Handout 6 CUDA, GPU, OpenCL Machine

Qutline

« CUDA
e OpenCL
« SIMT GPU

CUDA

« CUDA

— Compute Unified Device Architecture (CUDA) is a
parallel computing architecture developed by Nvidia.

— Heterogeneous execution model
» CPU is the host, GPU is the device
— Develop a C-like programming language for GPU

— Unify all forms of GPU parallelism as CUDA thread

— Programming model is “Single Instruction Multiple
Thread”

http://en.wikipedia.org/wiki/Nvidia

PTX and LLVM

.« PTX

— Parallel Thread Execution (PTX) is a pseudo-assembly
language used in Nvidia's CUDA programming environment.
The nvcc compiler translates code written in CUDA, a C-like
language, into PTX, and the graphics driver contains a
translator which translates the PTX into a binary code which
can be run on the processing cores.

e LLVM

— LLVM (formerly Low Level Virtual Machine)
IS compiler infrastructure written in C++; it is designed
for compile-time, link-time, run-time, and "idle-time"
optimization of programs written in arbitrary programming
languages.

— Compile the source code to the intermediate
representation(LLVM-IR).

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/w/index.php?title=NVIDIA_CUDA_Compiler&action=edit&redlink=1
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Link-time
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Programming_language

CUDA v.s.

OpenCL Platform

CUDA

L

L

my_k3rnOl.cu

Y

CUDA Toolkit

\
/r
-

Y

PTX

L

binary

Y

NVIDIA Fermi

OpenCL
v
my_k3rnOl.cl
Y o Y
STREAM SDK Apple LLVM
v v "
IL IR
¥ P
binary binary
v P
ATl _, Multicore

GPU

Parallel Kernel

Thread blocks can be executed independently

CPU Host GPU Device

Grid £

I
|
Serial Codes i ‘ |
|
|

v | [Bockt,0] [Block,)
=D N

Kernel Invocation |

Y

Serial Codes j

2 X 5 blocks

Programmer determines the parallelism by
specifying the grid dimensions and the
number of threads per SIMD processor

C Program
Sequential
Execution
Serial code Host
Parallel kernel Device
HernelQ<<<s»a() Grid 0
Block (0,0) | Block (1, 0) | Block (2, 0)
T W B
,ﬂ{ﬂ.% Block (1, 1) || Block (2, 1)
S
Serial code //I'HEI
Device
Parallel kernel
Kerrdell<<<s>>() Grid 1
Block {0, 0) Block (1, 0)
/]
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)
Y

|[apow uoIIN23Xg

Threads and Blocks

A thread Is associated with each data element

Threads are organized into blocks

— A thread block is assigned to a processor called
multithreaded SIMD processor (or an SM, streaming
multiprocessor)

Blocks are organized into a grid
— thread blocks can run independently and in any order

A grid Is the code that runs on a GPU that
consists of a set of thread blocks.

GPU hardware handles thread management, not
applications or OS

A thread; user defined entity

A thread within athread block (group) executes an instance of
the kernel (code to execute)

— Has a thread ID in the group
— Has its program counter

— Has its registers, per-thread private memory
» For register spills, procedure call (stack)

— Can have L1 and L2 cache to cache private memory
— Map onto a SIMD lane
— SIMD lanes do not share private memories

A thread is an instance of program code in execution!

Thread is Work Item in OpenCL

A group of threads: thread block

 Athread block: a group of concurrently
executing threads within a thread block Thread 1 Thread i

— Has athread block ID in a grid
— Synchronization through barrier

— And communicate through a block level
shared memory

» Inter-thread communication, data sharing,
result sharing

— Map onto a multithread SIMD processor (a Local memory /
block of several SIMD lanes) Shared memory

— The SIMD processor dynamically
allocates part of the LM to a thread block

harrier

when it creates the thread block and frees
the memory when all the threads in the
thread block exit. Thread Block

— The local memory is shared by the SIMD is Work Group in OpenCL
lanes within the multithreaded SIMD
processor

A group of thread blocks: grid

 Athread grid: a group of thread blocks that execute the same
kernel, read/write inputs/results from/to global memory,
synchronize dependent kernel calls through global memory,

Thread 1 Thread i Thread 1 Thread |

barrier W barrier

Shared memory Shared memory

i !
;

Global Memory Off-chip DRAM
Application Context

GPU Memory

Programmer’s job

« CUDA programmer explicitly specifies the
parallelism

—Set grid dimensions

—Number of threads per SIMD
Processors
e One thread works on one element: no need to

synchronize among threads when writing results
to memory.

