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Abstract—For an embedded processor, the efficiency of instruc-
tion delivery has attracted much attention since instruction cache
accesses consume a great portion of the whole processor power dis-
sipation. In this paper, we propose a memory structure called Trace
Reuse (TR) Cache to serve as an alternative source for instruc-
tion delivery. Through an effective scheme to reuse the retired in-
structions from the pipeline back-end of a processor, the TR cache
presents improvement both in performance and power efficiency.
Experimental results show that a 2048-entry TR cache is able to
provide 75% energy saving for an instruction cache of 16 kB, at
the same time boost the IPC up to 21%. The scalability of the TR
cache is also demonstrated with the estimated area usage and en-
ergy-delay product. The results of our evaluation indicate that the
TR cache outperforms the traditional filter cache under all config-
urations of the reduced cache sizes. The TR cache exhibits strong
tolerance to the IPC degradation induced by smaller instruction
caches, thus makes it an ideal design option for the cases of trading
cache size for better energy and area efficiency.

Index Terms—Cache memories, computer architecture, energy
management, microprocessors.

I. INTRODUCTION

I MPROVING the efficiency of instruction delivery has been
an important strategy in boosting processor performance. In

addition to employ cache memories, schemes for control flow
speculation are also proposed. Well-known research topics of
this kind include branch prediction [1]–[6], instruction cache
restructuring [7]–[9], and trace caches [10]–[13]. For the rela-
tively simple and short pipeline of an embedded processor, in-
corporating a complex speculation scheme for instruction de-
livery is seldom considered an option in the past. On the other
hand, simply allocating more hardware budget to increase the
size of instruction cache has become a viable solution for em-
bedded processors due to the advance of process technology.
However, this also implies that the power dissipation ratio of
the instruction cache has become increasingly more dominant
in the total processor power usage. For instance, about 27% of
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Fig. 1. Dynamic traces of a 20-iteration loop. (a) Static code layout; (b) pro-
cessor with aggressive branch predictor; (c) processor with non-taken predictor.

the processor power of the StrongARM is dissipated in the in-
struction cache [14]. To achieve better energy efficiency for the
cache system, the filter cache scheme [15], [16] has been pro-
posed to trade performance for better energy efficiency of the
cache system. The basic idea of the filter cache is to insert a tiny
level-zero cache to provide the most frequently accessed data
with lower energy expenses. However, this also induces perfor-
mance degradation due to the increased cache access latency.
Several follow-up researches have proposed various prediction
techniques [17]–[20] to mitigate the performance degradation
of the filter cache.

Essentially, the prior works have focused on the front-end of
the processor to improve either the performance or the energy
efficiency of instruction delivery. In other words, all these ef-
forts aim to speculate the right program traces prior to the branch
instructions are resolved, and then manage to reduce the pro-
gram execution latency or energy consumption via the specu-
lated trace information. Since the speculated traces, given that
they are correctly predicted, will ultimately be retired from the
pipeline and become the history traces, these executed traces are
potentially very beneficial for reuse in the case of an embedded
processor. Fig. 1(a) shows a code sequence including a 20-it-
eration loop; Fig. 1(b) and (c) illustrate the processor contexts
when the code in (a) is executed by two processors of different
complexity. With the support of an aggressive branch predictor,
the superscalar processor in (b) has buffered a long trace in its
instruction window to exploit instruction level parallelism. For
the embedded processor in (c), which simply predicts non-taken
for branches, the unrolled loop has induced a branch mispredic-
tion for each iteration except the last one. Apparently the em-
bedded processor will take more cycles to complete the loop
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Fig. 2. Modified pipeline and the history trace buffer.

due to branch misprediction penalty; yet it produces the iden-
tical history traces as those in processor (b). That is, the un-
rolled loop trace constructed by the sophisticated front-end of
the superscalar processor is identical to the one collected from
the pipeline back-end of the simpler embedded processor. More-
over, if the embedded processor were able to fetch instructions
with the sequence presented in the history trace, future branch
mispredictions could be avoided.

To investigate the feasibility of delivering instructions from
the pipeline back-end, we perform simulations using the
processor model depicted in Fig. 2. The architecture shown
in Fig. 2 consists of an embedded processor with additional
D flip-flops augmented at each stage of the pipeline and a
history trace buffer (HTB) appended at the back-end. The
augmented D flip-flops can be deemed as the expansions of the
stage register, which help to preserve and pass the undecoded
instruction bits to the back-end. The HTB is managed as a
first-input-first-output (FIFO) buffer to capture a fixed length
of the most recently retired instruction sequence.

