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Convolutional Neural Network

 Hardware Challenges

 Massive parallel processing

 Reconfigurable network

 Network pruning

 Memory bandwidth

 Processing element

 Sparse matrix support

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.



Intel Scalable Xeon Processor (CPU)

 Support 28 physical cores per sockets at 2.5GHz and up to 3.8 GHz at turbo mode

 Six memory channels support up to 1.5Tb of DDR4 memory

 1Mb private cache and 38.5Mb shared cache

 Operate at 3.57 TFLOPS (FP32) up to 5.18 TOPS (INT8) per socket and max 41.44 max TOPS (INT8)

 Train ResNet-50 in 31 minutes only

Intel Xeon Scalable Processor 

T. Allred, A Survey Paper Comparing modern CPU, GPU & TPU Hardware in Relation to Neural Network Training and Interference, Nov 2018.



Intel Scalable Xeon Processor (CPU)

 Upgrade Intel Quick Path Interconnect (QPI) ring architecture to Intel Ultra Path 

Interconnect (UPI) mesh architecture to resolve the latency and bandwidth issues

 Integrate Caching and Home Agent together to form new Combined Home Agent (CHA) 

to remove the memory access bottleneck

D. Mulnix, Intel®  Xeon®  Processor Scalable Family Technical Overview, Sept 2017.

Intel Quick Path Interconnect (QPI) Ring Architecture Intel Ultra Path Interconnect (UPI) Mesh Architecture



Intel Scalable Xeon Processor (CPU)

 Every core has its CHA that provides the routing information to reach destination address

 Intel QPI allows one core to communicate with the other one only and it occupies the whole path during the 

data transfer resulted in high latency.

 Intel UPI allows the data transverse from one core to another through the shortest path using either vertical 

or horizontal paths. Multiple data can be transfer at the same time.

 New approach provides 10.4 GT/s transfer speed with new packetization format

Four Socket Configuration

Two Socket Configuration

Eight Socket Configuration



Intel Scalable Xeon Processor (CPU)

 Develop new Intel Advanced Vector Extension 512 (AVX-512)

 Support 2 floating point Fused Multiply Add (FMA) operation

 Enhance doubleword/quadword integer and floating point vectorization operation on 512bit vectors (i.e. 16 32bit 

or 8 64bit elements), it significantly reduces additional load/store operations to improve the overall runtime.

 Utilize the computational resource using Math Kernel Library for Deep Neural Network (MKL-DNN) that applies the 

Compressed Sparse Row (CSR)* to eliminate the zero value computations. It optimize for Caffe, TensorFlow, 

Apache MXNet, PyTorch, CNTK, etc.

 Improve the training performance by 100x and inference by 39X

AVX 512 Instruction Example

* Compressed Sparse Row (CSR) will be discussed more detail in Microsoft DNN processor



Nvidia Tesla Graphics Processor (GPU)

 Tesla V100 accelerator with new Volta GV100 GPU architecture

 Boot up arithmetic operation to 15 TFLOPS (FP32)

 Speed up deep learning training by 12x and inference by 6x

 Support 6 high speed NVLink2 to deliver 300 Gb/s bandwidth

 Apply HBM2 (High Bandwidth Memory) to provide 900 Gb/s bandwidth through 3D-IC interposer 

implementation

 Total power: 300W

Nvidia GV100 Graphics Processing Unit

Nvidia Tesla V100 GPU Architecture, Nvidia, Aug 2017



Nvidia Tesla Graphics Processor (GPU)

Nvidia Tesla GPU Comparison



Nvidia Tesla Graphics Processor (GPU)

 Six GPU Processing Cluster (GPC)

 7 Texture Processing Cluster (TPC) and 14 Stream Multiprocessor (SM)

 84 Volta Stream Multiprocessor (SM)

 64 FP32 core, 64 INT32 core, 32 FP64 core, 8 Tensor Core, 4 Texture Unit

 Eight 512bit memory controller

Volta GV100 Architecture with 84 SM Volta GV100 Stream Multiprocessor



Nvidia Tesla Graphics Processor (GPU)

 Tensor Core perform 4x4x4 matrix Multiply and Accumulate operation

D = A x B + C

 Different from Pascal core, it multiplies the matrix row-by-row, Tensor core multiplies two 

matrix at the same time using Simultaneous Multithreading (SMT) approach

 It speeds up overall arithmetic operation: FP16(8X), INT8(16X) and INT4(32X) 

 Perform input FP16 multiplication result in FP32 full precision product then accumulate using 

FP32 addition as well as other intermediate product

Pascal Core vs Tensor CoreTensor Core 4x4x4 Matrix Operation



Nvidia Tesla Graphics Processor (GPU)

 Simultaneous Multithreading (SMT) first divides the matrix into multiple group, then 

perform the matrix-multiply in particular patchwork pattern for all subset (fragments) 

in parallel, each subset are not interacted with others

 After the matrix-multiply, it regroups the subset into same group to obtain the results

 With multiple tensor core, it speeds up the overall matrix operation

 The major drawback is the peak power increase  

The Nvidia Titan V Deep Learning Deep Dive: It’s All About The Tensor Cores, AnandTech, Jul 2018.



