
Handout 6 CUDA, GPU, OpenCL Machine

2020/5/26 2

Outline
• CUDA
• OpenCL
• SIMT GPU

CUDA
• CUDA

– Compute Unified Device Architecture (CUDA) is a
parallel computing architecture developed by Nvidia.

– Heterogeneous execution model
» CPU is the host, GPU is the device

– Develop a C-like programming language for GPU

– Unify all forms of GPU parallelism as CUDA thread

– Programming model is “Single Instruction Multiple
Thread”

http://en.wikipedia.org/wiki/Nvidia

PTX and LLVM

• PTX
– Parallel Thread Execution (PTX) is a pseudo-assembly

language used in Nvidia's CUDA programming environment.
The nvcc compiler translates code written in CUDA, a C-like
language, into PTX, and the graphics driver contains a
translator which translates the PTX into a binary code which
can be run on the processing cores.

• LLVM
– LLVM (formerly Low Level Virtual Machine)

is compiler infrastructure written in C++; it is designed
for compile-time, link-time, run-time, and "idle-time"
optimization of programs written in arbitrary programming
languages.

– Compile the source code to the intermediate
representation(LLVM-IR).

2020/5/26 4

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/w/index.php?title=NVIDIA_CUDA_Compiler&action=edit&redlink=1
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Link-time
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Programming_language

CUDA v.s. OpenCL Platform

2020/5/26 5
GPU

Parallel Kernel

Programmer determines the parallelism by
specifying the grid dimensions and the
number of threads per SIMD processor

2 x 5 blocks

Thread blocks can be executed independently
and in any order

Execution m
odel

Threads and Blocks
• A thread is associated with each data element
• Threads are organized into blocks

– A thread block is assigned to a processor called
multithreaded SIMD processor (or an SM, streaming
multiprocessor)

• Blocks are organized into a grid
– thread blocks can run independently and in any order

• A grid is the code that runs on a GPU that
consists of a set of thread blocks.

• GPU hardware handles thread management, not
applications or OS

2020/5/26 8

A thread; user defined entity

• A thread within a thread block (group) executes an instance of
the kernel (code to execute)

– Has a thread ID in the group
– Has its program counter
– Has its registers, per-thread private memory

» For register spills, procedure call (stack)
– Can have L1 and L2 cache to cache private memory
– Map onto a SIMD lane
– SIMD lanes do not share private memories

A thread is an instance of program code in execution!

Thread is Work Item in OpenCL

2020/5/26 9

A group of threads: thread block
• A thread block: a group of concurrently

executing threads within a thread block
– Has a thread block ID in a grid
– Synchronization through barrier
– And communicate through a block level

shared memory
» Inter-thread communication, data sharing,

result sharing
– Map onto a multithread SIMD processor (a

block of several SIMD lanes)
– The SIMD processor dynamically

allocates part of the LM to a thread block
when it creates the thread block and frees
the memory when all the threads in the
thread block exit.

– The local memory is shared by the SIMD
lanes within the multithreaded SIMD
processor

Thread 1 Thread i

barrier

Local memory /
Shared memory

Thread Block
is Work Group in OpenCL

2020/5/26
10

A group of thread blocks: grid
• A thread grid: a group of thread blocks that execute the same

kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

Global Memory
Application Context
GPU Memory

Thread 1 Thread i

barrier
Shared memory

Thread 1 Thread i

barrier
Shared memory

Off-chip DRAM

Programmer’s job
• CUDA programmer explicitly specifies the

parallelism
–Set grid dimensions
–Number of threads per SIMD

processors
• One thread works on one element; no need to

synchronize among threads when writing results
to memory.

2020/5/26 11

CUDA thread hierarchy

2020/5/26 12

All blocks run the same
Kernel code

GPU
memory

Single element

vector

Nvidia Turing-2018
• Ray Tracing Core
• One Turing SM is partitioned into four

processing blocks
– each with 16 FP32 Cores, 16

INT32 Cores, two Tensor Cores,
one warp scheduler, and one
dispatch unit.

• Each block includes a new L0
instruction cache and a 64 KB register
file. The four processing blocks share a
combined 96 KB L1 data cache/shared
memory.

• Traditional graphics workloads
partition the 96 KB L1/shared memory
as 64 KB of dedicated graphics shader
RAM and 32 KB for texture cache and
register file spill area.

• Compute workloads can divide the 96
KB into 32 KB shared memory and 64
KB L1 cache, or 64 KB shared memory
and 32 KB L1 cache.

2020/5/26 13

Nvidia Turing-RTX

2020/5/26 14

• In a GPU, SM is just a small SM after all.

