
Kneron Confidential

 Kneron Inc.

Document Name: Kneron USB Device Mode Driver API

USB Device Mode Driver API
Kneron Inc

Engineering Design Document

Kneron Inc

Kneron Confidential

 Kneron Inc.

Table of Contents

1 Introduction... 2

2 Reference ... 2

3 Acronyms, Abbreviations, Definitions .. 2

4 Software Architecture .. 3

4.1 Programming Sequence .. 4

4.2 USB events notification ... 5

5 USBD Driver API ... 7

6 Example Code ... 15

Kneron USBD Driver API

 Kneron Inc. 2

1 Introduction

This document defines Kneron USB device mode driver API, it is designed for Kneron SoC firmware

developers to create their own USB function driver by leveraging kdp_usbd API functions.

As of now, the USBD driver supports only USB2.0 and 3 transfer types – Control transfer, Bulk transfer

and interrupt transfer.

2 Reference

Kneron Mozart Design Specification, Rev. 0.5, Faraday, Feb. 2019

FOTG210_Block_Data_Sheet_v1.33, Faraday, December. 2018

3 Acronyms, Abbreviations, Definitions

USB – Universal Serial Bus.

USBD – USB device mode driver implementation.

User thread – User’s application thread which can be notified with USB events.

DMA - Direct Memory Access, which is a separated hardware for data transfer without CPU intervention.

FIFO – USB hardware internal buffer to receive or transmit data from or to the host.

Kneron USBD Driver API

 Kneron Inc. 3

4 Software Architecture

The USBD driver API implementation is based on an event-driven architecture.

For async mode API usage, to get notified of specific USB events, user of USBD API needs to create a user

thread to listen events by waiting for a specified thread flag (CMSIS-RTOS v2) which is registered at early

time.

Listening events is optional for sync mode usage by not setting notification for events and use synchronous

mode API to perform transfers.

Once user is notified with the specified thread flag, a get-event API can be used to retrieve the exact USB

event and take a corresponding action for it.

USBD handles hardware interrupts directly in ISR context, based on USB protocol to accomplish USB

events and transfer work, the working model is shown as below, taking a Bulk Out transfer for example.

Kneron USBD Driver API

 Kneron Inc. 4

There are two layers of software for a complete USB device mode driver (software layer block diagram is

shown as below), one is USBD driver itself which provides a set of generic APIs with prefix “kdp_usbd”

on them, another is the function driver which can leverage USBD API to implement.

At present there is none of class drivers like MSC or CDC come with the USBD implementation, however

users can implement their own function driver for custom use cases.

4.1 Programming Sequence

This section describes a basic programming sequence for how to leverage the kdp_usbd API.

Following sequences are necessary for USBD initialization. There are two ways of initialization sequence,

one for user who adapts event-driven model and another is for user who do not care about events and prefer

to use synchronous functions.

Event-driven (asynchronous) way:

kdp_usbd_init() should be the first call for USBD driver initialization and to invoke the driver thread.

kdp_usbd_set_notify() is used to register a thread flag (based on CMSIS RTOSv2) to USBD for USB

event notifications.

kdp_usbd_set_device_descriptor() is to set up USB protocol descriptors for device, configuration,

interface, endpoint and others.

USBD driver API provides specific data structs for these descriptors, users must statically declare

instances of these descriptors in memory which will be used when being enumerated by a USB host.

At present some limitations should be noted:

1. Support only one configuration descriptor, one interface descriptor and 4 endpoint descriptors.

2. Isochronous transfer is not supported yet.

3. If enabling log message through USB then one endpoint must be reserved for USBD internal use.

Kneron USBD Driver API

 Kneron Inc. 5

kdp_usbd_set_device_qualifier_descriptor() is to set other speed when acting in high-speed, users can

set a meaningful content in this descriptor.

kdp_usbd_enable_log_endpoint() is optional, to enable an internal endpoint which is interrupt-in for

log message transfer to the host. And in host side there should be a debug console program to receive

logs and print it out on the screen or other purposes.

kdp_usbd_set_enable() Once above calls are done properly, users can invoke this function to enable

the device and after that it can start to be seen and be enumerated by a USB host.

