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Abstract—Network I/O virtualization plays an important role in cloud computing. This paper addresses the system-wide virtualization

issues of TCP/IP Offload Engine (TOE) and presents the architectural designs. We identify three critical factors that affect the

performance of a TOE: I/O virtualization architectures, quality of service (QoS), and virtual machine monitor (VMM) scheduler. In our

device emulation based TOE, the VMMmanages the socket connections in the TOE directly and thus can eliminate packet copy and

demultiplexing overheads as appeared in the virtualization of a layer 2 network card. To further reduce hypervisor intervention, the

direct I/O access architecture provides the per VM-based physical control interface that helps removing most of the VMM interventions.

The direct I/O access architecture out-performs the device emulation architecture as large as 30 percent, or achieves 80 percent of the

native 10 Gbit/s TOE system. To continue serving the TOE commands for a VM, no matter the VM is idle or switched out by the VMM,

we decouple the TOE I/O command dispatcher from the VMM scheduler. We found that a VMM scheduler with preemptive I/O

scheduling and a programmable I/O command dispatcher with deficit weighted round robin (DWRR) policy are able to ensure service

fairness and at the same time maximize the TOE utilization.

Index Terms—Hypervisor, I/O virtualization, TCP/IP offload engine, VMM scheduler
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1 INTRODUCTION

AS cloud computing becomes widespread, there are
many emerging issues which have been discussed and

addressed, such as security, quality of service (QoS) [1],
data center networks [2], and virtualization [3], [4]. For
cloud applications, virtualization is one of the key enabling
technology, which possesses two features that make it ideal
for cloud computing, i.e., service partitioning and isolation.
With partitioning, virtualization is able to support many
applications and operating systems to share the same physi-
cal device while isolation enables each guest virtual
machine to be protected from system crashes or viruses in
the other virtual machines.

Virtualization abstracts the physical infrastructure
through a virtual machine monitor (VMM) or hypervisor, which
is the software layer between virtual machines and the phys-
ical hardware. VMM enables multiple virtual machines or
guest operating systems to share a single physical machine
securely and fairly. VMM makes the virtual machine under
the illusion that it has its own physical device.

Cloud computing provides computing resources as a
service over a network, and therefore servers need to

provide high network bandwidth to effectively support
cloud applications. To this end, one approach is to off-
load the TCP/IP protocol stacks from the host processors
to an accelerator unit called TCP/IP Offload Engine (TOE)
[5]. Unfortunately, in a virtualization environment, the
network performance may be burdened by the overheads
of network I/O virtualization.

For instance, the major overheads of network I/O virtu-
alization can be distilled down to four categories: (1) packet
copy, (2) packet demultiplexing, (3) VMM intervention, and
(4) interrupt virtualization. Specifically, the received packets
must be copied to the driver domain for software packet
demultiplexing, and then the driver domain copies the
packets to the target guest domain. Also an I/O instruction
from the guest is trapped by the VMM, and the VMM han-
dles and emulates the instruction. Physical interrupts are
also trapped by the VMM, and then the VMM will issue the
corresponding virtual interrupts to the designated guest
operating system. These virtualization overheads have
caused the loss of 70 percent network throughput when
compared to the native system [6].

Cloud computing service also has to satisfy users’
various requirements, i.e., I/O-intensive domains or CPU-
intensive domains. An I/O-intensive domain may not get
enough CPU resource to achieve high network throughput
or it may not be scheduled in time to do so [7]. As a result,
the I/O-intensive application will suffer from poor network
throughput because of the inadequate scheduling policy.

This paper first identifies three critical factors that affect
the performance of a TCP/IP Offload Engine in a virtuali-
zation environment: (1) I/O virtualization architectures,
(2) quality of service of network bandwidth, and (3) VMM
scheduler. We address the system-wide architecture issues
of TOE virtualization with respect to the above three fac-
tors and present the architectural designs as a whole.
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The major contributions of this paper are as follows:

� We develop an electronic system level (ESL) network
platform for the full system evaluation of TOE virtu-
alization, which includes a behavioral TOE and an
online TCP/IP verification system.

� We develop two TOE virtualization architectures,
including device emulation (DE) and direct I/O
access (DA). In the device emulation architecture,
our approach has eliminated the major overheads of
network I/O virtualization such as packet copy and
packet demultiplexing. In the direct I/O access
architecture, we develop a multi-channel TOE to off-
load the management of virtual device in device
emulation. This design further eliminates most of
the VMM intervention overheads occurred in the
device emulation and achieves higher network
throughput.

� To guarantee the quality of TOE service while at the

same time maximize the TOE utilization, we propose

a decoupled design of the VMM scheduler and the
TOE command dispatcher. Our approach allows

the TOE commands from a VM to be issued accord-

ing to the chosen I/O dispatching policy, not

affected by the VMM scheduler.

The remainder of this paper proceeds as follows. Section 2

presents the background of the virtualization and TCP/IP

Offload Engine. Section 3 describes the TOE virtualization

using device emulation architecture and direct I/O access
architecture, respectively. Section 4 presents the full system

virtualization platform. Section 5 gives the performance

evaluation results. Section 6 reviews the related works. We

conclude the paper in Section 7.

2 BACKGROUND AND PRELIMINARY

In this section, we first introduce the network I/O virtuali-
zation and then the TCP/IP Offload Engine.

2.1 Network I/O Virtualization

I/O virtualization architecture can be classified into three
types, including full virtualization, para-virtualization, and

software emulation. CASL Hypervisor [8] and VMware ESX

server [9] are implemented in full virtualization architec-

ture. VMware ESX server is a standalone hypervisor and it

controls the I/O devices as well as emulates multiple virtual

devices for a virtual machine. When an application in the

virtual machine raises an I/O request, a virtual device

driver in the virtual machine first handles the request and
translates it into a privileged IN or OUT instruction. Once

the privileged instruction is executed on the virtual

machine, the VMM will trap the instruction, and the emula-

tion function in the VMM will handle the instruction and

direct the physical device to complete the request. This

approach is efficient and transparent; however, the VMM

needs to control the physical hardware by itself without the

aid of legacy device driver. This is more complicated to
implement since one needs to know the control interface of

the device in detail, and if the device is updated, the VMM

requires modification.

