PE)

» PE is comprised of 8 multiply-accumulator
(MAC) and computes the neuron with 3
cycles

» All PEs are interconnected by a 2D mesh
network through the single router. Each
router has 6 input channels and 6 output
channels (4 for neighboring routers and 2
for PE and memory)




GT Neurocube Architecture
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GT Neurocube Architecture

¢ DAL
4bit _4bit _16bit _ 4bit 8bit

» PNG receives 32b data and encapsulates

LRt i ] into two packets: source (SRC) - 4b for 16
, : DRAM vaults and destination (DST) 4b for
|0|2|rx?ll-‘|15|3| |0|2Ix51A|0I4I 16 PE
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Taepced Dty | 0
T ;

by c‘?umm » Each packet has a 4b MAC-ID for target
loaab[__T0cFErar— MAC and 8b OP-ID represents the

[MAC o espirC, MAC, operation sequence
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Stanford Tetris DNN

» Stanford Tetris DNN adopts MIT Eyeriss architecture with additional stacked 3D memory - Hybri
Memory Cube (HMC) to optimize memory access with significant power saving

» Replace the vault memory controller: crossbar switch with 3D Network-on-Chip (NoC) to i
memory efficiency

» Each PE contains a 16bit fixed point ALU and a small local register file of 512 to 1024 byt

Gao et al., TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory, ASPLOS 2017



Stanford Tetris DNN

» In-memory accumulation support

;

» Eliminate half of output feature map memory traffic
memory access result in power saving

pui/ippy

» Reduced output feature map transfer save vertical TS
traffic

Row decoder

» Combined back-to-back memory read/write access impro
row buffer utilization

PRMETEI St S— » Support both die and bank accumulation
Accumulation Die Accumulation

» Dataflow schedule

- filters » Implement row stationary dataflow to map 1D convolution to
utilize the local resource

€ Read one of t; ifmap
chunks into gbuf @ streamn, | @ Stream » Apply bypass ordering to bypass global buffer
i Global ofmaps into | filter weights
i regfile into regfile » IW bypass - avoid global buffer for input feature map an
(bypass gbuf) | (bypass gbuf) )
© Move n, ifmaps » OW bypass - avoid global buffer for output feature map an

into regfile

© Convolve » 10 bypass - avoid global buffer for input and output f

n; ifmaps to
get n, ofmaps



ICT DaDianNao Supercomputer
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» DaDianNao architecture resolves DianNao memory bandwidth limitation using massive
eDRAM closed to Neural Functional Unit (NFU)

» All the neurons are spread over different tiles that the Neural Functional Unit (NFU) can
process 16 input and 16 output neurons simultaneously

» In order to resolve refresh issue, 4 band eDRAM configuration is used to achieve high
internal bandwidth

» Support high speed interconnect using HyperTransport HT2.0

Chen et al., DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning, I1C
Chen et al., DaDianNao: A Machine-Learning Super-computer, MICRO, 2014




ICT DaDianNao Supercomputer

Stoge2 || Stage3
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H i gi » NFU consists of multiple computational blocks:
H >[5
2 : » Adder block (256 parallel adders)
8 >
® | 28 » Multiplier block (256 parallel multipliers)
i 3
& Eﬁ; i » Max block (16 max operations)

—_ — » Transfer block (16 piecewise linear interpolations)

» Each NFU can reconfigure as
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UofT Cnvlutin DNN Accelerator

cycle 1

NBin Subunit0
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» Modified from massively parallel DaDianNao Neural Functional Unit (NFU) with nearby memory support

Cnvlutin (CNV) architecture decouples original parallel multiplication lanes into finer-grain groups wit
new storing data structure

» Allow the multiplication lanes to skip over the zero input value and process the data in parallel

Albericio et al., Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing, ISCA, 2016



UofT Cnvlutin DNN Accelerator
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» Cnvlution DNN accelerator divides the synapse lanes into 16 independently operating subunits, eac
contains a single neuron lane and 16 synapse lanes

Each synapse lanes processes a different filters based on the new data format (neuron, offset)

CNV divides the window evenly into 16 slices, one per neuron lane. Each cycle, the data is fetche
neuron and processed independently, all the neuron keeps busy all the time. The overall perfor
significantly improved with less power.