Once device is enabled and enumerated by a host, some USB events may start appearing, user must start

to wait for a specified thread flag to be notified of USB events through the osThreadFlagsWait(),

events will be introduced in next section.

kdp_usbd_get_event() when awake from osThreadFlagsWait() due to USBD notification, users can

use this function to retrieve which event is appearing and then take the corresponding action.

While performing transfers, user can also get notified through this call such as bulk-in notification or

transfer complete notifications.

Non-event-driven (synchronous) way:

kdp_usbd_init() same as event-driven section described.

kdp_usbd_set_device_descriptor() same as event-driven section described.

Kdp_usbd_set_device_qualifier_descriptor() same as event-driven section described.

kdp_usbd_enable_log_endpoint() same as event-driven section described.

kdp_usbd_set_enable() same as event-driven section described.

kdp_usbd_is_dev_configured() allow user to check if device is configured by a host then can perform

data transfer functions.

Note that if user does not set notification through the kdp_usbd_set_notify() call, then there is no way

to get notified when a host send data to the device hence only asynchronous transfer API can be used.

4.2 USB events notification

This section describes USB events notified from USBD driver

The data struct to describe an USB event is as below:

Kneron USBD Driver API

 Kneron Inc. 6

typedef struct

{

 kdp_usbd_event_name_e ename;

 union {

 kdp_usbd_setup_packet_t setup;

 struct

 {

 uint32_t data1;

 uint32_t data2;

 };

 };

} kdp_usbd_event_t;

There is an internal queue for saving events of this data struct type, the length is 30 at present.

The ‘ename’ indicates the event name, will be listed later, for non-vendor request of control transfer, data1

or data2 represent different meanings for different ename, will explain later; and for vendor request of

control transfer, the ‘setup’ should be used, it is a 8-bytes SETUP packet.

KDP_USBD_EVENT_BUS_RESET indicates the device detected a USB bus reset, user application can

use this to manage things or just ignore it.

KDP_USBD_EVENT_BUS_SUSPEND indicates the device detected a USB suspend, user application

can use this to do power management things or just ignore it if not supported.

KDP_USBD_EVENT_BUS_RESUME indicates the device detected a USB resume, user application can

use this to do power management things or just ignore it if not supported.

KDP_USBD_EVENT_SETUP_PACKET indicates the device received a control transfer SETUP packet

for class/vendor type request, the ‘setup’ filed of event should be used in this case.

KDP_USBD_EVENT_DEV_CONFIGURED indicates the device is enumerated by a host and is

configured, data1 values represent the configuration number. At present, USBD supports only one

configuration so the number should be ‘1’.

KDP_USBD_EVENT_TRANSFER_OUT indicates the host is issuing an Out transfer to the device,

data1 represents the endpoint for the transfer. While receiving this event, user may need to prepare a buffer

to commit through the kdp_usbd_bulk_receive_async() and then wait for either

KDP_USBD_EVENT_TRANSFER_DONE or error events.

KDP_USBD_EVENT_TRANSFER_DONE indicates USBD has done the transfer, then the data in user

buffer is usable. The data1 represents the endpoint address and data2 represent the transferred bytes, note

that the transferred size could be smaller than buffer size committed because the transfer size is actually

defined by the host.

KDP_USBD_EVENT_TRANSFER_BUF_FULL indicates the buffer committed by user has been

fulfilled, this does not mean the host has complete the transfer, there may be more data to go, only

KDP_USBD_EVENT_TRANSFER_DONE means the transfer is complete.

KDP_USBD_EVENT_TRANSFER_TERMINATED indicates the transfer is terminated due to some

errors. It can happen when resetting the endpoint which is transferring data or other conditions.

KDP_USBD_EVENT_DMA_ERROR indicates something with DMA transfer, user may need to reset

device to recover it.