Nvidia Tesla Graphics Processor (GPU)

Multithreading Mapping

Multithreading Re-grouping Multithreading Computation



Google Tensor Processing Unit (TPU)

 Tensor Processing Unit has 256x256 MAC for 8~64bit Multiplication

 Employ 8Gb DRAM for Weight FIFO with Gen3 x16 bus

 15x~30X faster than Nvidia K80 GPU

 35X MAC and 3.5X memory more than Nvidia K80 GPU

 180 TFLOPS via four 45 TFLOPS chip configuration



Google Tensor Processing Unit (TPU)

 Tensor Processing Unit (TPU) targets for TensorFlow for data center using FPGA approach

 To convert FP32 floating point to INT8 integer to speed up overall operation as well as power 
reduction

 Architecture

 Systolic Array Matrix Multiplier Unit (MMU)

 24Mb Unified Buffer (UB)

 4Mb 32bit Accumulator (ACC)

 16bit Activation Unit (AU)

Tensor Processing Unit Architecture

Jouppi et al., In-Datacenter Performance Analysis of a Tensor Unit, ISCA, 2017.  



Google Tensor Processing Unit (TPU)

 Quantize the input data from FP32 to INT8 with the advantage of speed, area and power. 

 Floating point hardware involves additional exponent alignment, normalization, rounding and long 

carrier propagation

 The major drawback of quantization is the integer truncation errors and numerical instability, it is 

required Deep Learning to avoid numerical issues:

 Max pooling

 Normalization

Number Format Cost of Operation

B. Dally, Hardware for Deep Learning, Stanford and Nvidia, Jun 2016. 



Google Tensor Processing Unit (TPU)

 Systolic array is a highly pipeline computational network with less latency for Single Instruction 
Multiple Data (SIMD) operation. 

 It is analogy to how blood rhythmically flows through a biological heart as the data flows from 
memory in a rhythmic fashion passing through processing element (PE)

 All the data is skewed and synchronized by global clock, then feed into the systolic array for 
computation. The results are available in pipeline fashion with high throughput rate. It is suitable 
for matrix multiplication. 

TPU Multiply-Accumulate Unit (MAC) Systolic Array – Matrix Multiplication



Microsoft Catapult DNN Processor

 Support Brainwave datacenter application using FPGA 

DDN processor (Catapult fabric) 

 Local computational accelerator

 Network/storage accelerator

 Remote computational accelerator

 8Gb DRAM supports for local computation

 48 FPGA are organized into two half racks called pods 

and connected using 6x8 tours network topology

A. Putnam et al., A Reconfigurable Fabric for Accelerating Large-Scale Data Center Services, ACM, 2014.



Microsoft Catapult DNN Processor

 Catapult fabric is a synthesized using “soft 
processor” approach, it can reconfigured 
using low-level software library without 
RTL recompilation for desired applications.

 FPGA is divided into two partitions: shell 
and role. The shell is reusable portion of 
programmable logic common to all logic 
and the role is configured to perform 
different applications

 Two DRAM controller supports independent 
memory access, four high speed serial link 
connected with neighboring FPGA

 PCIe core supports CPU DMA

 Single-event upset (SEU) logic to reduce 
the network errors caused by soft errors



Microsoft Catapult DNN Processor

 Catapult fabric is based on Single-Threaded SIMD ISA 

architecture with Matrix-Vector-Multiplier (MVM) to perform 

matrix-vector or vector-vector operations

 Vector arbitration network manages data transfer among 

pipeline register files, DRAM and network I/O queues

 Top level scheduler controls the function unit operation and 

vector arbitration network based on input instruction chains

 MVM employs dot product engine (DPE), the matrix register file 

(MRF) and vector register file (VRF) for matrix computation

Fowers et al., A Configurable Cloud-Scale DNN Processor for Real Time AI, ISCA 18



Microsoft Catapult DNN Processor

 Intel Xeon processor applies Compressed Sparse Row 
(CSR) approach for sparse matrix computation

 Microsoft Catapult fabric is based on new sparse matrix-
vector multiplication scheme – Condensed Interleaved 
Sparse Representation (CISR) encoding approach to speed 
up matrix operation

 CISR encoding consists of three arrays, the first encodes 
non-zero values, the second encodes their corresponding 
columns and the last one stores the length of each row 
and breaks the data dependences between rows and 
simplifies the parallelization

 This approach enables simultaneous multiply-accumulate 
operations on multiple rows of matrix without the 
complex schedulers and load-balancers

Fowers et al., A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication, FCCM, 2014.