CUDA thread hierarchy

Thread

>

%

Thread Block

per-Thread Private
Local Memory

per-Block
Shared Memory

r

[3

vector

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global

memory spaces.

GPU

memory
per-
Application
Context
Global
Memory

Single element

All blocks run the same
Kernel code

Nvidia Turing-2018

Ray Tracing Core

One Turing SM is partitioned into four
processing blocks

— each with 16 FP32 Cores, 16
INT32 Cores, two Tensor Cores,
one warp scheduler, and one
dispatch unit.

Each block includes a new LO
Instruction cache and a 64 KB register
file. The four processing blocks share a
combined 96 KB L1 data cache/shared
memory.

Traditional graphics workloads
partition the 96 KB L1/shared memory
as 64 KB of dedicated graphics shader
RAM and 32 KB for texture cache and
register file spill area.

Compute workloads can divide the 96
KB into 32 KB shared memory and 64
KB L1 cache, or 64 KB shared memory
and 32 KB L1 cache.

Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LDIST LDIST LDIST LDIST SFU

Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LDIST LDIST LDIST LDIST SFU

Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

TENSOR

INT32 = FP32 ———

LDIST LDIST LD/ST LDIST SFU

Warp Scheduler + Dispatch (32 threadfclk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LDIST LDIST LDIST LDIST SFU

96KB L1 Data Cache / Shared Memory

Tex

Tex

~ RTCORE -

Nvidia Turing-RTX

 In a GPU, SMis just a small SM after all.

~ RT CORE

Table 1. Comparison of NVIDIA Pascal GP102 and Turing TU102
GPU Features GTX 1080Ti |RTX 2080 Ti Quadro P6000| Quadro RTX 6000
Architecture Pascal Turing Pascal Turing
GPCs 6 6 6 6
TPCs 28 34 30 36
SMs 28 68 30 72
CUDA Cores / SM 128 64 128 64
CUDA Cores / GPU 3584 4352 3840 4608
Tensor Cores / SM NA 8 NA 8
Tensor Cores / GPU NA 544 NA 576
RT Cores NA 68 NA 72
GPU Base Clock MHz 1480/ 1480 1350/ 1350 1506 1455
(Reference / Founders Edition)

OpenCL

e OpenCL

— Open Computing Language (OpenCL) is a framework for
writing programs that execute across heterogeneous platforms
consisting of central processing unit (CPUSs), graphics
processing unit (GPUs), and other processors.

— OpenCL includes a language for writing kernels (functions that
execute on OpenCL devices), plus application programming
Interfaces (APIs) that are used to define and then control the
platforms.

— OpenCL provides parallel computing using task-based and
data-based parallelism. OpenCL is an open standard
maintained by the non-profit technology consortium Khronos
Group. It has been adopted by Intel, Advanced Micro
Devices, Nvidia, and ARM Holdings.

15

uoI11ONpPOoJIU|

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Non-profit_organization
http://en.wikipedia.org/wiki/Khronos_Group
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/ARM_Holdings

OpenCL for Heterogeneous Computing

« Hardware heterogeneity
— Multi-Core CPU

» MIMD machines, serial or task-parallel workloads

— Many-Core GPGPU

» SIMT machines, data-parallel workloads

— DSP, NPU, FPGA, ...