We use the same simulation environment described in
Section III to gather the statistics presented below. For each
instruction fetched from the front-end, the HTB is searched to
see if the same instruction also hits in the buffered history trace.
The HTB hit counts and the total fetched instruction numbers
are summed respectively throughout the simulation to calculate
the raw HTB hit rate. The raw HTB hit rate indicates how often
the opportunity occurs for the fetch logic to utilize HTB instead
of the cache as the instruction source. The equation for raw
HTB hit rate is , where is the HTB hit count and

is the total fetched instruction number for the program.
Obviously the total fetched instruction number will be
affected by the accuracy of the branch predictor employed at
the fetch stage. The more precise the predictor is, the fewer
the misfetched instructions are. Consequently, using a more
accurate predictor results in a larger raw HTB hit rate due to the
smaller . Two different branch predicting schemes are used
in the processor front-end respectively: one is the non-taken
predictor commonly employed in embedded processors and the
other is the perfect predictor used for comparison.

Fig. 3. Raw HTB hit rate of processor with different predictor.

Fig. 3 shows the trend of the hit rate with the HTB size in-
creasing from 32 instructions to 2048 instructions. The effects
of increasing the HTB size are twofold: the live times of the
instructions in HTB are extended, and the length of the cap-
tured trace is extended. Both of them contribute to the HTB
hit count in different phases of program execution. Because of
the increased instruction count from the mispredictions of the
non-taken scheme, the hit rate of the non-taken predictor is sub-
stantially lower than that of the perfect predictor. A more so-
phisticated branch predictor will have a hit rate curve lies in-be-
tween the two curves presented in the figure. The hit rate result
suggests that the HTB buffer can be used as a supplementing
light-weighted storage for instructions since a large percent of
the instructions can come from the HTB buffer.

Due to the reduced complexity and size, the HTB is far less
power hungry than the instruction cache. If an instruction can
be delivered from the HTB whenever a hit occurs, an energy-
saving rate proportional to the hit rate can be achieved. Note that
for the non-perfect predictors, the raw HTB hit rate also takes
into account of the misfetched instructions. These instructions
are useless for program execution but are inevitable for non-
perfect predictors. However, delivering this type of instructions
from the HTB instead of the instruction cache still brings energy
savings.

In this paper, based on the above observations, we propose
a novel scheme called Trace Reuse (TR) cache to improve
the energy efficiency of instruction delivery for embedded
processors. The TR cache is composed of a history trace
buffer (HTB), which collects the instructions retrieved from
the pipeline back-end of the processor, and a trace entry table
(TET) for fast access to the trace buffer. The proposed TR cache
structure resides at the same level of memory hierarchy as the
conventional instruction cache, so no additional cache latency
will be incurred. As a repeated trace execution is identified, the
processor switches to the TR cache for low-power instruction
delivery. Delivering the instructions in the form of traces,
like the trace cache, enables the processor to sustain a higher
instruction rate, and consequently improves the performance.
With its simple structure, the TR cache represents a cost-effec-
tive design option, which is beneficial in both performance and
energy efficiency for embedded processors.

The rest of this paper includes the following sections.
Section II presents the design of the TR cache architecture and
implementation issues. The performance and energy efficiency
of the TR cache are evaluated in Section III. Related works
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and our contributions are discussed in Section IV. Finally,
Section V concludes this paper.

II. DESIGN OF TR CACHE

In this section, we present the TR cache architecture that is
capable of delivering instructions from the HTB for embedded
processors. Along with the HTB FIFO buffer which is used to
store the retired instructions, a search mechanism is required
to locate the reusable instructions in the FIFO buffer. A new
instruction delivery process is also required to employ the TR
cache as an additional instruction source. The TR cache archi-
tecture is presented in Section II-A and the detailed design op-
tions are discussed in Section II-B.

A. Architecture

The architecture of the TR cache is depicted in Fig. 4 where
the conventional instruction cache is also illustrated to show the
modification on the instruction delivery path. As mentioned in
Section I (referring to Fig. 2), the stages following the IF stage
are augmented with additional D flip-flop registers to bypass the
undecoded instruction bits. In addition to these expanded stage
registers required for buffering on-the-fly instructions, a simple
multiplexer and mode switching logic are integrated into the
fetch stage to select the proper instruction source. We present a
TET design to index the HTB buffer for instruction reading. The
TET is a small memory structure used to group the instructions
in the HTB buffer so that they can be accessed in the granularity
of traces. Specifically, the TET stores the trace-entry records
each of which consists of the PC value of a control-transfer in-
struction and the corresponding HTB entry index. Note that the
stored HTB index points to the instruction following the con-
trol-transfer instruction to mark a possible trace entry.

The contents of TET and HTB are updated as follows. When-
ever an instruction is retired from the pipeline backend, it is
buffered in the HTB along with its PC. If this newly retired in-
struction is a control-transfer instruction, a conditional branch
for instance, a new trace-entry record will also be inserted into
the TET as shown in Fig. 4. Since the HTB is managed in a
FIFO fashion, the oldest instruction will be discarded to make
room for a new one. If the discarded instruction is a marked trace
entry, the corresponding (i.e., the oldest) record in TET will also
be invalidated. The invalidation of an expired trace entry is cru-
cial since otherwise the fetch logic will reference a trace entry
which is no longer valid in the HTB. For the simplicity of expla-
nation, at this moment we assume the TET has the enough ca-
pacity required to record all the trace entries in the HTB buffer.
Design tradeoff for limiting the TET size will be presented in
the next section.