Kneron USBD Driver API

 Kneron Inc. 7

5 USBD Driver API

kdp_status_e kdp_usbd_init(void)

Parameters Description

None None

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

This function will initialize USBD driver and create an internal driver thread for handling USB

interrupts and events.

kdp_status_e kdp_usbd_deinit(void)

Parameters Description

None None

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

kdp_status_e kdp_usbd_reset_device(void)

Parameters Description

None None

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

This function reset the whole USBD driver including events, endpoints, interrupt settings and

register settings and will let host to re-enumerate the device.

kdp_status_e kdp_usbd_set_device_descriptor(

 kdp_usbd_speed_e speed,

 kdp_usbd_device_descriptor_t *dev_desc)

Parameters Description

speed KDP_USBD_HIGH_SPEED for HS

KDP_USBD_FULL_SPEED for HF (not yet supported)

Kneron USBD Driver API

 Kneron Inc. 8

dev_desc A pointer to a user-defined device descriptor which contains configuration

descriptor, interface descriptor and endpoint descriptors, refer to following

struct type:

kdp_usbd_device_descriptor_t

kdp_usbd_config_descriptor_t

kdp_usbd_interface_descriptor_t

kdp_usbd_endpoint_descriptor_t

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

typedef enum {

 KDP_USBD_HIGH_SPEED,

 KDP_USBD_FULL_SPEED

}kdp_usbd_speed_e;

/* Endpoint descriptor */

typedef struct __attribute__((__packed__)) {

 uint8_t bLength;

 uint8_t bDescriptorType;

 uint8_t bEndpointAddress;

 uint8_t bmAttributes;

 uint16_t wMaxPacketSize;

 uint8_t bInterval;

}kdp_usbd_endpoint_descriptor_t;

/* Interface descriptor */

typedef struct __attribute__((__packed__)) {

 uint8_t bLength;

 uint8_t bDescriptorType;

 uint8_t bInterfaceNumber;

 uint8_t bAlternateSetting;

 uint8_t bNumEndpoints;

 uint8_t bInterfaceClass;

 uint8_t bInterfaceSubClass;

 uint8_t bInterfaceProtocol;

 uint8_t iInterface;

 // support maximum number of endpoint is 4, bNumEndpoints should be <= 4

 kdp_usbd_endpoint_descriptor_t *endpoint[MAX_USBD_ENDPOINT];

}kdp_usbd_interface_descriptor_t;

/* Configuration descriptor */

typedef struct __attribute__((__packed__)) {

 uint8_t bLength;

 uint8_t bDescriptorType;

 uint16_t wTotalLength;

 uint8_t bNumInterfaces;

 uint8_t bConfigurationValue;

 uint8_t iConfiguration;

 uint8_t bmAttributes;

 uint8_t MaxPower;

 // support maximum number of interface is 2, bNumInterfaces should be <= 2

Kneron USBD Driver API

 Kneron Inc. 9

 kdp_usbd_interface_descriptor_t *interface[MAX_USBD_INTERFACE];

}kdp_usbd_config_descriptor_t;

/* Device descriptor */

typedef struct __attribute__((__packed__)) {

 uint8_t bLength;

 uint8_t bDescriptorType;

 uint16_t bcdUSB;

 uint8_t bDeviceClass;

 uint8_t bDeviceSubClass;

 uint8_t bDeviceProtocol;

 uint8_t bMaxPacketSize0;

 uint16_t idVendor;

 uint16_t idProduct;

 uint16_t bcdDevice;

 uint8_t iManufacturer;

 uint8_t iProduct;

 uint8_t iSerialNumber;

 uint8_t bNumConfigurations;

 // support only 1 configuration, so bNumConfigurations should be <= 1

 kdp_usbd_config_descriptor_t *config[MAX_USBD_CONFIG];

}kdp_usbd_device_descriptor_t;

Users may set up descriptors through this function which are necessary for USB enumerations.

kdp_status_e kdp_usbd_set_device_qualifer_descriptor(

 kdp_usbd_speed_e speed,

 kdp_usbd_device_qualifier_descriptor_t *dev_qual_desc)

Parameters Description

speed KDP_USBD_HIGH_SPEED for HS

KDP_USBD_FULL_SPEED for HF (not yet supported)

dev_qual_desc A pointer to a user-defined device qualifier descriptor which is for other-

speed information when configured at high-speed, refer to following struct

type:

kdp_usbd_device_qualifier_descriptor_t

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

Set device qualifier descriptor for other-speed what configured as high-speed

Kneron USBD Driver API

 Kneron Inc. 10

kdp_usbd_enable_log_endpoint (void)

Parameters Description

None None

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR_USBD_ENDPOINT_NOT_AVAILABLE No available endpoint to use

This function enables an internal endpoint, interrupt-in, 0x88, it is for log message and will automatically

add into user’s configuration descriptor while host is enumerating the device.