UCLA DCNN Accelerator

 Implement Deep Convolution Neural Network Accelerator 

(DCNN) using 65nm process with 5mm2 die area, it achieve 

152 GOPS peak throughput and 434 GOPS/W energy efficiency 

at 350mW

 Apply streaming data flow to minimize data access and 

achieve high energy efficiency

 Enable parallel computation for multiple output features 

without input memory bandwidth increment using interleaving 

architecture

 Decompose large-size filter computation to small size one to 

achieve high reconfigurability without additional hardware 

penalty

 Additional pooling functional unit to reduce main convolution 

unit (CU) engine load

Du et al., A Reconfigurable Streaming Deep Convolutional Neural Network Accelerator for Internet of Things, IEEE, 2018



UCLA DCNN Accelerator

 A filter decomposition algorithm is used to compute any large kernel-sized (> 3x3) convolution 

through only 3x3 sized CU to minimize hardware usage

 Additional zero padding weights will be added to extend the original kernel boundary to be multiple 

of three 



UCLA DCNN Accelerator

 3x3 convolution engine (CU) consists of 9 processing elements (PE) to perform matrix 

multiplication, an adder is used to combine the output. Then, the partial sum is stored in 

Accumulator (ACC) Buffer

 Accumulate (ACC) Buffer includes a Ping-Pang buffer formed by Buffer A and Buffer B. Two 

buffers are switched back and forth between accumulator and Readout/Max pool blocks to 

enable parallel processing



MIT Eyeriss DCNN Processor

 A spatial architecture with 168 processing elements (PE) and 4 level memory hierarchy minimizes the data access

 Row Stationary (RS) dataflow approach reconfigures the spatial architecture to map CNN shape for energy 

optimization

 Network-on-Chip (NoC) architecture uses both multicast and point-to-point single cycle data delivery to support 

RS dataflow

 Run-length compression (RLC) and PE data gating exploit the zero data statistics to improve energy efficiency

Chen et al., An Energy-Efficient Reconfigurable Accelerator for Deep Learning Convolution Networks, JSSC, 2016.

Emer et al., Hardware Architectures for Deep Neural Networks, ISCA Tutorial, 2017



MIT Eyeriss DCNN Processor

 Mapping 2D convolution to matrix multiplication 

to fully utilize hardware resource

 Convert 2D filter to 1D vector

 Map the feature map to Toeplitz matrix

 Rearrange 1D output vector to 2D matrix

 Extend to multiple channel filter operations



MIT Eyeriss DCNN Processor



MIT Eyeriss DCNN Processor

 Data movement optimization

 Row of filter weights are reused across PEs horizontally

 Row of feature map values are reused across PEs diagonally

 Row of partial sum are reused across PEs vertically

 Processing Element Mapping

 New mapping strategy is proposed to map a PE set into 

nearby PE array for local data sharing and partial sum 

accumulation

 The dimension of PE set are the function of the shape of 

layer and independent of the PE array physical dimensin



MIT Eyeriss DCNN Processor

 Filter Reuse

 For multiple feature maps, the feature map rows are concatenated together

 Each PE perform 1D operation with same filter row



MIT Eyeriss DCNN Processor

 Feature Map Reuse

 For multiple filters, the filter rows are time interleaved

 Each PE perform 1D operation with same feature map



MIT Eyeriss DCNN Processor

 Partial Sum Reuse

 Both filter and feature map rows are time interleaved

 Each PE perform 1D operation with different channels and accumulate the partial sum together



MIT Eyeriss DCNN Processor

 DCNN PE datapath is pipelined into three stages, one stage for scratch pad access, the 
other two are 16bit two-stage pipelined multiplier and adder, the multiplication results 
are truncated from 32bit to 16bit.

 Data gating logic is used to exploit zero in feature map for power saving. If the zero 
feature map is detected by zero buffer, the gating logic is disable to stop MAC 
operating resulted in 45% power saving.