By comparing the HTB in Fig. 4 to the superscalar model in
Fig. 1, we can see that the HTB buffers the instruction stream
in the same way that a reorder buffer of a superscalar processor
does. This means that when the program executes a small loop,
multiple instances of the same iteration are buffered in the HTB,
which appears to be inefficient in using the memory. To im-
prove instruction buffering efficiency, a more complex basic
block threading mechanism such as the design in [21] may be
used; however, such a design typically uses expensive asso-
ciative lookup circuitry which raises both the power and area

Fig. 4. TR cache architecture for embedded processor.

usage of the buffer. On the other hand, the HTB is a simple
FIFO without the complex logic for associative lookups. The
HTB uses a simple index-based access mechanism, to be pre-
sented later, which brings advantages in power and area usage as
compared with an associative lookup-based design. The exper-
imental results presented in Sections III-D and III-E show that
the circuit simplicity of the TR cache offers significant power
benefits.

To utilize the TR cache as an alternative source for instruction
delivery, a new access mode is integrated to the fetch logic. Here
we name the original access mode as the cache mode and the
new one as the TRC mode. Fig. 5 shows the change in the flow of
instruction delivery; the shaded blocks indicate new operations
installed by the TRC mode. The processor is in cache mode by
default, and for each cache-mode cycle the TET is searched in
parallel with the cache (referring to Fig. 4). We assume the TET
search can be completed in a single cycle. Our design option
evaluations shown later validate this assumption. The validation
of this assumption is presented in Section II-B.

The processor remains in cache mode until the TET search
returns a hit. When a hit occurs, the HTB index returned by the
TET will be latched and the processor will switch to the TRC
mode at the next cycle. Note that for the cycle in which a TET
hit event occurs, the control-transfer instruction is still deliv-
ered from the conventional instruction cache as illustrated in the
upper part of Fig. 5. In the TRC mode, the fetch logic uses the
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Fig. 5. Flowchart of instruction delivery.

HTB index instead of the PC value to get the instruction from
the HTB buffer. For each TRC-mode cycle, the fetch logic per-
forms two checks before actually acquiring the instruction: one
is the availability of the instruction and the other is the validity
of the current trace.

The availability of the incoming instruction is confirmed by
checking the current HTB index against the HTB boundary
pointers. If the index has reached the end of the HTB, the
TRC-mode operation will be aborted and the next PC will be
generated for the cache-mode operation. Moreover, the branch
misprediction signal from the execution stage will also be
checked to validate the ongoing trace. Provided that a branch
misprediction is detected, the TRC-mode operation will be
aborted and the target address forwarded from the execution
stage will be used as the next PC. Note that for the branch mis-
prediction recovery in the TRC mode, the processor is always
reset to the cache mode and then fetches from the instruction
cache. Though we can also initiate a new lookup into both the
TET and HTB for additional chances of trace reuse, our exper-
iment indicates that doing so only increases the overall HTB
hit rate by about 2% and will incur additional recovery latency.
Thus we decided to keep the recovery mechanism in TRC mode
seamlessly integrated with the conventional pipeline operation.

TABLE I
MAXIMUM TET RECORD COUNTS FOR DIFFERENT HTB SIZES

B. Design Options of TET Implementation

As mentioned previously, the TET search is performed in
each cache-mode cycle; therefore the size and the structure of
the TET present two most important issues for the implemen-
tation of the TR cache. In the previous section, we assumed
that the TET has enough capacity to accommodate records for
every control-transfer instructions in the HTB. The TET size to
be used is actually dependent on both the size of the HTB and
the program behavior. Table I shows the maximum TET record
numbers required for different HTB sizes, collected from the
benchmark suite simulation described in Section III.

As shown in the table, the maximum record numbers con-
verge to roughly one-fourth of the HTB size, thus we choose
to limit the TET size to one-fourth of the HTB size. Appar-
ently limiting the sizes of TET may cause the number of dy-
namic trace-entry records to exceed the size of the TET. For the
TET, we propose a management scheme called replaced-by-in-
validation policy to handle the case when the TET is full. That
is, when the TET is full, instead of replacing any TET entry,
the newly generated trace entry record is simply discarded until
the oldest TET entry is invalidated by the removing of the ex-
pired trace-entry instruction in the HTB. This may cause some
of the trace entry points not being recorded in the TET and there-
fore decrease the HTB hit rate. However, this policy will guar-
antee the invalidation of the expired TET entries which are then
easily synchronized with the instruction retirement operation in
the HTB.