In VMware ESX server, when a packet is received, the
NIC first transmits the packet into the buffer of the VMKer-
nel, and then issues an interrupt to notify the VMKernel
that the packet is in the buffer. A vSwitch in the VMKernel
demultiplexes the packet and copies the packet to the buffer
of designated virtual machine. Finally, the VMKernel noti-
fies the VMM to raise a virtual interrupt to the designated
virtual machine. The virtual machine receives the packet as
if it were from the physical directly.

2.2 TCP/IP Offload Engine

With the increasing demand for high network bandwidth,
high-end servers have become burdenedwith the processing
of the TCP/IP protocol stacks. It has been reported that a sin-
gle host CPU cannot perform TCP/IP processing satisfacto-
rily as the network bandwidth is greater than 10 Gbit/s
because one CPU clock is required for 1 bps of TCP/IP work
[10]. Therefore, TCP/IP Offload Engine has been proposed
to offload the TCP/IP protocol stacks from the host CPU to
the network processing unit for high network performance
and alleviate the CPU loading [5], [11], [12], [13], [14]. The
specialized hardware can accelerate the protocol processing
to enhance the network performance.

In this work, we use the electronic system level approach
[15] to build an approximate-timed model of the TOE. This
ESL methodology enables us to verify the TOE driver, the
socket API, and the TOE functional hardware at the same
time. Fig. 1 shows the system architecture of the TOE and
the host system. The TOE consists of a control channel, a
TOE engine, and a network interface while the host consists
of the TOE driver and the socket API. The socket API pro-
vides the communication between the user application and
the TOE driver. The driver controls the I/O operation of the
TOE and handles the interrupt event from the physical
hardware. The host communicates with the TOE engine
through the control channel and transmits/receives packets
via the network interface.

The Linux kernel currently does not support TOE hard-
ware because of security and complexity issues [16]; there-
fore, existing applications should be modified and
recompiled to use a TOE device. In this work, we develop
our own TOE driver as well as the socket API similar to the

Fig. 1. System architecture of the TCP/IP Offload Engine.
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BSD socket API used in Linux kernel. In the following, we
illustrate how to design the TOE as well as its driver and
socket API.

TOE Engine. The lower part of Fig. 1 shows the TOE
engine including TCP/IP protocol processing module
(PPM), connection control buffer (CCB), and local buffers.
The PPM performs the TCP/IP protocol suite such as TCP,
UDP, IP, ICMP, and ARP. An internal memory is needed
for the inbound packet (Rx Local Buffer) and outbound
packet (Tx Local Buffer) respectively, and the CCB is used
to keep the information of the socket connection such as the
Transaction Control Block (TCB) in TCP.

In the data transmission path, after the data payload is
fetched from the host memory by the TxDMA, the PPM pro-
cesses the data payload, and generates the packet header.
Finally the MAC transmits the packet to the network. In the
data reception path, the PPM receives the packet from the
MAC for protocol processing. After handling the protocol,
the PPM invokes the RxDMA to copy the data payload to
the host memory. We have verified the above TOE
operations in a real network platform with online packet
transmissions.

TOE control channel. The middle part of Fig. 1 shows
the control channel, i.e., the communication entity between
the driver and the TOE engine similar to the work in
[17]. The control channel consists of four queues, including
a command queue (CmdQ), a send queue (SendQ), a receive
queue (RecvQ), and an event completion queue (ECQ).
These queues provide simple and abstracted communica-
tions between the kernel driver and the TOE engine. The
driver organizes these queues in a series of ring buffers and
the TOE manages the circular queues with the respective
head and tail pointers.

The driver registers a new context through programmed
I/O when the host driver wants to notify the TOE a new
request. The TOE polls these circular queues, and after the
request has been finished, the TOE updates its consumer
pointer and adds finished information into the event comple-
tion queue. Then, the TOE raises a physical interrupt to
notify the driver that the request is finished.

The connection requests like listen(), accept(), close(), and
connect() are registered in the command queue. Once the
application wants to send data, the driver registers a context
that includes the payload length, physical address (PA), and
some control flags through the send queue. The contexts of
the send queue point to the host buffers that will be trans-
mitted by the TOE, and the intelligent DMA inside the TOE
reads the contexts and moves the data from the host mem-
ory to the TOE’s local buffer.

When an input packet comes, the TOE stores the packet
into a fixed-length buffer in the host memory through DMA
operations. When the buffer is full, the TOE raises an inter-
rupt to notify the host. If the host needs the data immedi-
ately, the host can add a context to the receive queue, and the
TOE will raise an interrupt as soon as the input packet is
received regardless of whether the buffer is full or not.

We implement the one-copy mechanism in which the
data payload needs to be copied to the kernel buffer and
then to the user buffer. In this way, there is one extra copy
compared to the zero-copy approach where the TOE can
directly move the packet to the user buffer [5]. However, in

this work, we focus on the TOE virtualization, and we
implement the conventional one-copy approach.

TOE driver and socket API. The socket API manages the
connection data structure and enables multiple processes or
multiple threads to use the TOE, whereas the TOE driver is
responsible for handling the interrupt from the TOE device
and passes the commands from the socket API to the com-
mand buffers in the TOE.