MIT Eyeriss DCNN Processor

 Since ReLU function introduces many zeros in feature map by rectifying all negative 

results to zero, then Run-Length Compression (RLC) approach is used to encode non-

zeros and reduce the memory bandwidth

 Consecutive zero with maximum run length of 31 are represented using 5bit number 

followed by 16bit value for run starts, it is packed into a 64bit word to significantly 

reduce the overall memory access

 RLC compression reduces memory access by 1.2X ~ 1.9X



MIT Eyeriss DCNN Processor

 Network-on-Chip (NoC) manages the data delivery between the Global Buffer (GLB) and PE array, it is 

divided into Global Input Network (GIN) and Global Output Network (GON)

 GIN is optimized for a single-cycle multicast from GLB to PE array, it is implemented using two level of 

hierarchy: Y-bus and X-bus.

 Vertical Y-bus consists of 12 horizontal X-bus, one at each row of PE array, each X-bus connects to 14 

PEs in the row. Each X-bus has a row ID and each PE has a col ID. A unique ID is given to each group of 

X-buses of PEs, they are all reconfigurable.

 Each data read from GLB with a (row,col) tag-ID and delivered to the destination. The tag-ID is 

decoded using Multicast Controller (MC)



MIT Eyeriss DCNN Processor

 AlexNet with different tag-ID is used as 

an example

 DCNN maps the logical array to physical 

processing elements using replication 

and folding

 Unused PE are clock gated for power 

reduction



GT Neurocube Architecture

 In-Memory Neuromorphic Processing

 Neurocube integrates a highly parallel, fine grained, computation layer within a 3D high density memory 
package – Hybrid Memory Cube (HMC) 

 Memory-Centric Neural Computing (MCNC)

 Apply programmable memory system to drive data flow enabled computation unit

 Programmable Neurosequence Generator (PNG)

 Programmable Neurosequence Generator (PNG) is a memory based programmable state machines to 
generate PE connectivity as well as synaptic weights

Kim et al., Neurocube: A Programmable Digital Neuromorphic Architecture with High-Density 3D Memory, ISCA, 2016.



GT Neurocube Architecture

 HMC connects multiple stacked DRAM dies 

and single logic die using TSV

 Each DRAM die is divided into 16 partitions 

to form a single vault and each vault is 

connected to one Processing Element (PE)

 PE is comprised of 8 multiply-accumulator 

(MAC) and computes the neuron with 3 

cycles

 All PEs are interconnected by a 2D mesh 

network through the single router. Each 

router has 6 input channels and 6 output 

channels (4 for neighboring routers and 2 

for PE and memory)



GT Neurocube Architecture

 Programmable Neurosequence

Generator (PNG) consists of 

 Address generator

 Configuration registers

 Non-linear activation function Look-Up-

Table (LUT)

 PNG computes the address through 

three loops

 Loop across all neurons in the layer

 Loop across all neurons connection

 Loop across all MACs



GT Neurocube Architecture

 PNG receives 32b data and encapsulates 

into two packets: source (SRC) – 4b for 16 

DRAM vaults and destination (DST) 4b for 

16 PE

 Each packet has a 4b MAC-ID for target 

MAC and 8b OP-ID represents the 

operation sequence

 If packet OP-ID is same as current OP-

counter, it moves to temporal buffer, 

otherwise, it moves to cache memory

 If all temporal buffer is filled, MAC stars 

computation and updates the operation 

counter



Stanford Tetris DNN 

 Stanford Tetris DNN adopts MIT Eyeriss architecture with additional stacked 3D memory – Hybrid 

Memory Cube (HMC) to optimize memory access with significant power saving

 Replace the vault memory controller: crossbar switch with 3D Network-on-Chip (NoC) to improve 

memory efficiency

 Each PE contains a 16bit fixed point ALU and a small local register file of 512 to 1024 bytes

Gao et al., TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory, ASPLOS 2017



Stanford Tetris DNN 

 In-memory accumulation support

 Eliminate half of output feature map memory traffic to reduce 
memory access result in power saving 

 Reduced output feature map transfer save vertical TSV memory 
traffic

 Combined back-to-back memory read/write access improve the 
row buffer utilization

 Support both die and bank accumulation 

 Dataflow schedule

 Implement row stationary dataflow to map 1D convolution to 
utilize the local resource

 Apply bypass ordering to bypass global buffer

 IW bypass - avoid global buffer for input feature map and filter

 OW bypass – avoid global buffer for output feature map and filter

 IO bypass   - avoid global buffer for input and output feature map



ICT DaDianNao Supercomputer

 DaDianNao architecture resolves DianNao memory bandwidth limitation using massive 

eDRAM closed to Neural Functional Unit (NFU)