For a small TET, the implementation of the TAG field can
be of a traditional fully-associative structure, such as the low-
power CAM design proposed in [22]. However, for a TET with
a much larger capacity, e.g., a 512-entry TET with a 512 21
TAG array, this CAM structure will consume significant area
and power usage not suitable for an embedded design. To re-
duce the overhead of implementing a TET, two SRAM-based al-
ternatives including a four-way set associative design as shown
in Fig. 6 and a direct-mapped organization (not illustrated) are
evaluated. For the four-way set associative version, the TET
of size is physically divided into /4 segments where the
replaced-by-invalidation policy is enforced separately. When a
specific set is full, a later record indexed to the same set is dis-
carded. Likewise, the replaced-by-invalidation policy can also
be applied to a direct-mapped design where each set contains
only one entry. The effectiveness and energy consumption of
these two simplified organizations are presented in Figs. 7 and
8, respectively, to show the design tradeoff. The results shown
in Fig. 7 are collected from the simulation platform described
in Section III; and the energy estimations in Fig. 8 are obtained
using CACTI [25]. As shown in Fig. 7, the four-way organi-
zation TET is almost as effective as the fully-associative one.
The direct-mapped version has caused an average of 2% drop in
hit rate due to the conflict misses. However, the direct-mapped
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Fig. 6. Four-way TET with replaced-by invalidation policy.

Fig. 7. HTB hit rates of different TET organizations.

Fig. 8. Energy consumptions of different TET organizations.

version provides over 80% of energy saving for each access as
shown in Fig. 8. Obviously in this case, it would be preferable
to trade energy saving with slight hit rate degradation.

Using the direct-mapped design can substantially reduce the
circuit complexity and energy usage of the TET. However, the
sequential order of the TET entries may be scattered due to the
non-FIFO nature of the direct-mapped organization. This will
hamper the in-order invalidation of the TET entries since the
oldest entry may no longer be simply located at the tail of the
buffer. We present a simple mechanism to solve this problem.

In Fig. 9(a), we show the content of a TET entry which
includes a tag field for the PC of control-transfer instruction,
a HTB number indexing the target instruction, and a busy bit
which indicates whether the entry is occupied. Fig. 9(b) shows
the content of a HTB entry which includes a PC-instruction
pair, an invalidate flag and a taken/not-taken direction for the
conditional branch instructions. Fig. 10 details the pseudo code

Fig. 9. Contents of TET and HTB. (a) Content of a TET entry; (b) content of
an HTB entry.

Fig. 10. Pseudo code for the replace-by-invalidation policy.

for the replaced-by-invalidation policy. As a control-transfer in-
struction entering the HTB, its taken/not-taken history is logged
as a reference for trace validity check. A TET index will be
generated with the PC value of the control-transfer instruction.
According to this index, the busy bit of the corresponding TET
slot is checked to see if it is available for use. If the TET slot
is available, the new trace-entry record for the control-transfer
instruction will be inserted into TET and the invalidate flag
of the corresponding entry in HTB will be set indicating that
this instruction also occupies a TET slot. For control-transfer
instructions which cannot get the available slot from the TET
and all other instructions, their invalidate flags in the allocated
HTB entries remain unset. After an instruction has traversed to
the tail of the HTB and been chosen to discard, its invalidate
flag will be checked. If the flag is set, the corresponding TET
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TABLE II
SYNTHESIS RESULTS OF THE MODIFIED RISC PIPELINE

entry will be invalidated. The index number of the invalidated
TET entry is generated using the PC of the instruction to be
drained out of the HTB. This process will guarantee an in-order
invalidation of the TET contents which is then synchronized
with the instruction retirement in the HTB.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental methodology and
the results. To demonstrate the feasibility of the pipeline modi-
fication described in Section II-A, the additional D flip-flops in
each pipeline stage and the multiplexing logic in the instruction
fetch stage are implemented in an ARM-compatible five-stage
RISC core described in [23]. The new RTL code of the modified
processor core, which includes the register file and the complete
pipelined datapath, is then synthesized using the Synopsys De-
sign Compiler along with the UMC 90-nm technology library.
Note that the caches and the TLBs are excluded from the syn-
thesis process to assess the area overheads on the processor in-
teger core. Table II lists the synthesis results of the modified
processor core and the comparisons with the original design.
With the nonpipelined multiplier and adder provided by the Syn-
opsys DesignWare, the synthesized core is able to operate at a
clock period of 6 ns (166 MHz). The cell area of the modified
pipeline increases only about 5.4% of the original pipeline. The
estimated dynamic power increases about 0.6 mW, which is in-
significant in comparison with the 10.2 mW power consump-
tion of a direct-mapped 16 kB instruction cache running at 166
MHz. The synthesis tool has reported different critical paths in
the fetch stage for the two versions of the core, with unchanged
latency. This shows that the additional multiplexing logic does
not pose noticeable timing issue to the instruction fetch logic for
this implementation.