Note: when enabling this, the maximum number of user’s endpoint should not more than 3.

kdp_usbd_send_log(const char *fmt, ...)

Parameters Description

fmt Format string

… Printing arguments

Return

Same as kdp_usbd_interrupt_send_sync()

This function sends one log message through a specific interrupt-in endpoint to host.

kdp_usbd_enable_log_endpoint() must be called successfully before using this.

And if with a host program like a debug console, the sent messages can be seen.

kdp_status_e kdp_usbd_set_notify(osThreadId_t tid, uint32_t tflag)

Parameters Description

tid CMSIS-RTOSv2 thread ID

tflag CMSIS-RTOSv2 thread flag

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

User can use this function to set thread ID and flag to get notified (awakened) while an USB event is

appearing.

kdp_status_e kdp_usbd_set_enable(kdp_bool_e enable)

Parameters Description

enable enable/disable USB device mode, while enabled, the device can be

enumerated by a host otherwise cannot be enumerated

Return Description

KDP_STATUS_OK Successful to execute the call

Kneron USBD Driver API

 Kneron Inc. 11

KDP_STATUS_ERROR Failed to execute the call

To enable/disable the USB bus.

kdp_bool_e kdp_usbd_is_dev_configured(void)

Parameters Description

None None

Return Description

KDP_BOOL_TRUE Device has been enumerated or configured

KDP_BOOL_FALSE Device is not yet configured

kdp_status_e kdp_usbd_get_event(kdp_usbd_event_t *uevent)

Parameters Description

uevent To get an USB event from internal event queue from USBD driver, refer to

kdp_usbd_event_t

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR Failed to execute the call

typedef struct {

 kdp_usbd_event_name_e ename;

 uint32_t data1;

 uint32_t data2;

}kdp_usbd_event_t;

The meanings of variables in kdp_usbd_event_t has been explained in the “USB events notification”

section, no further explanations here.

kdp_status_e kdp_usbd_reset_endpoint (uint32_t endpoint)

Parameters Description

endpoint It should be the value from bEndpointAddress

Return Description

KDP_STATUS_OK Successful to reset an endpoint

KDP_STATUS_ERROR_USBD_INVALID_ENDP Invalid endpoint

This function resets an endpoint, reset its corresponding FIFO content and reset its interrupts. While

performing a synchronous transfer and it is in blocked status, then this call can make it terminated and

return immediately.

Kneron USBD Driver API

 Kneron Inc. 12

kdp_status_e kdp_usbd_reset_device (void)

Return Description

KDP_STATUS_OK Successful to reset the USBD

KDP_STATUS_ERROR Failed to reset the USBD

This function resets the whole USBD driver and re-initialize registers, endpoints and the event queue.

It will also reset USB bus and make the device be re-enumerated by the host.

Below describes both synchronous and asynchronous APIs for USB data transfer.

kdp_status_e kdp_usbd_bulk_send_sync (uint32_t endpoint, uint32_t *buf, uint32_t txLen,

uint32_t timeout_ms)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to be sent out to the host

txLen The number of bytes for the transfer

timeout_ms Timeout in milli seconds, 0 means never timeout

Return Description

KDP_STATUS_OK Transfer is done

KDP_STATUS_ERROR Transfer failed

KDP_STATUS_ERROR_USBD_TRANSFER_TIMEOUT Timeout

This function is synchronous.

User can use this call to perform USB bulk-in transfer to send data to host in a given timeout.

kdp_status_e kdp_usbd_bulk_receive_sync (uint32_t endpoint, uint32_t *buf, uint32_t

*blen, uint32_t timeout_ms)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to be sent out to the host

blen Input: length of buffer, output: received number of bytes

timeout_ms Timeout in milli seconds, 0 means never timeout

Return Description

KDP_STATUS_OK Transfer is done

KDP_STATUS_ERROR Transfer failed

KDP_STATUS_ERROR_USBD_TRANSFER_TIMEOUT Timeout

This function is synchronous.

