

Document Name: KL520 UART Driver API

KL520 UART Driver API
Kneron Inc

Kneron Inc

Table of Contents

1 Introduction ... 3

1.1 Overview ... 3
1.2 Acronym ... 3

2 High Level Design .. 3
2.1 Design Considerations .. 3
2.2 API functions .. 4

2.2.1 Initialization .. 4
2.2.2 Open Driver .. 4
2.2.3 Query capability .. 4
2.2.4 Configure & control .. 5
2.2.5 Query status .. 6
2.2.6 Write data .. 6
2.2.7 Query sent data length .. 7
2.2.8 Read data ... 7
2.2.9 Query received data length ... 7
2.2.10 Power Control ... 7
2.2.11 Close driver ... 7

3 Calling Sequence .. 9

KL520 UART Driver API

3
Kneron Inc.

1 Introduction

1.1 Overview

This document describes the Kneron Mozard UART driver API design. It can be used by

customers as an users guide for Kneron UART API.

The hardware board has 5 UART ports, so the driver can support up to 5 UART devices.

The UART hardware can support SIR (IrDA 1.3 Serial IR) which can run up to

115200bps, and support FIR IrDA Fast IR which can run up to 4M bps. While this

version driver API cannot support SIR/FIR yet, will do further development up on

customers’ requests.

1.2 Acronym

Name Meaning

Tx Transmit

Rx Receive

IrDA Infrared Data Association

SIR Serial IrDA

FIR Fast IrDA

CTS Clear to Send

DTS Data Set Ready

RI Ring Indicator

DCD Data Carrier Detect

RTS Request to Send

DTR Data Terminal Ready

2 High Level Design

2.1 Design Considerations

Here are the design highlight points:

• The architecture adopts a lightweight non-thread design

• ISR driven architecture.

• Can support both synchronous and asynchronous mode

• Utilizes FIFO advantage to reduce interrupts and improve robust to accommodate

more latency than normal.

KL520 UART Driver API

4
Kneron Inc.

2.2 API functions

2.2.1 Initialization

Prototype:

void kdp_uart_init(void)

This API needs to be called at least once after powering on, it will do necessary

initializations.

2.2.2 Open Driver

Prototype:
kdp_uart_hdl_t kdp_uart_open(uint8_t com_port, uint32_t mode, kdp_uart_callback_t cb)

This API will open a UART device (com_port: 0-5) for use. It will return a UART

device handle for future device reference.

The client can choose work mode: asynchronization or synchronization.

Synchronization mode will poll the hardware status to determine send/receiving

point, it will consume more power and introduce more delay to system execution.

But in the case of non-thread light weight environment, such as message log

function, this mode is easy and suitable.

Asynchronization mode lets the driver interrupt driven, save more system power

and more efficient, the client needs to have a thread to listen/wait for the

event/signal sent from callback function.

Callback function parameter ‘cb’ will be registered with this device which is

mandatory for async mode, will be invoked whenever Tx/Rx complete or timeout

occur. This callback function should be very thin, can only be used to set flag or

send signals.

2.2.3 Query capability

Prototype:

KDP_USART_CAPABILITIES* kdp_uart_get_capability(kdp_uart_hdl_t hanle)

The client may want to know what capabilities are available for the chosen UART

port before configuring the device parameters. Here is the list:

Item Description

uart supports UART (Asynchronous) mode

sir supports serial Irda mode

fir supports fast Irda mode

KL520 UART Driver API

5
Kneron Inc.

flow_control_rts RTS Flow Control available

flow_control_cts CTS Flow Control available

event_tx_complete Transmit completed event: ARM_USART_EVENT_TX_COMPLETE

event_rx_timeout
Signal receive character timeout event:
ARM_USART_EVENT_RX_TIMEOUT

rts RTS Line: 0=not available, 1=available

cts CTS Line: 0=not available, 1=available

dtr DTR Line: 0=not available, 1=available

dsr DSR Line: 0=not available, 1=available

dcd DCD Line: 0=not available, 1=available

ri RI Line: 0=not available, 1=available

event_cts Signal CTS change event: ARM_USART_EVENT_CTS

event_dsr Signal DSR change event: ARM_USART_EVENT_DSR

event_dcd Signal DCD change event: ARM_USART_EVENT_DCD

event_ri Signal RI change event: ARM_USART_EVENT_RI

reserved Reserved (must be zero)

It includes: UART/SIR/FIR work modes, RTS/CTS hardware flow controls,

hardware signal events, etc.