Moreover, our synthesis results indicate that, using the UMC
90-nm library, the latency of the multiplexing logic itself is 0.26
ns. For high-speed designs such as an operating frequency of 1
GHz, for instance, the fetch logic and access to the instruction
cache itself will be pipelined and the reported MUX latency still
leaves quite an adequate margin for the integration of other logic
such as the address decoder of the cache.

To further reveal the impact on performances, the TR cache
architecture is integrated into the Simplescalar-ARM [24]
platform for the simulation of a detailed cycle-accurate model.
The baseline processor is configured using the parameters listed
in Table III to model an embedded processor similar to the
StrongARM [14]. A set of benchmark programs selected from
MiBench [27] listed in Table IV is used to evaluate the IPC
and energy consumption of the TR cache. The static code sizes
and the used input sets of each program are also detailed in the
table. All programs are run to completion.

TABLE III
BASELINE PROCESSOR CONFIGURATION

Reduced instruction cache sizes including 8, 4, and 2 kB are also employed
for the scalability evaluations.

The energy consumptions, areas, and access times of the sug-
gested memory structures described in Section II are estimated
using CACTI v5.3 [25]. The CACTI is an integrated memory
modeling tool, which can provide optimized circuit layout pa-
rameters and resultant physical characteristic such as access
time, dynamic access energy, and leakage power by user-de-
fined specifications. Table V shows the general parameters used
in CACTI and the explanations for these options can be found
in [26]; organization parameters which vary from module to
module such as total capacity and associativity are not shown
in the table. The derived estimations are used for the evalua-
tions of performance and energy consumption of the TR cache
and other referenced models.

A. Access Time and Area Estimations

Using CACTI, both the TET and HTB are modeled as SRAM
modules with one exclusive read port and one exclusive write
port. The areas, access times, and power usages of other ref-
erenced memory modules are also listed in Table VI. The 16
kB/32-way instruction cache is modeled according to the base-
line organization listed in Table III, while the 8, 4, and 2 kB ones
correspond to the reduced instruction cache modules depicted in
Fig. 13.

It can be observed that the access times of the direct-mapped
TETs are far less than that of the 16 kB/32-way instruction
cache. This shows that the TET search in parallel with the cache
mode operation has no impact on the processor cycle time. The
access time of the largest HTB (2048 entries simulated) also
lies in a decent safe margin, guaranteeing that the processor
cycle time in the TRC mode will not increase either. The 16
kB/32-way instruction cache has an access time of 2.148 ns,
which lies in the safe margin of operating at a frequency of 450
MHz. Therefore we assumed the operation frequency of the pro-
cessor to be 450 MHz and used this assumption in the calcula-
tion of leakage power in Section III-D.

The area estimations are also presented in Table VI and are
normalized to that of the 16 kB/32-way instruction cache in
the baseline processor for comparison. As shown in the table,
the 2048-entry HTB contains as much data capacity as the 16
kB/32-way instruction cache but possesses only about one-third
of the area. At the same level of data capacity, the TR caches
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TABLE IV
SELECTED MIBENCH PROGRAMS

TABLE V
GENERAL PARAMETERS APPLIES IN CACTI

possess substantially less areas than the instruction caches do
due to the low-complexity circuitry. This means it could bring
options to relax the area constraint of the processor if the TR
cache can be used as a replacement or partial replacement of
the instruction cache. The feasibility of replacing a portion of
the instruction cache with a TR cache will be discussed in later
section.

B. IPC Performance Analysis

The average IPC of the 31 programs listed in Table IV is
used as the performance metric. Due to the large variations in
the elapsed cycle counts of the programs, we use (1) instead of
arithmetic mean to calculate the average IPC

(1)

where the is the number of valid dynamic instructions of the
program; and the is the elapsed cycle count during the

TABLE VI
ESTIMATED ACCESS TIMES AND AREAS OF THE REFERRED MEMORY MODULES

discussed in Section III-B; discussed in Section III-D.

execution of the program. The IPC in (1) is equivalent to
the summation of the weighted IPC of each program.

To also compare the performance of the TRC-based models
to the high-end embedded processors such as ARM’s Cortex R
series [29], two branch-predictor-based configurations, namely
bimodal-1K and gshare-4K, are also evaluated. As reported in
[1], the bimodal predictor is a basic dynamic prediction scheme
which saturates at around 93.5% and the gshare is a refined
global predictor which can achieve prediction accuracy up to
96.5% with larger table size. For the 31 benchmark programs
evaluated in our work, the bimodal predictor saturates at the
prediction rate of 93.38% with 1k table size while the gshare
predictor achieves 94.17% with 4k table size. Fig. 11 shows
the average IPC of the baseline processor and the proposed TR
cache architecture. The label designates a TR cache
with an HTB size of instructions and a TET size of
trace-entry records. The IPC results of using realistic branch
predictors, which are labeled as bimodal-1K and gshare-4K
respectively, are also shown in the figure. The bimodal-1K
system models a baseline processor employing a 1024-entry
bimodal predictor and a 1024-entry branch target buffer, while
the gshare-4K models the 4096-entry gshare predictor table
with a 512-entry branch target buffer.