In the transmission path, whenever the data buffer or the
command buffer is full, the application process waits for the
completion of the command. When the command is com-
pleted, the TOE registers a context which contains the infor-
mation of the completed request in the event completion
queue and then the TOE issues a physical interrupt to notify
the host. The ECQ holds the context which includes, for
instance, socket identifier, status flags, packet length, and
packet pointer.

Once the driver receives an interrupt, a kernel thread in
the driver is waked up by the interrupt service routine
(ISR), and then the kernel thread gets the context data from
the ECQ and stores into the control data structure of the
destined socket. The kernel thread also determines which
process to wake up based on the socket ID.

3 TOE VIRTUALIZATION

Virtualized environment is usually used in high-end servers
where many virtual machines provide services such as
cloud computing through high bandwidth network. How-
ever, recent computer systems have suffered from the over-
heads of processing TCP/IP on very high speed network. A
TCP/IP Offload Engine can be used to improve the network
performance as well as to alleviate the CPU loading. In this
way, many of the CPU cycles used for TCP/IP processing
are freed up and may be used for high-end servers to per-
form other tasks such as virtualization applications.

In TOE virtualization, all of the socket connections of the
physical TOE are shared by all guest operating systems,
and managed by the VMM. Thus, when the TOE receives a
packet for a designated socket connection, the VMM knows
which guest operating system the packet belongs to, and
the TOE can send the data payload to the guest operating
system using DMA. In this way, there is no need to demulti-
plex the inbound packets in the VMM and therefore the
overheads of packet copy and packet demultiplexing in the
VMM can be eliminated. In contrast, for the Layer-2 NIC
virtualization, the inbound packet needs to be moved to the
VMM for software demultiplexing [6].

In this paper, we present TOE virtualization using two
architectures including device emulation and direct I/O
access. We illustrate them in detail in the following.

3.1 Device Emulation Architecture

In order to virtualize an I/O device, the VMM must be able
to intercept all I/O operations which are issued by the guest
operating systems. The I/O instructions are trapped by the
VMM and emulated in the VMM by software that under-
stands the semantics of a specific I/O device.

Fig. 2 shows the system architecture of TOE virtualiza-
tion based on device emulation. The VMM creates multiple
virtual TOEs, and each virtual TOE is assigned to a guest
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virtual machine. The VMM manages the communication
between the physical TOE and all virtual TOEs. The VMM
is responsible for managing all guest operating systems,
and provides all guests an efficient and transparent inter-
face to the physical hardware.

There are three layers in the VMM to handle I/O opera-
tions, including a virtual hardware layer, a virtual hardware
manager layer, and a hardware control layer. The virtual
hardware layer emulates the virtual devices to the guest
operating systems while the virtual hardware manager
layer manages all I/O requests from the virtual devices,
and the hardware control layer provides the device driver
to control the physical device.

The virtual TOE manager is a critical component in our
work since it enables the physical hardware resource to be
shared by all the virtual machines and guarantees secure
operations and service fairness. We illustrate the major
modules of the virtual TOE manager in the following.

I/O translation table. In our work, a guest operating sys-
tem translates the virtual address (VA) to the intermediate
physical address (IPA) through the stage 1 page table.
The guest operating system passes the IPA as a context
of the command queue to the physical TOE. The VMM traps
the command and translates the IPA to the physical address
using the I/O translation table and then the PA is used to
address the physical TOE. The DMA of the physical TOE
can therefore copy the data payload from/to the right phys-
ical address according to the command.

Connection manager. The TOE is a connection-based net-
work device which supports multiple connections and can
be shared by all guest operating systems. Thus, the virtual
TOE manager needs to map the real physical socket connec-
tions in the physical TOE to the virtual connections of all of
the guest operating systems.

QoS-based programmable I/O command dispatcher. To share
the physical TOE, a basic policy is that the VMM serves
each virtual machine in a first come first serve (FCFS) manner
with a credit-based scheduler. The VMM directly passes the

commands from the current guest virtual machine to the
physical TOE. Once the current virtual machine is switched
out, the next guest can pass the command to the physical
TOE. In this case, the credit-based scheduler will have diffi-
culty to guarantee the quality of service because the I/O dis-
patching operation and the CPU scheduler, i.e., the VMM
scheduler, is tightly coupled.

In order to decouple I/O command dispatching and CPU
scheduling, we add a virtual control channel to each virtual
TOE, which includes a virtual command queue, send queue,
receive queue, and event completion queue to buffer the
commands from each guest operating system. As Fig. 3
shows, a command from a guest is trapped and moved into
the designated virtual command queue. In this way, the
command dispatcher can still dispatch the commands from
the virtual command queues for the idle or the switched-
out virtual machines.

In order to serve the pending commands fairly or accord-
ing to the credit bought, we propose the use of a QoS-based
programmable I/O command dispatcher (QoS dispatcher)
which is decoupled from the VMM scheduler. In this paper,
the QoS dispatcher provides quality of service for the band-
width a virtual machine has been credited.

The QoS dispatcher can serve each virtual command
queue in a round robin manner, for example. However, an
ordinary round robin policy cannot guarantee the QoS in
the case of different request message sizes as will be shown
later in the experimental results. Thus, we employ the deficit
weighted round robin (DWRR) algorithm [18] to remove this
flaw. Using DWRR policy can handle packets of variable
size without knowing their mean size. Fig. 4 shows the
pseudocode of the DWRR policy in our work.

The QoS dispatcher serves each non-empty SENDQn

whose DeficitCountern is greater than the message size and
the remaining amount (DeficitCountern - MessageSize) is
updated in the DeficitCountern which can be used in next
round. Otherwise, the DeficitCountern will add a Quantumn

value and the QoS dispatcher will serve the next non-empty
SENDQ. In order to support different requested bandwidth
from a guest operating system, we can set different quan-
tum value to each guest operating system. The guest having
more quantum value has more credits to be debited, and it
can get higher network bandwidth.

Fig. 3. Decoupled TOE command flow with QoS dispatcher.