 All the neurons are spread over different tiles that the Neural Functional Unit (NFU) can 

process 16 input and 16 output neurons simultaneously

 In order to resolve refresh issue, 4 band eDRAM configuration is used to achieve high 

internal bandwidth

 Support high speed interconnect using HyperTransport HT2.0

Chen et al., DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning, ICAS, 2014

Chen et al., DaDianNao: A Machine-Learning Super-computer, MICRO, 2014



ICT DaDianNao Supercomputer

 NFU consists of multiple computational blocks:

 Adder block (256 parallel adders)

 Multiplier block (256 parallel multipliers)

 Max block (16 max operations)

 Transfer block (16 piecewise linear interpolations)

 Each NFU can reconfigure as

 Classifier/Convolution

 Pooling

 Local Response Normalization



UofT Cnvlutin DNN Accelerator

Albericio et al., Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing, ISCA, 2016 

 Modified from massively parallel DaDianNao Neural Functional Unit (NFU) with nearby memory support

 Cnvlutin (CNV) architecture decouples original parallel multiplication lanes into finer-grain groups with 

new storing data structure

 Allow the multiplication lanes to skip over the zero input value and process the data in parallel



UofT Cnvlutin DNN Accelerator

 Cnvlution DNN accelerator divides the synapse lanes into 16 independently operating subunits, each 

contains a single neuron lane and 16 synapse lanes

 Each synapse lanes processes a different filters based on the new data format (neuron, offset)

 CNV divides the window evenly into 16 slices, one per neuron lane. Each cycle, the data is fetched into  

neuron and processed independently, all the neuron keeps busy all the time. The overall performance is 

significantly improved with less power.



UofT Cnvlutin DNN Accelerator

 CNV accelerator uses new Zero-Free Neuron Array format (ZFNAf) that enables CNV to avoid zero-value 
neuron computation.

 ZFNAf is similar to CSR, it encodes neurons as (value,offset) pairs in groups called bricks. It correctly 
addresses the neuron array at a brick granularity. It also keeps the offset field short to avoid the offset 
overhead

 CNV employs the dispatcher unit that makes 16 neuron wide access to Neuron Memory (NM) in parallel 
and make all the neuron lanes busy all the time.



Energy Efficient Inference Engine (EIE)

 Efficient Inference Engine is a scalable array of processing elements (PEs)

 Operate on the compressed DNN model with narrow weights (4bit)

 Perform customized sparse matrix vector multiplication with distributed memory

 Handle weight sharing with no loss of efficiency

Han et al., EIE: Efficient Inference Engine on Compressed Deep Neural Network, ISCA 2016.



Energy Efficient Inference Engine (EIE)

 Perform deep compression with combination 

of pruning and weight sharing

 Exploit the dynamic sparsity through relative 

indexing

 Apply the Compressed Sparse Column (CSC) 

to encode the non-zero weights

 Perform sparse matrix and sparse vector 

multiplication and broadcast to corresponding 

PEs



Energy Efficient Inference Engine (EIE)

 Central Control Unit (CCU) broadcasts the non-zero weights and index to activation queue and perform load 

balance to each PE

 Look up the sparse matrix index through Point Read Unit and feed the matrix into Sparse Matrix Read Unit

 Perform the matrix-vector multiply and accumulate using arithmetic unit

 Activation Read/Write Unit contains two registers to accommodate the activation values for operation

 Leading None-Zero Detection Node (LNZD) distributes the non-zero results to all PEs



Deep Learning Accelerator Unit (DLAU)

 Deep Learning Accelerator Unit (DLAU) 
employs the tile technique to partition large 
scale input data for deep learning application

 DLAU system consists of embedded processor, 
DMA module and DLAU accelerator

 DLAU accelerator performs the deep learning 
operations through three fully pipeline 
processing units:

 Tilted Matrix Multiplication Unit (TMMU)

 Part Sum Accumulation Unit (PSAU)

 Activation Function Acceleration Unit (AFAU)

Wang et al., DLAU: A Scalable Deep Learning Accelerator Unit on FPGA, TCAD, 2016.



Deep Learning Accelerator Unit (DLAU)

 TMMU is used to perform multiplication and 

accumulation operations with binary pipelined adder. 

 The input data is first transferred from DMA to TMMU 

input FIFO and reads into BRAM, then data is passed 

to interleaved register file for computation.

 The results are transferred to TMMU output FIFO and 

stream into PSAU for partial sum addition

 With TMMU interleaved register, PSAU can calculate 

the partial sum every cycle and significantly improve 

overall throughput

 Finally, AFAU perform the activation function using 

piecewise linear interpolation



Thanks You

Machine Learning
Hello!! R2-D2