As shown in the figure, incorporating the TR cache pro-
vides significant performance improvement over the baseline
processor. The improvement, which is proportional to the
size of the TR cache, mainly comes from the locality of the
program and the inherent branch prediction effect introduced
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Fig. 11. Average IPC and improvement rate.

by reusing the history trace. For instance, the TRC-1024 model
has performed as well as the two predictor-based models.

We define a metric called TRC effective instruction rate to
indicate how many of the executed instructions truly come from
the TR cache. For all the instructions fetched, only the valid ones
are able to reach the pipeline backend. In (1), the number of the
valid instructions during the execution of the program is
denoted as . Among the valid instructions, there are
instructions which are delivered from the TR cache. The TRC
effective instruction rate is then calculated as follows:

TRC effective instruction rate (2)

Specifically, the TRC effective instruction rate defines the
ratio of the useful instructions delivered from the HTB over the
total number of instructions that can reach the write-back stage
(that is, only the valid instructions excluding the mispredicted
ones). So it can measure the effectiveness of a TRC mechanism,
for instance, when different TET schemes or different HTB sizes
are used. In other words, the TRC effective instruction rate re-
flects how well the buffered history traces in the TR cache can
be utilized.

As we know that the basic idea behind branch prediction is
to extract useful branch targets from the history trace. In our
work the same effect is produced when a valid branch target is
delivered from the TR cache. To reflect the exhibited branch pre-
diction performance, we define the equivalent branch prediction
rate of a TR cache as follows: the number of the correctly-pre-
dicted ones divided by the total number of control-transfer in-
structions. Fig. 12 shows the TRC effective instruction rate and
the achieved equivalent branch prediction rate for various TR
cache configurations. First, we note that even a small TR cache
such as TRC-64 is able to provide about 45% of the effective in-
struction rate and about 65% in the equivalent branch prediction
rate. As a result, this improves the IPC about 12% compared to
the baseline one.

We further observed that over 80% of the valid instructions
can be delivered from the TR cache when the TRC size is larger
than 512 instructions. With this, we inferred that the TR caches
have the potential to substitute the conventional instruction
cache and even have the capability to tolerate the performance
loss when using a smaller instruction cache. To further explore

Fig. 12. TRC effective instruction rates and equivalent branch prediction hit
rates.

Fig. 13. Performance impact of reducing instruction cache size.

this hypothesis, we also present the IPC results of the processor
with reduced instruction caches of 8, 4, and 2 kB, respectively.

Fig. 13 depicts the performance impact of reducing the in-
struction cache size for various TR cache models. The IPCs of
the TR cache models are normalized to the baseline processor
which only employs non-taken branch prediction. The instruc-
tion cache size is reduced by halving the associativity (i.e., the
number of ways) to demonstrate the effects of both capacity
misses and conflict misses. The left-most column shows the
normalized IPCs of 16 kB/32-way cache, and the remaining
columns depict those of the 8 kB/16-way, 4 kB/8-way and
2 kB/4-way, respectively. Note that for the predictor-based
models, only the curve of the gshare-4 K model is shown in the
figure since the two models perform very closely (within 0.2%
difference) for all the elaborated cache sizes and the gshare-4K
achieves just slightly a better performance.

It can be observed that the performance of the processor with
a non-taken predictor drops rapidly as the instruction cache
is reduced while the TRC-based models and the branch-pre-
dictor-based model exhibit different capability to compensate
the IPC drop. Among them the TRC-2048 model exhibits the
best performance in sustaining the IPC when the instruction
cache size is reduced. On the other hand, the performance of
the predictor-based model depends strongly on the size of the
instruction cache. For the cases of 16 and 8 kB instruction
caches, the gshare-4K performs almost as well as TRC-2048;
however, when the cache is reduced to 4 kB, its IPC drop to



TSAI AND CHEN: ENERGY-EFFICIENT TRACE REUSE CACHE FOR EMBEDDED PROCESSORS 1689

TABLE VII
INSTRUCTION CACHE ACCESS COUNTS OF DIFFERENT DELIVERY SCHEMES

that of TRC-1024; and finally when the cache is reduced to 2
kB, even the TRC-512 can outperform the gshare-4K model.

With similar accuracy of branch prediction, the advantage of
TR cache over branch-predictor-based model is more evident
when the instruction cache capacity is insufficient to contain the
application kernel. For example, the TRC-2048 model outper-
forms the gshare-4K by 25% and 50% for the cases of 4 and 2 kB
instruction cache, respectively. This can be explained with the
fact that the HTB virtually expands the capacity of the conven-
tional instruction cache in a dynamic manner. Through a simple
yet effective access scheme provided by TET, such a dynami-
cally expanded cache space can deliver even more performance
gain than a dynamic branch prediction scheme.