Fig. 2. System architecture of the TOE virtualization using device
emulation.
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Interrupt handler. In our work, a physical interrupt from
TOE is first trapped by the VMM, and the VMM determines
the target guest operating system of the physical interrupt.
Then the VMM allocates the result context from the physical
event completion queue to the corresponding virtual ECQ
in the virtual TOE. After moving the result context to the
virtual ECQ, the VMM raises a virtual interrupt to notify
the target guest operating system that an event has
occurred. The guest handles the interrupt as if the interrupt
were from the physical device, and then the guest reads the
context from its virtual ECQ, instead of the physical ECQ.

3.2 Direct I/O Access Architecture

In the direct I/O access architecture, each guest operating
system is connected to its own physical TOE control channel
and the guest operating system can access the physical TOE
directly.

Fig. 5 shows the comparison between the device emula-
tion architecture and the direct I/O access architecture. In
the device emulation architecture, each guest operating
system is assigned a virtual TOE device where all control
operations are intercepted and managed by the VMM while
the direct I/O access provides multiple physical control
channels in the physical TOE interface. Each physical con-
trol channel acts as if it is an independent control channel
and therefore the device driver within the guest operating
system can directly interact with its own physical control
channel. Instead of assigning the ownership of the entire
TOE to the VMM, the VMM treats each control channel as if
it were a physical TOE and assigns the ownership of a con-
trol channel to a guest operating system.

With the direct I/O access, not only the communication
overheads between the guest and the physical TOE are
eliminated but it also avoids the frequent context switching
between the guest operating systems and the VMM. How-
ever, the physical TOE now must provide multiple physical
control channels and add control logic to multiplex these
physical control channels, which increase the hardware
complexity.

The TOE provides multiple physical control channels for
the guest operating systems and also a control interface
to the VMM. With the stage 2 page table in the MMU, the
VMM assigns a control channel to a guest operating system
by mapping the I/O locations of the designated control
channel into the guest’s address space. Therefore, a guest
operating system can directly access its own control channel
in the TOE interface without the VMM intervention. All
control channels share the single execution resource. In
addition, the direct I/O access provides an interrupt con-
troller that enables all control channels assigned to each
guest operating systems to share the same physical inter-
rupt. In the following, we present the major components of
the direct I/O access architecture.

Multiple control channel. The VMM assigns a physical con-
trol channel to a guest simply by mapping the I/O locations
into the guest’s address space. The VMM must ensure a VM
will not access memory space which is allocated to other
VMs during DMA operation.

To multiplex outbound network traffic, the TOE engine
fairly serves all of the control channels in a round robin
manner or based on the QoS policy. Note that the concept of
QoS dispatcher in the device emulation architecture can
also be implemented in the direct I/O access architecture.
When a packet is received by the TOE, it is first demulti-
plexed, and then the TOE transfers the packet to the appro-
priate guest memory. After that, the TOE adds an event
data into the event completion queue in the designated con-
trol channel.

In a multi-channel TOE, the number of control channels
is limited by the hardware that the TOE provides. If the
number of the guests exceeds the number of the control
channels, some of the guest operating systems need to share
the same channel. The guests sharing the same channel can
use the device emulation approach presented before.

Interrupt delivery. In the direct I/O access architecture, all
physical control channels on the TOE must be able to

Fig. 5. The comparison of the device emulation and the direct I/O
access.

Fig. 4. The DWRR algorithm for QoS dispatcher.
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interrupt their respective guest operating systems. When-
ever the TOE fills up the receive buffer or sends the data
payload from a guest operating system, the TOE enqueues
the result information into the ECQ in the designated con-
trol channel, and raises a physical interrupt to notify the
guest operating system that a new event has occurred.

In the direct I/O access architecture, all control channels
share the same physical interrupt. The VMM needs to deter-
mine which guest operating system the interrupt is for. The
TOE keeps tracking with the ECQs in all of the TOE chan-
nels. If a new event has occurred since the last physical
interrupt, the TOE records the interrupt information in an
interrupt bit vector in the multi-channel control unit.

After the VMM receives a physical interrupt from
the TOE, it first reads the interrupt bit vector in the multi-
channel control unit, and the VMM then decodes the pend-
ing interrupt bit vector and raises the corresponding virtual
interrupts for the target guest operating systems. When a
guest operating system is activated, the guest operating sys-
tem will receive the virtual interrupt as if it were sent from
the physical TOE.

SystemMMU and memory protection. During DMA opera-
tion, an I/O device must use physical address, which is
invisible to the guest operating system. The intermediate
physical address can be translated to the machine address
in the VMM in device emulation architecture. However, in
the direct I/O access architecture, without the VMM inter-
vention, the DMA is not able to read or write the device
using correct physical address. Moreover, without the mem-
ory protection of the VMM, some untrusted guest operating
systems can even access the memory allocated to other
guests through DMA and crash the whole system.

In order to get the correct physical address and guarantee
the memory protection in the direct I/O architecture, we
integrate a SystemMMU [19] into our platform. Similar to
the MMU of a processor, the SystemMMU translates the
addresses requested by the physical device into valid physi-
cal address.

Unprivileged physical address is not accessible to the
device because no mapping is configured in the System-
MMU, which guarantees the memory protection. The VMM
is responsible for managing the SystemMMU, and the Sys-
temMMU can translate the intermediate physical address to
the physical address for the DMA engines in the TOE.

4 FULL SYSTEM VIRTUALIZATION PLATFORM

Our virtualization platform is a full system based on the
ARMv7 processor system, including a hardware simulation
platform, a CASL Hypervisor [8] for the VMM and a Net-
work Virtual Platform (NetVP) [20], [21] for online TCP/IP
verification. In the following, we illustrate how to virtualize
the platform that enables multiple guest operating systems
to share the same physical machine and communicate with
real world computers in TCP/IP.