» Specific accelerators (VLIW, Data-reuse, Reconfiguration, or
other domain-specific accelerations)

Multi-Cluster CPU

Many-Core GPU

Stream multiprocessor

Stream multiprocessor

Stream multiprocessor

Stream multiprocessor

Accelerators

DSP NPU

FPGA

Software Diversity

Data-parallel workloads

CUDA, OpenMP 4.0, GPU Application-specific workloads

Shading Languages,
OpenACC, ... C/C++, Python, Assembly,

HDL, ...
'I A~
—\
@:}'

\ 4
Many-Core GPU

Serial or task-parallel workloads

C/C++,JAVA, OpenMP, TBB ...

Stream multiprocessor

Stream multiprocessor

Stream multiprocessor

Stream multiprocessor

Accelerators

DSP

NPU

Open Computing Language

 Program Portability

—OpenCL is a framework for building parallel
applications that are portable across
heterogeneous platforms.

CPUs

Multiple cores driving
performance increases

GPUs

Increasingly general purpose
data-parallel computing
Improving numerical precision

Emerging
Intersection

OpenCL

Heterogenous
Computing

Multi-processor
programming -
e.g. OpenMP

Graphics APls
and Shading
Languages

OpenCL - Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

Methodology for Portability-1

« Unified Programming Interface

— Abstracted OpenCL platform model

» A host connected to multiple compute devices with open CL
device model

— Runtime kernel source compilation

Host
(OS, Main
OpenCL Memory
Runtime)
Compute Compute Compute Compute
Device 0 Device 1 Device 2 Device M

Methodology for Portability-2

« Unified Programming Interface

— Abstracted OpenCL platform model
» A host connected to multiple compute devices

— Runtime kernel source compilation

OpenCL OpenCL Kernels (in OpenCL)
Application a

OpenCL Runtime

»
Many-Core GPU

Accelerators
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE

Stream multiprocessor =~ Stream multiprocessor

ANEEEEEE EEEEEEEE DSP NPU

Compute Devices

Multi-Cluster CPU

EEEEEEEE EEEEEEEE
Stream multiprocessor =~ Stream multiprocessor FPGA
HEENEEEEEE EEEEEEEE

OpenCL Compute Device

 Abstracted Hierarchical System
— Both the compute hierarchy and memory hierarchy

Compute Device

Processing
Compute Unit 1 Compute Unit N element, the
basic
Private Private Private Private processing unit
Memory 1 Memory M || Memory 1 Memory M /‘
! |] /—/ PE runs a thread
PE 1 PE M PE 1 PEM ora work item

A a a a
A\ 4 \ 4

Local Memory 1 Local Memory N

\ 4 \ 4

Global/Constant Memory Cache

Global Memory

Constant Memory

Compute Device Memory

Programming Model: NDRange Index
Space

 Work-item
— A thread
 Workload Hierarchy

Grid — Global size and local size of work-items
» N-Dimensional index space, N=1, 2, or 3. Work-Group ID =

(1, 3,0

Thread block

Global size 9 2
(16, 16, 12) } g
A - k
Local Size E> 0 Dimension X
(8, 4, 4)

Work-Item,
LocalID(6,3,1) @
Global ID (14, 15, 1)

Dimension Y

thread

0 Dimension X

NDRange Workload on Compute
Device

« NDRange workload to a compute device
4 A work-group to a compute unit (Synchronization unit)
4 A work-item to a processing element