User can use this call to perform USB bulk-out transfer to receive data from host in a given timeout.

Kneron USBD Driver API

 Kneron Inc. 13

kdp_status_e kdp_usbd_bulk_send_async (uint32_t endpoint, uint32_t *buf, uint32_t

*txLen)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to be sent out to host

txLen The number of bytes for the transfer

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR_USBD_INVALID_ENDP Invalid endpoint

KDP_STATUS_ERROR_USBD_BUF_COMMITED A buffer is already committed for transfer

This function is asynchronous.

User can commit a buffer to USBD driver and return immediately from this call.

When receiving a KDP_USBD_EVENT_TRANSFER_OUT event, means host is sending data for bulk-out

transfer, user can commit a buffer through this call and wait for the completion.

Once transfer is completed by USBD driver, user will get notified with

KDP_USBD_EVENT_TRANSFER_DONE if transfer is done or

KDP_USBD_EVENT_TRANSFER_BUF_FULL if buffer is full, or

KDP_USBD_EVENT_TRANSFER_TERMINATED if get terminated.

In transfer done case, both the endpoint and the actual transferred length of data will be informed to user.

Note that in buffer full case, user will receive both KDP_USBD_EVENT_TRANSFER_BUF_FULL and

KDP_USBD_EVENT_TRANSFER_DONE events.

kdp_status_e kdp_usbd_bulk_receive_async (uint32_t endpoint, uint32_t *buf, uint32_t

*txLen)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to read from host

blen Buffer length

Return Description

KDP_STATUS_OK Successful to execute the call

KDP_STATUS_ERROR_USBD_INVALID_ENDP Invalid endpoint

KDP_STATUS_ERROR_USBD_BUF_COMMITED A buffer is already committed for transfer

This function is asynchronous.

User can commit a buffer to USBD driver and return immediately from this call.

This call is for bulk-in transfer to send data to host.

Once transfer is completed by USBD driver, user will get notified with

KDP_USBD_EVENT_TRANSFER_DONE if transfer is done or

KDP_USBD_EVENT_TRANSFER_TERMINATED if get terminated.

In transfer done case, the endpoint of transfer will be informed to user.

Kneron USBD Driver API

 Kneron Inc. 14

kdp_status_e kdp_usbd_interrupt_send_sync (uint32_t endpoint, uint32_t *buf, uint32_t

txLen, uint32_t timeout_ms)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to be sent out to the host

txLen The number of bytes for the transfer, should be less then wMaxPacketSize

timeout_ms Timeout in milli seconds, 0 means never timeout

Return Description

KDP_STATUS_OK FIFO data is updated

KDP_STATUS_ERROR_USBD_INVALID_ENDP Invalid endpoint

KDP_STATUS_ERROR_USBD_INVALID_TRANSFER Invalid transfer type

KDP_STATUS_ERROR_USBD_TRANSFER_TIMEOUT Timeout

This function is synchronous.

This call is for interrupt-in transfer, the txLen must be less than wMaxPacketSize.

Note that when this call is returned with OK does not mean the data has been transferred to host, it does

just overwrite the data to the FIFO content.

User can use this call to update the transfer data periodically whenever host retrieve the data.

Although this function is synchronous, it takes very little time to complete because it overwrites or updates

the FIFO content directly whatever host has retrieve the data or not.

kdp_status_e kdp_usbd_interrupt_receive_sync (uint32_t endpoint, uint32_t *buf, uint32_t

*rxLen, uint32_t timeout_ms)

Parameters Description

endpoint It should be the value from bEndpointAddress

buf User buffer memory address for data to be sent out to the host

rxLen Input: length of buffer, output: received number of bytes

timeout_ms Timeout in milli seconds, 0 means never timeout

Return Description

KDP_STATUS_OK FIFO data is updated

KDP_STATUS_ERROR_USBD_INVALID_ENDP Invalid endpoint

KDP_STATUS_ERROR_USBD_INVALID_TRANSFER Invalid transfer type

KDP_STATUS_ERROR_USBD_TRANSFER_TIMEOUT Timeout

This function is synchronous.

This call is for interrupt-out transfer, the rxLen must be less than wMaxPacketSize.