4.1 Hardware Simulation Platform

The simulation time is different between various abstract
models of simulation accuracy [15]. In this paper, an approxi-
mate-timed simulation platform is developed using SystemC
to help co-verifying software and hardware interwork while

at the same time keeping reasonable simulation perfor-
mance. In order to develop and verify the hypervisor, we
implement a hardware simulation platform, as shown in the
central part of Fig. 6. The hardware simulation platform con-
sists of an instruction set simulator (ARMv7), an interrupt
controller, memory modules, and other peripherals (timers
and UARTs), all of which are necessary to successfully boot
the Linux operating system. All of the system modules are
connected via a transaction level modeling bus (TLM 2.0)
released by OSCI (Open SystemC initiative).

An instruction set simulator (ISS) is a computer program
which mimics the behavior of a target processor. The ISS
implemented in this paper is based on the ARMv7 architec-
ture with virtualization extensions and its correctness has
been verified by successfully booting a Linux kernel.

In the ARMv7 architecture, the address translation,
access permissions, attribute determination and checking
are controlled by the memory management unit (MMU). With
virtualization extensions, the MMU can support two stages
of virtual address translation. If the MMU is configured to
use only one stage, the output address is either the physical
address or the intermediate physical address. On the other
hand, if the MMU is configured to use two-stage address
translation, the MMU also translates the intermediate physi-
cal address to the physical address. Through the use of
routed second stage data abort, the hypervisor can trap a
specific guest operating system’s I/O access and do the nec-
essary emulation.

4.2 CASL Hypervisor Architecture

The CASL Hypervisor [8] is a virtual machine monitor
designed for the ARM architecture; it can virtualize ARM
Linux without any source-level modification. Based on the
ARMv7 architecture with virtualization extensions, the
CASL Hypervisor enables multiple guest operating systems
to share the same physical platform, including the TOE
design described previously.

CPU virtualization. To support full virtualization, ARMv7
virtualization extension adds an additional CPU mode
called Hypervisor mode. The CASL Hypervisor runs under

Fig. 6. System framework of the full system virtualization platform.
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the Hypervisor mode while the guest operating system runs
under the Supervisormode. Since the CASL Hypervisor uses
full virtualization, only hypervisor traps, physical inter-
rupts, and routed data aborts can reclaim the control from
the guest operating systems. The CASL Hypervisor can trap
privileged operations from the virtual machines, also the
guest data abort can be routed to the hypervisor and all
physical interrupts are handled directly by the hypervisor.

VMM scheduler. The CASL Hypervisor schedules guest
virtual machines based on Xen’s credit scheduler [22]. The
credit scheduler can fairly share the CPU resource. The
baseline credit scheduler divides the virtual machines into
two states: UNDER or OVER. If a virtual machine has cred-
its remaining, it is in the UNDER state; otherwise, in the
OVER state. Credits are debited on periodic scheduler inter-
rupts that occur every 10 msec while a typical virtual
machine switch interval is 30 msec [23]. When the sum of
the credits for all virtual machines goes negative, all virtual
machines are given new credit.

When making scheduling decisions, the baseline credit
scheduler only considers whether a virtual machine is in
UNDER or OVER state. Guests in the same state are simply
serviced in a first-in, first-out manner. A new or switched
guest is inserted into the tail of a run queue of the same
state. The scheduler selects the guest requiring the CPU
from the head of the run queue in UNDER state first. If there
are no CPU requests in UNDER state, the scheduler serves
the guests in OVER state in the same way.

The baseline credit scheduler can fairly share the proces-
sor resources; however, it does not consider the I/O perfor-
mance. As an example, a CPU-intensive domain can solely
consume 30 msec before it is switched out. On the other
hand, an I/O-intensive guest may consume far less than 30
msec of CPU time waiting for I/O responses.

In Fig. 7, four VMs share a 1 Gbit/s TOE using device
emulation for virtualization. A VM runs either an I/O
domain application or a CPU-intensive application. The
baseline credit scheduler is used. As Fig. 7 shows, the net-
work throughput gets lower when the number of CPU-
intensive applications is increased. For the TOE, this in turn
can significantly reduce the TOE utilization. The detailed
simulation system is illustrated in a later section.

In order to enhance the network throughput, the credit
scheduler adds an additional state: BOOST which has
higher priority than the UNDER and OVER state. A guest
enters the BOOST state when it receives an event while it is
idle. Moreover, the credit scheduler applies the Tickle mech-
anism which enables the VM in the BOOST state to preempt

the current virtual machine and execute immediately.
Therefore, the waiting time for an I/O domain can be low-
ered. The Boost and Tickle mechanism can improve the I/O
throughput as will be shown later in the experimental
results.

Memory virtualization. In a system where each guest OS is
running inside a virtual machine, the memory that is being
allocated by the guest OS is not its true physical memory,
but instead it is an intermediate physical memory. The
VMM directly controls the allocation of the actual physical
memory and therefore the guests can share the physical
resources arbitrated by the VMM.

There are two approaches in handling the two-stage
address translation (VA to IPA and IPA to PA) [19]. In sys-
tems where only one stage of memory address space trans-
lation is provided in hardware, for example, using the
MMU in the CPU; the VMM hypervisor must manage the
relationship among VA, IPA, and PA. The VMM maintains
its own translation tables (called shadow translation tables),
which are derived by interpreting each guest OS translation
table. However, this software address translation mecha-
nism causes performance overheads. The alternative is to
use hardware assistance for both stages of translation.

In our work, there are two page tables being used in the
translation process under the virtualization environment.
The fully virtualized guest operating system retains the
control of its own stage 1 page table. This table translates a
virtual address to an intermediate physical address. The
intermediate physical address is then translated via the
stage 2 page table managed by the hypervisor. Note that
the guest operating systems cannot be aware of the exis-
tence of the stage 2 page table.