Compu evice

'ompute Unit 1 — Compute Unit N

L

Local Memory 1 Local Memory N

> ~/ v

s / Global/Constant Memory Cache

g

£

[a] ¥

’l Global Memory |

0 Dimension X | Constant Memory |

Compute Device Memory

AL 0 J=B[0 J*C[O
sssp |A[l 1 1=B[1 1=*¢cC[1
e ———————————————————— T'hread(
« Vectorizable loop Warp O |"AC sr7-8[3t J*cL 3
. Al 32 1=B[32 1 *cC[32
e Multiply two vectors: A =B X SsMvD | AL 33 1=B[33 1 *C[33
C, each 8192 elements B 1 L
Cy Block Al 63]1=B[63] *C[63
e Grid is the GPU code that 0 AT 61 B[6 1°C[&
works on all 8192 element
mul“ply AL 4791 =B [479] * C[479
A[4801 =BT 480] * C[480
,[51']1;;315 A[4811 =B [481] * C[481
A thread block, codejs that Warp 15775 TET T or e
do 512 elemenf[multiply, AL 5121 -B[512 1 *C[502
runs on a multithreaded Grid .
SIMD processor or an SM AL 76791 =B [7679 1 * CL 7679
A[76801 =B [7680] * C[7680
— Hence 8192/512 = 16 SIMD | AL 76817 =B [7681 1 * C[7681
thread blocks Threado |
A[7711] =B [7711] * C[7711
A[77121 =B [7712] * C[7712
o Instructlons |n a Warp (a T%lrz‘li]a)l Al 77131 =B [7713 1 * C[7713
SIMD thread here) execute Blo AL 77431 “B 17743 1 CL 7743
32 elements at a time. 15 Al 7744] =B [7748] * C[7744
AL 8159] = B [8159] * C[8159
° Warp Size is determined by D A[8160] =B [8160] * C[8160
hardware implementation Thread 15| 81611 =B [8161] * C[8161
A[8191] =B [8191] * C[8191

A multithreaded SIMD processor (SM)

e This is a multithreaded
SIMD processor which instruction
runs a thread block cache

e Thread block scheduler [

_ Determine the # of l
thread blocks required | Insiruction register |
for the task s DR I I B I D B A N AN

— and keep allocating F@} w7 ﬁ} 7 E} W F% F‘? \/ FWCJT - F:}L Fg Y j?:@fﬁ:

them to different SIMD ¥ F;L

¥

Warp scheduler

-

H Regi- | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg
processors until the ders
G rl d | S CO m p | eted . TKx32 [1K %32 | 1Kx 32 [1Kx 32 | 1K %32 | 1Kx32 | 1K %32 [1Kx32 | 1K %32 | 1K %32 [1Kx 32 | 1Kx 32 | 1K 32 | 1Kx 32 | 1K 32 [1K» 32
. Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | sfore | store | store | store | store | store | store | store | store | store | store | store | sfore
° War p S C h ed u I er) I . e " unit | unit | unit | unit | umit | unit | wnit | oumit | ownit | unit | unit | unit | umit | ounit | ounit | ounit
thread scheduler SEEEEEEE SRS RSN SN EEEEEEENERER

— Inside the SIMD R |
processor, sc hedules Address coalescing unit Interconnection network

instructions from ready:- ' Tog|§ba|
fo-run warp Loceg4msénory memory

Example: Architecture of CASLab

GPU

GPGPU

suollilied AJowsap

=1
t
o
-
(@]
o
>
>
(9"]
O
(=
o
=

Workgroup
Scheduler

#0fSM=4

of Warps/SM =48

of Threads/Warp = 32
Icache size = 16KB
Dcache size = 16KB
Local mem size 512KB

Streaming Multiprocessor
(Multithreaded SIMD Processor)

Warp 0

Warp Scheduler

Warp 1

»
>

a

Warp M

P>

L 2

SIMD lane 0 T
SIMD lane 2 W
<
o
=
=
SIMD lane L-1| ~.
SIMD lane L _1_

Front-end Pipeline

Back-end Pipeline

A warp is simply an instruction stream

Warp scheduler in Fermi o sivp instructions.

32 threads (on 32 SIMD lanes) have only one instruction stream due to SIMT!