It checks if FIFO data is available then will return to user with data or waits for host to send data until

timeout.

Kneron USBD Driver API

 Kneron Inc. 15

6 Example Code

This section gives some example code for both synchronous and asynchronous APIs.

Synchronous use:

1. // endpoint 0x02, bulk-out

2. kdp_usbd_endpoint_descriptor_t endp_bulkOut_desc =

3. {

4. .bLength = 0x07, // 7 bytes

5. .bDescriptorType = 0x05, // Endpoint Descriptor

6. .bEndpointAddress = 0x01, // Direction=OUT EndpointID=1

7. .bmAttributes = 0x02, // TransferType = Bulk

8. .wMaxPacketSize = 0x0200, // max 512 bytes

9. .bInterval = 0x00, // never NAKs

10. };

11.

12. kdp_usbd_interface_descriptor_t intf_desc =

13. {

14. .bLength = 0x9, // 9 bytes

15. .bDescriptorType = 0x04, // Inteface Descriptor

16. .bInterfaceNumber = 0x0, // Interface Number

17. .bAlternateSetting = 0x0,

18. .bNumEndpoints = 0x1, // 1 endpoints

19. .bInterfaceClass = 0xFF, // Vendor specific

20. .bInterfaceSubClass = 0x0,

21. .bInterfaceProtocol = 0x0,

22. .iInterface = 0x0, // No String Descriptor

23. .endpoint[0] = &endp_bulkOut_desc,

24. };

25.

26. kdp_usbd_config_descriptor_t confg_desc =

27. {

28. .bLength = 0x09, // 9 bytes

29. .bDescriptorType = 0x02, // Type: Configuration Descriptor

30. .wTotalLength = 0x19, // 25 bytes, total bytes including config/in

terface/endpoint descriptors

31. .bNumInterfaces = 0x1, // Number of interfaces

32. .bConfigurationValue = 0x1, // Configuration number

33. .iConfiguration = 0x0, // No String Descriptor

34. .bmAttributes = 0xC0, // Self-powered, no Remote wakeup

35. .MaxPower = 0x0, // 0 syould be ok for self-powered device

36. .interface[0] = &intf_desc,

37. };

Kneron USBD Driver API

 Kneron Inc. 16

Synchronous use:

1. // endpoint 0x81, bulk-in

2. kdp_usbd_endpoint_descriptor_t endp_bulkIn_81_desc =

3. {

4. .bLength = 0x07, // 7 bytes

5. .bDescriptorType = 0x05, // Endpoint Descriptor

6. .bEndpointAddress = 0x81, // Direction=IN EndpointID=1

7. .bmAttributes = 0x02, // TransferType = Bulk

8. .wMaxPacketSize = 0x0200, // max 512 bytes

9. .bInterval = 0x00, // never NAKs

10. };

11.

12. // endpoint 0x02, bulk-out

13. kdp_usbd_endpoint_descriptor_t endp_bulkOut_02_desc =

14. {

15. .bLength = 0x07, // 7 bytes

16. .bDescriptorType = 0x05, // Endpoint Descriptor

17. .bEndpointAddress = 0x02, // Direction=OUT EndpointID=2

18. .bmAttributes = 0x02, // TransferType = Bulk

19. .wMaxPacketSize = 0x0200, // max 512 bytes

20. .bInterval = 0x00, // never NAKs

21. };

22.

23. kdp_usbd_interface_descriptor_t intf_desc =

24. {

25. .bLength = 0x9, // 9 bytes

26. .bDescriptorType = 0x04, // Inteface Descriptor

27. .bInterfaceNumber = 0x0, // Interface Number

28. .bAlternateSetting = 0x0,

29. .bNumEndpoints = 0x2, // 2 endpoints

30. .bInterfaceClass = 0xFF, // Vendor specific

31. .bInterfaceSubClass = 0x0,

32. .bInterfaceProtocol = 0x0,

33. .iInterface = 0x0, // No String Descriptor

34. .endpoint[0] = &endp_bulkIn_81_desc,

35. .endpoint[1] = &endp_bulkOut_02_desc,

36. };

37.

38. kdp_usbd_config_descriptor_t confg_desc =