The results of the second stage translation can be either a
valid physical address or a translation fault. If the transla-
tion succeeds, the guest operating system’s memory-
mapped I/O is directed to the physical memory, or a physi-
cal device; otherwise, the hypervisor traps the translation
fault and emulates a specific load/store instruction. Virtual
devices can be implemented using routed second stage data
abort, and pass-through devices can be redirected to its cor-
responding guest by the stage 2 page table.

Interrupt virtualization. Virtual interrupt is an important
mechanism for device virtualization by which the VMM
needs to manage all physical interrupts and map a physical
interrupt to a virtual interrupt for the guest operating sys-
tem. The Generic Interrupt Controller (GIC) in ARM pro-
vides a hardware mechanism to support interrupt
virtualization [24].

The Virtual CPU Interface inside the GIC can forward
virtual interrupt requests to a target processor and trigger it
to take virtual IRQ exceptions. A virtual machine receives
its virtualized interrupts from this interface as if it were sent
from the CPU Interface.

The GIC Virtual Interface Registers provide an extra pro-
gramming interface to the hypervisor. The hypervisor can
use this programming interface to forward interrupt
requests to the GIC Virtual CPU Interface. As Fig. 8 shows,
with the help of the interrupt control registers in the GIC,
the VMM stores the interrupt information for each guest
operating system. Whenever a context switch occurs, the
VMM backups the control registers in the physical GIC and

Fig. 7. Total network I/O performance with different number of I/O-inten-
sive VMs and CPU-intensive VMs (1 Gbit/s TOE).
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restores the control registers of the next-switched guest to
the physical GIC control registers. The virtual CPU interface
then raises the virtual interrupt based on the control
registers in the physical GIC and the guest operating system
therefore receives their interrupt.

4.3 Network Virtual Platform

Developing a complex network system such as a TOE is of a
great challenge since it needs software/hardware co-devel-
opment to verify the correctness of the design. To this end,
we employ the ESL design methodology that provides a
faster simulation environment. Moreover, we integrate a
Network Virtual Platform [20], [21] into our platform to pro-
vide online verification capability. In this way, our virtuali-
zation system can communicate with a real outside world
computer system for functionality verification. See the
lower part of Fig. 6 for the NetVP system.

The NetVP connects the vMAC in the simulation plat-
form with an outside real network using semi-hosting
method through the RAW Socket API of the Linux kernel
and therefore a user can employ a packet analyzer, such as
Wireshark [25], to trace the packet traffic of the network. In
addition, we develop a multithreaded micro-benchmark
called NetVP_Costar, as shown in the right hand side of
Fig. 6, which can support multiple simultaneous connec-
tions to communicate with the multiple guest operating sys-
tems in the simulation platform. The NetVP_Costar uses the
standard TCP/IP protocol stacks in the Linux kernel to
form a golden testbench to verify the correctness of the
TOE. We employ the IP aliasing function in Linux to associ-
ate more than one IP address to a network interface.

5 EXPERIMENTAL RESULTS

The system configuration of the host environment is shown
in Table 1. Our full system virtualization platform has been
implemented in SystemC modules that can be scaled and
reconfigured easily and promptly. The approximately timed
SystemC instruction set simulator model is fully compatible
with the ARMv7 architecture and has been verified by boot-
ing the Linux OS. The detailed parameters of the target
architecture for simulation are listed in Table 2. We config-
ure the TOE bandwidth for 1 or 10 Gbit/s and evaluate the
network throughput under different virtualization
approach. A programmed-I/O based kernel system call is
used to transfer the data payload between an application
and the kernel buffer in virtual machines.

5.1 Single Virtual Machine Evaluation

Fig. 9a compares the packet transmission performance of
the two evaluated TOE virtualization architectures and the
native system for 10 Gbit/s TOE. The achieved network
throughput of the native system (without virtualization) is
about 5 Gbit/s for the 8,000-byte message size. This perfor-
mance limit is due to the programmed I/O operations per-
formed by the 2 GHz CPU system.

The device emulation architecture has communication
overheads resulted from the VMM intervention while the
direct I/O access (DA) architecture can eliminate the com-
munication overhead and improve the network perfor-
mance. However, in the direct I/O access architecture, a
physical interrupt is still intercepted by the VMM and there-
fore the performance of the direct I/O access architecture is
slightly lower than the native non-virtualized system.

For the message size of 8,000 bytes, the transmission per-
formance of the native system can achieve 4,991 Mbit/s,
and the device emulation can only reach 3,022 Mbit/s,
about 60 percent of the native system. In contrast, Xen’s
NIC virtualization has obtained about 30 percent of the
native network throughput [6]. After removing most of the
VMM interventions, the performance of direct I/O access is
32 percent higher than the device emulation architecture, or
80 percent of the native system.

Fig. 9b shows the receiving performance where the net-
work performance can achieve 4,633 Mbit/s with the native
system while the device emulation architecture can only
achieve 2,745 Mbit/s for the 8,000-byte message size. After
eliminating most of the VMM interventions, the direct I/O
access architecture can achieve 3,750 Mbit/s that is 36.6 per-
cent higher than the device emulation architecture. The
receiving performance is slightly lower than the transmis-
sion path. This is because the host is only notified by the
TOE after the kernel receiving buffer is full.

Fig. 9c compares the CPU utilization of single guest
operating system between the device emulation and
direct I/O access with 1 Gbit/s TOE. We measure the

Fig. 8. Backup (OS0) and restore (OS1) interrupt control registers during
virtual machine context switch.