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit | Instruction Dispatch Unit

A
AMARAARARAARRARARAARARAARARAAL

32 threads form a warp
Instructions are issued per warp
If an operand is not ready the

warp will stall

Context switch between warps
when stalled

A
AMARAAMARARAARAARARARRAL

Context switch must be very fast FEN s Warp 8 instruction 11 Warp 8 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33
Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12
Warp 14 instruction 96 Warp 3 instruction 34
r Warp 2 instruction 43 Warp 15 instruction 96

Pick instruction from ready warps t2 is the cycle for issuing the next instru. from Warp 8

Fermi can have up to 48 active warps
per SM => meaning 48 instruction
streams.

time:

48 x 32 = 1536 threads/SM
t2=t1l + xx cycles—>

91N12911Yy21y 1W.io4

Warp ID Active mask PC

War SC h ed u I er 7 |101....1011 [x30000000]
p : 1 |001.....0000 | x50020200| :
' Scheduler =", . . :

Inside a SIMD processor, a warp ; . . . ;
instruction for dispatching to EXE I i
IaneS: - . i I=cache - Fetch unit E
— Scheduling policy, : I ;
instruction from which warp E Decoder :

to dispatch : :

— Round robin : ThoO - - - Th N-1;
— Greedy ' Warp 0's reg ﬁlc{ ceeee
Scoreboard: keep track of which \ Warp ID.Reg ID —= cesoce :
instruction is ready for execution : : —— —
A PTX instruction = A SIMD 5 o | Remsterfiles 3
instruction which is executed | Warp M—1s reg me{ = ... B
across SIMD lanes | 1 T
Associated with each warp is a : o]~ T o
warp ID, a bit vector called the ; ellg] eoeeee |Z] 0
active mask, and a single : Global S[3 g
.- ' - '

Program Counter (PC). Each bit in ; memory T T
the active mask indicates whether : D-cache [+ Memory access unit :
the corresponding thread is : Private [1] T
active. When a warp is first E memory =
created, all threads are active. : 41 R A B
' =1 =1 o '

If the total number of threads is : S| 3 § 5
not a multiple of the warp size, ; I I
one warp may be created without 5 Writeback :
all threads active. ; ;

V. Narasiman, et. al. Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling, Micro 2011

SIMD Instruction scheduling

e Select a ready |' i7d : | A SIMD thread
: IMD thread schedul _ _

thread and issues R BRI, | 0 D reads
an instruction Time 4

synchronously to | SlMDthreadBmstrucuonn @welements
all the SIMD lanes eI TrIIITII T ™

executing the SIMD thread 1 instruction 42 <
SIMDthread tiriit!iiit!iirt
Fine-grained SIMD thread 3m5truct|on 95 _'

'l"l‘l'l‘!!"ll'f!"'l!‘l"!l‘

multi-threading

— Hide memory latency
— Wait for pipeline stalls

— Wait for execution _ _
latency | SIMD threau 3 instruction 96

EEEEEEEEEEEEEEEEE

" SIMD thread 8 instruction 12

BEEEEEEEEEEEEEERLE

| SIMD thread 1 instruction 43 K

|
Y EEEEREEEEZEEEEEREEE,

Instruction Stream Scheduling and Pipeline

« An SM executes one or more

thread blocks See acore in the system
« A group of X-threads called a time P stages in a FU
warp
« A warp scheduler issues Cl 11

(broadcasts) one instruction

to either X cores (thus SIMD)
or Y Load/Store Units, orto Z
SFUs. C2 11 In

« However, this is a pipeline
functional unit!

« Assuming independent N
instruction streams or N Cn z1 ‘ J1 ‘ 11
warps
— - N= After N cycles,
Example: N=48, a Warpl: 1112131415... | Commgtes
warp scheduler Warp2: J132 333435 \yarn back to
picks from 48 warps Issue 12 of Warp1, and etc.

for instruction WaroN: 21 72 73 So, if 12 depends on 11,
dispatching! arpil- 2% z2 z3.... It has aroom of N cycles

for execution latency.

Address Coalescing Hardware

 For data transfer from/to memory, a burst
transfer of, say 32 sequential words is performed
by the runtime hardware.

 To do this, the programmer must ensure that
adjacent threads access nearby addresses at
the same time so that they can be coalesced into
one or a few memory blocks.