UofT Cnvlutin DNN Accelerator

From NM Bank 0 Brick Buffer
Original Data [7|6|5]|0|i|0|0|
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Encoded Data| H
Offset | From NM Bank 15
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» CNV accelerator uses new Zero-Free Neuron Array format (ZFNAf) that enables CNV to avoid zero-value
neuron computation.

» ZFNAf is similar to CSR, it encodes neurons as (value,offset) pairs in groups called bricks. It corre
addresses the neuron array at a brick granularity. It also keeps the offset field short to avoid
overhead

» CNV employs the dispatcher unit that makes 16 neuron wide access to Neuron Memory (NM) in
and make all the neuron lanes busy all the time.



Energy Efficient Inference Engine (EIE)

Compressed 4-bit _ 16-bit
DNN Model| ~_|Virtual weight L¥% IBNT | Real weight
> Emded Weight | Lo Prediction
> e by >k IR Result
Input e S 4-bit Acsaina | 16-bit
Image Relative Index d Absolute Index

Efficient Inference Engine is a scalable array of processing elements (PEs)
Operate on the compressed DNN model with narrow weights (4bit)

Perform customized sparse matrix vector multiplication with distributed memory

vV v v Vv

Handle weight sharing with no loss of efficiency

Han et al., EIE: Efficient Inference Engine on Compressed Deep Neural Network, ISCA 2016.



Energy Efficient Inference Engine (EIE)

» Perform deep compression with combination

PEO (wgol 0 fwoal 0 fwoiunsiwos! € of pruning and weight sharing

PE1
PE2
PE3

» Exploit the dynamic sparsity through relative
indexing

» Apply the Compressed Sparse Column (CSC)
to encode the non-zero weights

» Perform sparse matrix and sparse vector
multiplication and broadcast to corresponding
PEs




Energy Efficient Inference Engine (EIE)

vV v v Vv

L e

Pointer Read Sparse Matrix Access
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Index
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Central Control Unit (CCU) broadcasts the non-zero weights and index to activation queue and perform loa
balance to each PE

Look up the sparse matrix index through Point Read Unit and feed the matrix into Sparse Matrix
Perform the matrix-vector multiply and accumulate using arithmetic unit
Activation Read/Write Unit contains two registers to accommodate the activation values for o

Leading None-Zero Detection Node (LNZD) distributes the non-zero results to all PEs



Deep Learning Accelerator Unit (DLAU)

DDR3 » Deep Learning Accelerator Unit (DLAU)
Nengy Froesesnt BARE employs the tile technique to partition large

Controller

scale input data for deep learning application

» DLAU system consists of embedded processor,
DMA module and DLAU accelerator

Data Bus (AXI-Stream)

. . » DLAU accelerator performs the deep learning
4 b | operations through three fully pipeline
| | | | processing units:
|
|

» Tilted Matrix Multiplication Unit (TMMU)
- === S » Part Sum Accumulation Unit (PSAU)

» Activation Function Acceleration Unit (AFAU)

Wang et al., DLAU: A Scalable Deep Learning Accelerator Unit on FPGA, TCAD, 2016.



Deep Learning Accelerator Unit (DLAU)
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TMMU is used to perform multiplication and
accumulation operations with binary pipelined adde

The input data is first transferred from DMA to TMMU
input FIFO and reads into BRAM, then data is passed
to interleaved register file for computation.

The results are transferred to TMMU output FIFO and
stream into PSAU for partial sum addition

With TMMU interleaved register, PSAU can calculat
the partial sum every cycle and significantly improv
overall throughput

Finally, AFAU perform the activation function usin
piecewise linear interpolation
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