OpenCL
• OpenCL

– Open Computing Language (OpenCL) is a framework for
writing programs that execute across heterogeneous platforms
consisting of central processing unit (CPUs), graphics
processing unit (GPUs), and other processors.

– OpenCL includes a language for writing kernels (functions that
execute on OpenCL devices), plus application programming
interfaces (APIs) that are used to define and then control the
platforms.

– OpenCL provides parallel computing using task-based and
data-based parallelism. OpenCL is an open standard
maintained by the non-profit technology consortium Khronos
Group. It has been adopted by Intel, Advanced Micro
Devices, Nvidia, and ARM Holdings.

2020/5/26 15

Introduction

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Non-profit_organization
http://en.wikipedia.org/wiki/Khronos_Group
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/ARM_Holdings

OpenCL for Heterogeneous Computing

• Hardware heterogeneity
– Multi-Core CPU

» MIMD machines, serial or task-parallel workloads
– Many-Core GPGPU

» SIMT machines, data-parallel workloads
– DSP, NPU, FPGA, ...

» Specific accelerators (VLIW, Data-reuse, Reconfiguration, or
other domain-specific accelerations)

16

Software Diversity

17

Application-specific workloads

C/C++, Python, Assembly,
HDL, ...

Data-parallel workloads

CUDA, OpenMP 4.0, GPU
Shading Languages,
OpenACC, ...

Serial or task-parallel workloads

C/C++, JAVA, OpenMP, TBB ...

Open Computing Language

• Program Portability
– OpenCL is a framework for building parallel

applications that are portable across
heterogeneous platforms.

18

Methodology for Portability-1

• Unified Programming Interface
– Abstracted OpenCL platform model

» A host connected to multiple compute devices with open CL
device model

– Runtime kernel source compilation

19

Host

(OS,
OpenCL

Runtime)

Main
Memory

Compute
Device 0

Compute
Device 1

Compute
Device 2

Compute
Device M

…

Methodology for Portability-2

• Unified Programming Interface
– Abstracted OpenCL platform model

» A host connected to multiple compute devices
– Runtime kernel source compilation

20

OpenCL Runtime
System

OpenCL Kernels (in OpenCL)OpenCL
Application

Compute Devices

OpenCL Compute Device

• Abstracted Hierarchical System
– Both the compute hierarchy and memory hierarchy

21

Compute Device

Compute Device Memory

Global Memory

Constant Memory

Global/Constant Memory Cache

Compute Unit 1

Local Memory 1

PE MPE 1

…
Private

Memory 1
Private

Memory M

Compute Unit N

Local Memory N

PE MPE 1

…
Private

Memory 1
Private

Memory M…

Processing
element, the
basic
processing unit

PE runs a thread
or a work item

Dimension X

D
im

en
si

on
 Y

0

Programming Model: NDRange Index
Space

• Work-item
– A thread

• Workload Hierarchy
– Global size and local size of work-items

» N-Dimensional index space, N = 1, 2, or 3.

22

Global size
(16, 16, 12)

Local Size
(8, 4, 4)

Dimension X

D
im

en
si

on
 Y

0

0

D
im

en
si

on
 Y

Dimension X

Work-Group ID =
(1, 3, 0)
Thread block

0

D
im

en
si

on
 Y

Dimension X

Work-Item,
Local ID (6, 3, 1)
Global ID (14, 15, 1)

Grid

thread

NDRange Workload on Compute
Device
• NDRange workload to a compute device

23
Dimension X

D
im

en
si

on
 Y

0

A work-group to a compute unit (Synchronization unit)
A work-item to a processing element

Example of vector multiply

• Vectorizable loop
• Multiply two vectors: A = B x

C, each 8192 elements
• Grid is the GPU code that

works on all 8192 element
multiply.

• A thread block, codes that
do 512 element multiply,
runs on a multithreaded
SIMD processor or an SM

– Hence 8192/512 = 16
thread blocks

• Instructions in a warp (a
SIMD thread here) execute
32 elements at a time.

• Warp size is determined by
hardware implementation

2020/5/26 24

warp 0

warp 15

A multithreaded SIMD processor (SM)

• This is a multithreaded
SIMD processor which
runs a thread block

• Thread block scheduler
– Determine the # of

thread blocks required
for the task

– and keep allocating
them to different SIMD
processors until the
Grid is completed.

• Warp scheduler, i.e.,
thread scheduler

– Inside the SIMD
processor, schedules
instructions from ready-
to-run warp

2020/5/26 25

Example: Architecture of CASLab
GPU

of SM = 4
of Warps/SM = 48
of Threads/Warp = 32
Icache size = 16KB
Dcache size = 16KB
Local mem size 512KB

Warp scheduler in Fermi

• Fermi can have up to 48 active warps
per SM => meaning 48 instruction
streams.