ISA Issues for SIMT

 Branch problem in

SIMT Single stream on N Cores
— Can not use “reqgular 11
branches” in SIMT 12
because
— If some gets I3 etc and
some get 15, BEQ xx
— then there is no single 13
instruction stream :g
anymore. X
CUDA Core \ l
Dispatch Port
Operand Collector
Core Core Core Core
Data 1 Data 2 Data N

Result Queue /

If-Conversion for SIMT

4 If-conversion uses predicates to transform a conditional branch into a
single control stream code.

if(rl ==0)
addr2, r3,r4
else
subr2, r7,r4
mov r5, r2
code using br / \ If-converted code
f0: cmp r4, #0 cmp rl, #0
f4: beq 0x100 addeq r2,r3,r4
f8:subr2, r7,r4 subne r2,r7,r4
fc: bne 0x104 mov r5, r2
100: add r2, r3, r4
Control merge point | 104: mov r5, r2

Conditional Branch

e Like vector architectures, GPU branch hardware uses
Internal masks

» Branch divergence at the end of basic block A,

— (1) Push control flow merge point first (Rec PC, Active mask, Execute PC) at

control flow merge point D

— (2) Push the other path to be executed later. Execute basic block B first, push the

other path. (Rec PC, Active mask {C}, Execute PC{C}) for divergence point.

— After executing the first path, in basic block B, when PC + 8 = Rec PC (TOS), set

Divergent

Current PC: A
Active mask: 1111

Divergence stack

branch PC:A[1111
PC:B| 1011 PC: C| 0100

Control flow
merge point TC: D| 1111

(a) Control flow graph

Reconvergence Active Execute

(Rec) PC mask PC
(b) Initial state

Current PC: B
Active mask: 1011

Divergence stac

Divergent]
entry /
™ D | 0100 C
Join entry
™~ D | Il | D

mask

Rec PC Active Execute

PC

(c) After executing A

pop

Current PC: C
Active mask: 0100

Divergence stack

Join entry
"

D

[111

D

mask

Rec PC Active Execute

PC

(d) After executing B

the second path: PC = C (TOS), Active Mask = Active Mask (TOS), pop TOS.

Current PC: D
Active mask: 1111

Divergence stack

Rec PC Active Execute
mask PC

(e) After executing C

lllusion of MIMD branch-based program
behavior on SIMD instructions

 lllusion of some threads go one way, the rest go
another.

* lllusion of a thread works independently on one
element in a thread of SIMD instructions.

e In fact, each thread (each SIMD lane) is
executing the same instruction either
“*committing their results” or “idle, i.e. no
operation.”

Memory Hierarchy

Fermi Memory Hierarchy

« Similar to general purpose Thread
CPU

 Add a scratch-pad mem for
group of threads that can
locally share through
load/store in the instruction
stream--a common DSP
technique

f

Shared Memory

L2 Cache

NVIDIA GPU Memory Structures

« Each SIMD Lane (a CUDA thread) has private
section of off-chip DRAM

—“Private memory”

— Contains stack frame, spilling registers, and
private variables

« Each multithreaded SIMD processor also has
local memory

—Shared by SIMD lanes / threads within a block

« Memory shared by SIMD processors is GPU
Memory

—Host can read and write GPU memory

AyorelaiH Alowa N

NVIDIA GPU Architecture

o Similarities to vector machines:
—Works well with data-level parallel problems
— Scatter-gather transfers
— Mask registers
—Large register files
» Differences:
—No scalar processor

—Uses multithreading to hide memory latency

—Has many functional units, as opposed to a

few deeply pipelined units like a vector
processor

NdOdoO uo Arewwns

Inside warp scheduler

e Scheduling optimization: ILP & Hyper threading

— Limited version of OOO

— Register scoreboard: Allow OOO but stall on WAW and WAR
hazards. Per stream view!

— For RAW hazard, similar toTomasulo’s basic. Per stream
view.

— Many instruction streams to dispatch through multiple warp
schedulers. Simultaneous Multi-Threading !

Nd9dS uo Arewwns

a) Register scoreboarding for long latency operations (texture and load)

b) Inter-warp scheduling decisions (e.g., pick the best warp to go next among eligible candidates)
c) Thread block level scheduling (e.g., the GigaThread engine)

However, Fermi’s scheduler also contains a complex hardware stage to prevent data hazards in the
math datapath itself. A multi-port register scoreboard keeps track of any registers that are not yet ready
with valid data, and a dependency checker block analyzes register usage across a multitude of fully

decoded warp instructions against the scoreboard, to determine which are eligible to issue.