C. Impact on Instruction Cache Access

Since the TRC mechanism is used as an alternative instruc-
tion source, naturally it affects the instruction cache access sta-
tistics. Table VII lists the total number of instruction cache ac-
cesses for the 31 programs simulated of different TRC sizes.
The access counts to instruction cache are substantially reduced
as the capacity of the TR cache increases, and for the best case,
up to 92.5% of the accesses can be eliminated by TRC-2048. As
more targeted accesses being shifted from the instruction cache
to the TR cache, the energy saving effect of the TRC becomes
more evident. A detailed energy efficiency analysis is given in
the next section.

In the previous section, we mentioned that the TRC-512,
TRC-1024, and TRC-2048 deliver performance advantages
when the instruction cache capacity is too small to store the
application kernel. This observation can be further supported
by looking into the cache miss numbers. Fig. 14 shows the
total cache misses of the 31 programs simulated for the four
different sizes of instruction cache configurations. For the
cases of 16 and 8 kB instruction caches, the major parts of the
application kernels can be well contained in the instruction
cache so that the cache miss number remains approximately
constant across all delivery schemes. However, for the 4 and 2
kB cases, the cache miss occurrences of the non-taken model
increase exponentially due to insufficient capacity and address
conflicts. Under such circumstances, the TRC-2048 is able to
eliminate more than 50% of the cache miss events.

Fig. 15 depicts the change of cache miss rates as the TRC ca-
pacity increases. For 16 and 8 kB caches, since the miss occur-
rences remain approximately constant (referring to Fig. 14) and
the total number of instruction cache accesses is substantially re-
duced (referring to Table VII), the miss rates of the instruction

Fig. 14. Total cache miss events of different instruction cache sizes.

Fig. 15. Miss rates of different instruction cache sizes.

cache are raised accordingly. However, for the cases of 4 and
2 kB cache, the miss rates regress at TRC-2048. This indicates
that the cache miss elimination effect of TRC-2048 slightly sur-
mounts the effect of cache access reduction.

D. Energy Efficiency

In this section, we present the evaluation of energy consump-
tion and normalized energy-delay product of using the TR cache
and other reference configurations. The energy consumption of
the fetch logic mainly comes from the power dissipation of the
instruction cache and the augmented memory structures such as
the TET and HTB. We have developed a power model of the
fetch logic from the energy usage listed in the following to cal-
culate the total fetch energy:

(3)

(4)

(5)

(6)

The , , and in the
above equations stand for read energy per port, write energy
per port and leakage power respectively, and are estimated
by the CACTI tool [25]. The parameters used in estimating
these values are described in Section III-A. The and

stand for the number of read accesses and the number of
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write accesses of the evaluated memory structures respectively.
These two numbers represent a model of the dynamic activity
factor which helps to reflect the impact on energy consumption
caused by different access behavior. is the
elapsed program execution time which is used to estimate the
change in leakage energy due to performance improvement.
These program-related parameters are obtained through the
simulations using the Simplescalar platform described in pre-
vious section.

For each referred memory module, the total energy used,
is derived by summing up the dynamic access en-

ergy and the static leakage energy ; and then
in (6) all the individual are summed to present an
overall energy usage in the fetch logic during the program
execution. Finally, the energy-delay product (EDP) is calcu-
lated by multiplying the normalized and the normalized

to reflect the overall energy efficiency of
each configuration. For the EDP, the smaller the better of a
configuration in energy efficiency.

As mentioned earlier, the TR caches provide energy savings
in the same way a filter cache does; therefore the filter cache de-
sign is also evaluated for comparison. The original filter cache
proposed in [16] suffers from IPC drop due to the increased
cache latency. Various schemes, including software-based [17],
[18], [20] and hardware-based ones [19], [30], are proposed
to mitigate the IPC degradation of filter cache. Since the TR
cache is simply a hardware-oriented scheme, for our compar-
isons we select a recently proposed filter cache design that also
uses a hardware-based improvement scheme [30]. The organi-
zation and utilization strategy proposed in [30] provide the ef-
fectiveness similar to a dynamic loop cache [18] with the design
complexity of a direct-mapped cache, thus represents a contem-
porary filter cache design.

Fig. 16 presents the fetch energy usage rates, which are the
normalized forms of the values calculated with (3)–(5), of a 16
kB 32-way instruction cache when different instruction delivery
schemes are applied. This 16 kB 32-way instruction cache cor-
responds to the one employed in the baseline processor listed
in Table III. As described in [30], the filter cache size is set to
1/W of the cache size where W is the number of ways, hence the
filter cache size for the 16 kB/16-way cache evaluated in [30] is
1 kB and an energy reduction rate of 67% is reported. Since the
baseline model in our work employs a 16 kB/32-way instruction
cache, based on [30] a direct-mapped filter cache with 512-byte
capacity is applied for our experiment.