48 x 32 = 1536 threads/SM

2020/5/26 27

Queue for
48 warps

Pick instruction from ready warps t2 is the cycle for issuing the next instru. from Warp 8

t1

t2= t1 + xx cycles

32 threads (on 32 SIMD lanes) have only one instruction stream due to SIMT!

A warp is simply an instruction stream
of SIMD instructions.

Ferm
i Architecture

Warp Scheduler
• Inside a SIMD processor, a warp

scheduler selects a warp
instruction for dispatching to EXE
lanes:

– Scheduling policy,
instruction from which warp
to dispatch

– Round robin
– Greedy ….

• Scoreboard: keep track of which
instruction is ready for execution

• A PTX instruction = A SIMD
instruction which is executed
across SIMD lanes

• Associated with each warp is a
warp ID, a bit vector called the
active mask, and a single
Program Counter (PC). Each bit in
the active mask indicates whether
the corresponding thread is
active. When a warp is first
created, all threads are active.

• If the total number of threads is
not a multiple of the warp size,
one warp may be created without
all threads active.
2020/5/26 28V. Narasiman, et. al. Improving GPU Performance via Large Warps

and Two-Level Warp Scheduling, Micro 2011

SIMD Instruction scheduling

• Select a ready
thread and issues
an instruction
synchronously to
all the SIMD lanes
executing the
SIMD thread.

• Fine-grained
multi-threading

– Hide memory latency
– Wait for pipeline stalls
– Wait for execution

latency

2020/5/26 29

I42

I43

32 elements

A SIMD thread
= a warp =
32 CUDA threads

2020/5/26
30

Instruction Stream Scheduling and Pipeline
• An SM executes one or more

thread blocks
• A group of X-threads called a

warp
• A warp scheduler issues

(broadcasts) one instruction
to either X cores (thus SIMD)
or Y Load/Store Units, or to Z
SFUs.

• However, this is a pipeline
functional unit!

• Assuming independent N
instruction streams or N
warps

– Example: N=48, a
warp scheduler
picks from 48 warps
for instruction
dispatching!

P stages in a FU

I1

See a core in the system

I1J1

Warp1: I1 I2 I3 I4 I5…
Warp2: J1 J2 J3 J4 J5..

WarpN: z1 z2 z3….

z1 I1J1

After N cycles,
I1 completes
Warp back to
Issue I2 of Warp1, and etc.
So, if I2 depends on I1,
It has a room of N cycles
for execution latency.

time

C1

C2

CN

Address Coalescing Hardware
• For data transfer from/to memory, a burst

transfer of, say 32 sequential words is performed
by the runtime hardware.

• To do this, the programmer must ensure that
adjacent threads access nearby addresses at
the same time so that they can be coalesced into
one or a few memory blocks.

2020/5/26 31

ISA issues for SIMT
• Branch problem in

SIMT
– Can not use “regular

branches” in SIMT
because

– If some gets I3 etc and
some get I5,

– then there is no single
instruction stream
anymore.

2020/5/26 32

I1
I2
.
.

BEQ xx
I3
I4

xx I5

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

If-Conversion for SIMT

33

f0: cmp r4, #0
f4: beq 0x100
f8: sub r2, r7,r4
fc: bne 0x104
100: add r2, r3, r4
104: mov r5, r2

If-conversion uses predicates to transform a conditional branch into a
single control stream code.

code using br If-converted code

if(r1 == 0)
add r2, r3,r4

else
sub r2, r7,r4

mov r5, r2

cmp r1 , #0
addeq r2, r3,r4
subne r2, r7,r4
mov r5, r2

Control merge point

Conditional Branch
• Like vector architectures, GPU branch hardware uses

internal masks
• Branch divergence at the end of basic block A,

– (1) Push control flow merge point first (Rec PC, Active mask, Execute PC) at
control flow merge point D

– (2) Push the other path to be executed later. Execute basic block B first, push the
other path. (Rec PC, Active mask {C}, Execute PC{C}) for divergence point.

– After executing the first path, in basic block B, when PC + 8 = Rec PC (TOS), set
the second path: PC = C (TOS), Active Mask = Active Mask (TOS), pop TOS.

pop

Illusion of MIMD branch-based program
behavior on SIMD instructions

• Illusion of some threads go one way, the rest go
another.

• Illusion of a thread works independently on one
element in a thread of SIMD instructions.

• In fact, each thread (each SIMD lane) is
executing the same instruction either
“committing their results” or “idle, i.e. no
operation.”