Unified Address Space in Program View

Nd9d9 uo Arewwns

e A load/store With PTX 2.0, a unified address space unifies all Fhree address spaces into.a single, continuous
; address space. A single set of unified load/store instructions operate on this address space,
di reCtIy augmenting the three separate sets of load/store instructions for local, shared, and global
accesses an y memory. The 40-bit unified address space supports a Terabyte of addressable memory, and
the load/store ISA supports 64-bit addressing for future growth.
type of the
memory.

Separate Address Spaces

e A hardware
wansiation unit [

maps load/store *p_global
address to the
correct memory
location. ')
SMEM Unified Address Space

reglster !I

Unified Pointer Reference

Unified address memory access by:

« Hardware assisted page mapping that
determines

— which regions of virtual memory get mapped into a
thread’s private memory

— which are shared across a block of threads
— which are shared globally

— which are mapped onto DRAM
— which are mapped onto system memory

 As each thread executes, Fermi automatically

maps its memory references and routes them to
the correct physical memory segment.

NdOdoO uo Arewwns

Resource Allocation in an SM

Registers and shared memory are allocated for a block as long
as that block is active

NdOdoO uo Arewwns

Once a block is active it will stay active until all threads in that block have

completed

Context switching is very fast because registers and shared memory do
not need to be saved and restored

« How many active threads to run depends on
— How many registers to use for a thread
» since total has 32K registers

— How much SMEM to use for a thread

As usual, Compiler determines these allocations!

Resource Utilization in an SM

o Utilization determined by:

— How many registers are allocated to each active thread or to
each instruction stream? (compiler)

— How many SMEM are allocated to each thread? (compiler)

— Each SM support s 8 active blocks and how big is the block

size of each of the active blocks? Cannot be too small!
(programmer??)

v’ Example

a thread uses 21 registers, 32K/21 = 1560 threads
1560 > 1536 threads (spec)

Good utilization depends on the above 3 settings!

Need to see: FU utilization, throughput achieved, and
bandwidth used

Nd9dS uo Arewwns

And in Conclusion

 ISA Architecture for GPU
—ISA design, branch, predication, indexed
Jump, etc
o SIMT Architecture
— Multi-threaded SIMD processor
—Whole GPU
—Memory support
o Software
— Compiler
—PTX assembler and optimizer
—Run time

44

	Handout 6 CUDA, GPU, OpenCL Machine
	Outline
	CUDA
	PTX and LLVM
	CUDA v.s. OpenCL Platform
	Parallel Kernel
	Threads and Blocks
	 A thread; user defined entity
	 A group of threads: thread block
	 A group of thread blocks: grid
	Programmer’s job
	CUDA thread hierarchy
	Nvidia Turing-2018
	Nvidia Turing-RTX
	OpenCL
	OpenCL for Heterogeneous Computing
	Software Diversity
	Open Computing Language
	Methodology for Portability-1
	Methodology for Portability-2
	OpenCL Compute Device
	Programming Model: NDRange Index Space
	NDRange Workload on Compute Device
	Example of vector multiply
	A multithreaded SIMD processor (SM)�
	Example: Architecture of CASLab GPU
	Warp scheduler in Fermi
	Warp Scheduler�
	SIMD Instruction scheduling
	Instruction Stream Scheduling and Pipeline
	Address Coalescing Hardware
	ISA issues for SIMT
	If-Conversion for SIMT
	Conditional Branch
	Illusion of MIMD branch-based program behavior on SIMD instructions
	Memory Hierarchy
	NVIDIA GPU Memory Structures
	NVIDIA GPU Architecture
	Inside warp scheduler
	Unified Address Space in Program View
	Unified address memory access by:
	Resource Allocation in an SM
	Resource Utilization in an SM
	And in Conclusion