TABLE 1
Configurations of the Host Environment

TABLE 2
Configurations of the Virtualization Platform
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transmission time of sending 128 Mbytes of data in differ-
ent message size. The transmission time of 1 Gbit/s TOE
to send 128 Mbytes data is normalized to 100 percent of
time as shown in the figure. The CPU idle time becomes
larger as the message size is increased because the CPU
can handle more data payload with the same number of
system calls.

With the samemessage size, there are 5 to 23 percentmore
CPU idle time in the direct I/O access than in device emula-
tion primarily due to the less time spent in the VMM. For the
DE-1000 case, the system cannot achieve 1 Gbit/s sending
rate, so it shows a transmission time larger than 100 percent.
Note that the DA-1000 case can achieve 1 Gbit/s.

Fig. 9d compares the CPU utilization between the device
emulation and direct I/O access during packet reception
with 1 Gbit/s TOE. With the same message size, direct I/O
access uses fewer time in hypervisor and gets 7 to 15 percent
more CPU idle time than device emulation.

As indicated in Figs. 9a and 9b, the achieved network
throughput of a 10 Gbit/s TOE is limited to 5 Gbit/s by
the performance of the CPU system used while the same
CPU system is able to sustain 1 Gbit/s TOE except the
DE-1000 case.

5.2 Scalability

Fig. 10 shows the network throughput using 10 Gbit/s TOE.
We evaluate the performance of device emulation and
direct I/O access with different message size and the num-
ber of virtual machines. For either the device emulation or
the direct I/O access, the total network throughput has
shown no degradation as the number of guests is increased.

In our work, the TOE has no need to do hardware context
switch because the connections in the TOE are shared by the
virtual machines. Therefore, the context switch overhead of

the VMM is low and it is too small to have significant influ-
ence on the network throughput.

5.3 Bandwidth Quality of Service

In the virtualization environment, the behavior of guest
systems may be different from each other and can be clas-
sified into CPU-intensive domain and I/O-intensive
domain. In this section, we evaluate the network I/O
performance with different requirement of either CPU-
intensive or I/O-intensive applications. For the evalua-
tion, the CPU-intensive domains run infinite while loop to
fully utilize a guest’s processor resources while the I/O-
intensive domains run the network application to fully
utilize a guest’s network resources.

In order to share the physical 1 Gbit/s TOE fairly in the
virtualized environment, the VMM allocates the TOE
resource to each guest operating system in the round robin
manner as default. In the case that four I/O-intensive guest
operating systems transmit the packets with the same mes-
sage size at the same time, the TOE can be shared fairly.
However, as shown in Fig. 11a, once the message size is

Fig. 9. Network throughput and CPU utilization with single virtual machine.

Fig. 10. The comparison of network throughput for 10 Gbit/s TOE.
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different with the four virtual machines, the round robin
based dispatcher cannot guarantee the fairness. To solve the
problem, we use deficit weighted round robin based QoS
dispatcher to ensure service fairness.

In Fig. 11b, four guest operating systems transmit the
packets with the different message size simultaneously
using the QoS dispatcher. Although the message size is dif-
ferent with the four virtual machines, the QoS dispatcher
can still guarantee the bandwidth quality of service such
that the guest operating systems can fairly share the TOE.

In cloud computing environment, different user may
request different network bandwidth. The QoS dispatcher
can support different requested network bandwidth from
different guest virtual machines. Fig. 12 shows that the QoS
dispatcher can guarantee the requested network band-
width. Assume that the QoS dispatcher assigns the band-
width requirement for the four VMs in the ratio of 4:1:2:2. In
phase 1, the four guest operating systems use the TOE
according to their requested network bandwidth ratio. In
phase 2, VM0 does not use the TOE and in this case other
guest virtual machines can share the TOE according to their
proportion of weighted values (1:2:2) and the TOE can still
operate to 1 Gbit/s. In phase 3, assuming only VM1 uses the
TOE; in this case VM1 can own the whole TOE resource.

So far, we have discussed the cases that all virtual
machines are I/O-intensive domains. However, in mixed
domain applications, the total network throughput can be
significantly reduced by the CPU-intensive guest. The solu-
tion for this lies in the VMM scheduler as will be examined
in the following section.

5.4 CPU Scheduler with I/O Preemption

If the VMM scheduler has no knowledge of I/O require-
ment, this may result in poor I/O throughput as well as
high latency. This is because the scheduler only guarantees
the fairness in using the CPU resources rather than the I/O
resources. When a CPU-intensive application has owned
the CPU resource, I/O-intensive applications may not be
scheduled in time to use the TOE; moreover, a CPU-inten-
sive application can consume up to 30 msec of CPU time

before VM switching. As illustrated in Fig. 7, the network
throughput gets lower when the workload of CPU-intensive
applications is increased, which in turn significantly
reduces the TOE utilization.

In Fig. 13a, VM0 runs the network I/O job while the rest
of VMs do CPU workload. The original credit scheduler
gets very poor performance in network I/O throughput in
this case. With only Boost mechanism, the network perfor-
mance still cannot saturate the 1 Gbit/s TOE because the
pending guest cannot preempt the current running guest to
handle the I/O event immediately. The Tickle mechanism
enables the pending guest to preempt the current guest if
the priority of the pending guest is higher than the current
running guest.

As Figs. 13b, 13c, and 13d show, with the increase in
the number of the I/O domains, the CPU resource can be
shared more fairly with these three configurations. When
the guest virtual machines all are of I/O-intensive
domains, all of the scheduling policies can guarantee the
fairness to share the CPU resource and also the full TOE
utilization can be obtained.

6 RELATED WORK

In this section, we review related works for network I/O
virtualization, in terms of software-based solutions and
hardware-based solutions.