2020/5/26 35

Memory Hierarchy

• Similar to general purpose
CPU

• Add a scratch-pad mem for
group of threads that can
locally share through
load/store in the instruction
stream-- a common DSP
technique

2020/5/26 36

NVIDIA GPU Memory Structures
• Each SIMD Lane (a CUDA thread) has private

section of off-chip DRAM
– “Private memory”
– Contains stack frame, spilling registers, and

private variables
• Each multithreaded SIMD processor also has

local memory
– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU
Memory
–Host can read and write GPU memory

M
em

ory H
ierarchy

NVIDIA GPU Architecture
• Similarities to vector machines:

– Works well with data-level parallel problems
– Scatter-gather transfers
– Mask registers
– Large register files

• Differences:
– No scalar processor
– Uses multithreading to hide memory latency
– Has many functional units, as opposed to a

few deeply pipelined units like a vector
processor

Sum
m

ary on G
PG

PU

Inside warp scheduler
• Scheduling optimization: ILP & Hyper threading

– Limited version of OOO
– Register scoreboard: Allow OOO but stall on WAW and WAR

hazards. Per stream view!
– For RAW hazard, similar toTomasulo’s basic. Per stream

view.
– Many instruction streams to dispatch through multiple warp

schedulers. Simultaneous Multi-Threading !

2020/5/26 39

Sum
m

ary on G
PG

PU

2020/5/26
40

Unified Address Space in Program View

• A load/store
directly
accesses any
type of the
memory.

• A hardware
translation unit
maps load/store
address to the
correct memory
location.

register

SMEM

Sum
m

ary on G
PG

PU

Unified address memory access by:
• Hardware assisted page mapping that

determines
– which regions of virtual memory get mapped into a

thread’s private memory
– which are shared across a block of threads
– which are shared globally
– which are mapped onto DRAM
– which are mapped onto system memory

• As each thread executes, Fermi automatically
maps its memory references and routes them to
the correct physical memory segment.

2020/5/26 41

Sum
m

ary on G
PG

PU

Resource Allocation in an SM

• How many active threads to run depends on
– How many registers to use for a thread

» since total has 32K registers

– How much SMEM to use for a thread

2020/5/26 42

As usual, Compiler determines these allocations!

Sum
m

ary on G
PG

PU

Resource Utilization in an SM
• Utilization determined by:

– How many registers are allocated to each active thread or to
each instruction stream? (compiler)

– How many SMEM are allocated to each thread? (compiler)
– Each SM support s 8 active blocks and how big is the block

size of each of the active blocks? Cannot be too small!
(programmer??)

 Example
a thread uses 21 registers, 32K/21 = 1560 threads
1560 > 1536 threads (spec)

Good utilization depends on the above 3 settings!
Need to see: FU utilization, throughput achieved, and
bandwidth used

2020/5/26 43

Sum
m

ary on G
PG

PU

2020/5/26 44

And in Conclusion
• ISA Architecture for GPU

– ISA design, branch, predication, indexed
Jump, etc

• SIMT Architecture
– Multi-threaded SIMD processor
– Whole GPU
– Memory support

• Software
– Compiler
– PTX assembler and optimizer
– Run time

	Handout 6 CUDA, GPU, OpenCL Machine
	Outline
	CUDA
	PTX and LLVM
	CUDA v.s. OpenCL Platform
	Parallel Kernel
	Threads and Blocks
	 A thread; user defined entity
	 A group of threads: thread block
	 A group of thread blocks: grid
	Programmer’s job
	CUDA thread hierarchy
	Nvidia Turing-2018
	Nvidia Turing-RTX
	OpenCL
	OpenCL for Heterogeneous Computing
	Software Diversity
	Open Computing Language
	Methodology for Portability-1
	Methodology for Portability-2
	OpenCL Compute Device
	Programming Model: NDRange Index Space
	NDRange Workload on Compute Device
	Example of vector multiply
	A multithreaded SIMD processor (SM)�
	Example: Architecture of CASLab GPU
	Warp scheduler in Fermi
	Warp Scheduler�
	SIMD Instruction scheduling
	Instruction Stream Scheduling and Pipeline
	Address Coalescing Hardware
	ISA issues for SIMT
	If-Conversion for SIMT
	Conditional Branch
	Illusion of MIMD branch-based program behavior on SIMD instructions
	Memory Hierarchy
	NVIDIA GPU Memory Structures
	NVIDIA GPU Architecture
	Inside warp scheduler
	Unified Address Space in Program View
	Unified address memory access by:
	Resource Allocation in an SM
	Resource Utilization in an SM
	And in Conclusion