Kneron UART does not support all them, the client needs to query the detail via this

API if necessary.

2.2.4 Configure & control

Prototype:
int32_t kdp_uart_control(kdp_uart_hdl_t handle, kdp_uart_ctrl_t prop, uint8_t * val)

This API is used to configure the driver and control hardware signals:

A. Working parameters

Includes:

• baud rate

• data length

• stop bits

• parity

B. Hardware Signal Control

Allow the client to set/reset RTS/DTR signal.

KL520 UART Driver API

6
Kneron Inc.

C. Miscellaneous Controls

Includes controls:

• Enable Tx

• Enable Rx

• Abort Tx

• Abort Rx

• Tx FIFO configuration

• Rx FIFO configuration

• Loopback enable

• Tx timeout value

• Rx timeout value

2.2.5 Query status

Prototype:

UART_STATUS_t *kdp_uart_get_status(kdp_uart_hdl_t handle)

This API can return the status of the device, here are the status definitions:

Status Description

tx_busy Transmitter busy flag

rx_busy Receiver busy flag

rx_overflow
Receive data overflow detected (cleared on start of next receive
operation)

rx_break
Break detected on receive (cleared on start of next receive
operation)

rx_framing_error
Framing error detected on receive (cleared on start of next receive
operation

rx_parity_error
Parity error detected on receive (cleared on start of next receive
operation

2.2.6 Write data

Prototype:

kdp_uart_api_sts_t kdp_uart_write(kdp_uart_hdl_t hdl, uint8_t *buf, uint32_t len)

The client calls this API to send data out to remote side.

Depending on the work mode, a little bit different behavior exists there.

In synchronous mode, the API call will not return until all data was sent out

physically;

In asynchronous mode, the API call shall return immediately with

UART_API_TX_BUSY. When all the buffer data is sent out, the client registered

KL520 UART Driver API

7
Kneron Inc.

callback function will be invoked. The client shall have a very thin code there to set

flags/signals. The client thread shall be listening the signal after this API call.

2.2.7 Query sent data length

Prototype:

uint32_t kdp_uart_GetTxCount(kdp_uart_hdl_t handle)

The client can call this API to detect how many bytes are sent out already.

2.2.8 Read data

Prototype:
kdp_uart_api_sts_t kdp_uart_read(kdp_uart_hdl_t handle, uint8_t *buf, uint32_t len)

The client can call this API to receive UART data from remote side.

Depending on the work mode, a little bit different behavior exists there.

In synchronous mode, the API call will not return until all data was received

physically.

In asynchronous mode, the API call shall return immediately with

UART_API_RX_BUSY. When enough bytes are received or timeout occurs, the

client registered callback function will be invoked. The client shall have a very thin

code there to set flags/signals. The client thread shall be listening the signal after

this API call.

The client shall allocate the receiving buffer with max possible receiving length.

When one frame is sent out, after 4 chars transmission time, a timeout interrupt will

be generated.

2.2.9 Query received data length

Prototype:

uint32_t kdp_uart_GetRxCount(kdp_uart_hdl_t handle)

The client can call this API to detect how many bytes received already.

This API is helpful especially when Rx timeout event is received.

2.2.10 Power Control

Prototype:
int32_t kdp_uart_power_control(kdp_uart_hdl_t handle, ARM_POWER_STATE pwr_st)

This API provides a measure to switch on/off the individual UART port. This

function shall be called after device open and before hardware configuration.

2.2.11 Close driver

Prototype:

KL520 UART Driver API

8
Kneron Inc.

int32_t kdp_uart_close(kdp_uart_hdl_t handle)

The API call will release all UART related resources: disable interrupts, release

memories, disable hardware signals, etc.

KL520 UART Driver API

9
Kneron Inc.

3 Calling Sequence
Here depict the calling sequences for Async mode UART Tx/Rx:

 client UART driver hardware

kdp_uart_open

kdp_uart_power_control(ON)

kdp_uart_control

Configure hardware

kdp_uart_write

Write to FIFO

Tx Interrupt

ISR

callback

kdp_uart_read
Rx Interrupt

ISR

callback

kdp_uart_power_control(OFF)

 Shut down clock/power

Release resources

kdp_uart_close