Software-based solutions. Xen’s para-virtualization driver
model uses a shared-memory-based data channel to reduce
data movement overhead between the guest domain and
driver domain [26]. Page remapping and batch packet
transferring are proposed to improve the performance of
network I/O virtualization [27]. XenLoop improves inter-
VM communication performance also using shared mem-
ory [28]. Within these software-based solutions, the
received packet still needs to be copied to the VMM for
demultiplexing, which limits the performance of network
I/O virtualization, and therefore there are many hardware-
assisted solutions [6], [29], [30], [31], [32] which have been
proposed to improve the performance of network I/O
virtualization.

Hardware-based solutions. Intel’s Virtual Machine Device
Queue (VMDq) offloads network I/O management burden
from the VMM to the NIC, which enhances network perfor-
mance in the virtual environment, freeing processor cycles
for application work [29], [30]. It improves the performance
of packet transactions from NIC towards the destined VM.
As a packet arrives at the NIC, the dispatcher in NIC sorts
and determines which VM the packet is destined based on
the MAC address and the vLAN tag. The dispatcher then

(a)

(b)

Fig. 11. Network throughput with different dispatching policy. (a) Basic
round robin. (b) DWRR.

Fig. 12. Network throughput with different weighted values of different
guests.
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places the packet in the target buffer assigned to the VM.
When a packet is transmitted from a virtual machine, the
hypervisor places the transmitted packet in their respective
queue located in the NIC.

To prevent network blocking and service each queue
fairly, the NIC transmits the queued packets in round robin
manner, to guarantee quality of service. In the similar con-
cept, Ram et al. [31] utilized multi-queue network interface
to eliminate the software overheads of packet demultiplex-
ing and packet copying. However, in the above solutions,
the VMM involvement is still required in packet processing
for memory protection and address translation in Xen. For
optimization, a grant-reuse mechanism between the driver
domain and the guest domain has been proposed to miti-
gate the overhead of virtualization. The solutions above do
not present how to virtualize the communication between
the NIC and the virtual machines clearly. In our work, we
illustrate how to virtualize the communication between the
TOE interface and the virtual machines.

Willmann et al. [6] illustrate how to virtualize the com-
munication between network interface and the VMM in
detail, and they propose a concurrent direct network access
(CDNA) architecture to eliminate the overheads of the com-
munication, packet copy, and packet demultiplexing. When
the NIC receives a packet, it uses the Ethernet MAC address
of a VM to demultiplex the traffic, and transfers the packet
to the appropriate guest memory using DMA descriptors
from the context of target virtual machine.

In a non-virtualized environment, the NIC uses physical
memory address to read or write the host system memory.
The device driver in the host translates a virtual address to
a physical address and notifies the DMA in the NIC with
the correct physical address for moving packets. However,
this direct I/O access architecture is dangerous in a virtual-
ized machine since the VMM cannot find out whether there

is a malicious driver in the virtual machine or not. If there is
a buggy or malicious driver in the virtual machine, it could
easily pollute the memory region of other virtual machines
[6]. To prevent the malicious driver from illegal accesses,
the VMM is required to stay in the path of enqueue opera-
tion for DMA memory protection, and this results in a pro-
tection overhead. In the direct I/O access architecture of
our work, we can perform enqueue operation without the
VMM involvement through an I/O MMU approach and
ensure the memory protection.

Dong et al. [32] propose a single-root I/O virtualization
(SR-IOV) implemented in generic PCIe layers. SR-IOV inher-
its I/O MMU to offload memory protection and address
translation, and to eliminate the overhead of the VMM inter-
vention. SR-IOV can create multiple virtual functions (VFs)
which can be assigned to virtual machines for direct I/O
access while the physical device is shared by all the VMs.
The main overhead in SR-IOV comes from handling the
interrupts from a network device. This is because the inter-
rupt is still intercepted and routed to the virtual machines
by the VMM. As a result, they optimize the interrupt proc-
essing using mechanisms such as interrupt coalescing.

7 CONCLUSION

In this paper, we identify three critical factors to provide
a robust network service in the virtualization environ-
ment: I/O virtualization architectures, quality of service,
and VMM scheduler.

First, we develop two virtualization architectures includ-
ing device emulation and direct I/O access to virtualize a
TCP/IP Offload Engine. In the device emulation, the VMM
intervention causes the communication overhead and limits
the network performance. To this end, we employ the direct
I/O access architecture to eliminate the VMM intervention

(a) (b)

(c) (d)

Fig. 13. The network throughput impact of the Boost and Tickle mechanism with various ratio of the I/O-intensive VM to the CPU-intensive VM.
(a) 1:3 (b) 2:2 (c) 3:1 (d) 4:0.
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overhead. The TOE provides the multiple control channels
where each channel can be assigned to a guest operating
system. Thus, the guest virtual machine can directly access
the TOE and most of the VMM intervention overheads can
be eliminated.

For quality of TOE service, in order to decouple the I/O
command dispatcher and the CPU scheduler, we add vir-
tual command queues into each virtual TOE to buffer I/O
commands from the virtual machines. A command from a
guest is trapped and decoded by the hypervisor and sent to
the designated virtual command queue. In this way, the I/
O command can be dispatched regardless the virtual
machine domain is running or not. Moreover, we dispatch
the commands across all virtual command queues using def-
icit weighted round robin algorithm rather than first come first
serve algorithm to ensure the quality of service.

The VMM scheduler has a significant impact on I/O
performance. In a traditional scheduler, an I/O-intensive
domain may not get enough CPU resource or may not be
scheduled in time. This causes poor I/O throughput.
With the Boost and Tickle mechanisms, once an idle guest
receives an I/O completion event, the guest VM enters
the BOOST state and then it will preempt the current
domain that is in the UNDER or OVER state. This
approach favors an I/O-intensive guest machine and in
turn improves the TOE utilization.

By decoupling the TOE command flow, our work shows
that a VMM scheduler with preemptive I/O scheduling and
a programmable I/O command dispatcher with DWRR pol-
icy are able to ensure service fairness and at the same time
maximize the TOE utilization.
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