In Fig. 16, it can be seen that the total energy usage of the in-
struction cache is substantially reduced by the TR cache and the
effect grows with the increase of the TR cache size. For the best
TR cache configuration, the TRC-2048, about 75% of energy
saving is achieved while the filter cache achieved 80% saving.
Taking the reduced delay time into account, the TRC-2048 has
achieved the energy-delay product value of 0.207, which is very
close to the value of 0.204 achieved by the filter cache. This re-
sult indicates that in addition to the IPC improvement, the TR
cache is able to achieve energy efficiency close to the contempo-
rary filter cache design as well. Moreover, the energy usage of
two hybrid configurations, which incorporates both the branch-
predictor models mentioned in Section III-B and the filter cache,

Fig. 16. Fetch energy usage rates and EDPs of suggested instruction delivery
schemes with 16 kB 32-way instruction cache.

Fig. 17. Fetch energy usage rates and EDPs of suggested instruction delivery
schemes with 8 kB 16-way instruction cache.

are also presented. Note that the gshare-4K uses a 512-entry
BTB, which has a lower complexity and capacity than that of
the bimodal-1K model (referring to Fig. 11), yet it achieves
the same amount of execution time reduction, therefore out-
performs the bimodal-1K and all other models for both energy
saving and EDP.

To further explore the effectiveness of the TR cache and the
other reference configurations, we also provide the energy us-
ages of the fetch logic when the instruction cache is scaled
down in both size and complexity. Figs. 17–19 show the fetch
energy usage rates when the instruction cache is reduced to 8
kB/16-way, 4 kB/8-way, and 2 kB/4-way, respectively. These re-
duced instruction caches correspond exactly to those described
in Section III-B (referring to Fig. 13), in which their numbers
of ways are halved in turn while the set number of a single way
remains the same. This setting also keeps the size of the applied
filter cache constant, in our case, 512 bytes.

In Table VIII, we can see that the total fetch energy dissi-
pated in the instruction cache of the processor with non-taken
predictor drops dramatically when the size of the instruction
cache is reduced. This is why the energy usage rates of the TR
caches become more dominant in Fig. 17 and Fig. 18. This is
also true for the branch-predictor based models since the en-
ergy consumed by the branch target buffer becomes more sig-
nificant. In Fig. 19, the fetch energy consumed by TRC-1024,
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Fig. 18. Fetch energy usage rates and EDPs of suggested instruction delivery
schemes with 4 kB eight-way instruction cache.

Fig. 19. Fetch energy usage rates and EDPs of suggested instruction delivery
schemes with 2 kB four-way instruction cache.

TABLE VIII
� OF THE PROCESSOR WITH NON-TAKEN SCHEME

TRC-2048, and the two branch-predictor based models even ex-
ceeded that of the non-taken configuration.

Taking the energy-delay product as a criterion, the gshare-4
K model performs better than the TRC-2048 with the support of
an additional filter cache, for the cases of 16 kB/32-way and 8
kB/16-way instruction cache. However, when the size of the in-
struction cache is further reduced, in our case, 4 kB/8-way and
2 kB/4-way, the TRC-2048 is able to save more execution time
and thus achieve better EDP. This shows that under the circum-
stance of reduced instruction cache size, the TRC-based solu-
tion will deliver better energy-efficiency than the combination
of branch predictor and filter cache.

It can also be observed that the TR cache presents good
adaptability when the HTB size is properly selected under
different sizes of instruction cache. Specifically, the TR cache
configuration with the best energy-saving rate in Figs. 17 and
18 are TRC-512 while in Fig. 19 the TRC-64 performs best.
The TRC-512 can save up to 60% and 43% energy for the 8

Fig. 20. Fetch energy usage rates and EDPs of suggested instruction delivery
schemes with 16 kB direct-mapped instruction cache.

kB/16-way and 4 kB/8-way instruction cache respectively. For
the 2 kB/4-way instruction cache, the TRC-64 is able to achieve
25% energy saving while the filter cache can only achieve 5%.
It can be observed that with proper selection of size, the TR
cache is able to achieve better energy-saving effect than the
filter cache. Although in the cases of 2 kB instruction cache,
the TRC-1024 and TRC-2048 consumes excessive energy, the
resultant energy-delay product values still match up to that of
the filter cache. This indicates that the reduced delay times in-
troduced by the TR cache are more than enough to compensate
the exceeded energy consumptions.

The StrongARM processor model which is used as the base-
line in our experiments employs a relatively complex 32-way
instruction cache to compensate the performance disadvantage
of its simple pipeline. Therefore the proposed TR cache is able
to reduce the access energy due to its simple FIFO structure.
As shown in the figures and analysis above, this effect will
gradually diminish if the complexity and capacity of the em-
ployed instruction cache is lowered. To investigate the power-
saving ability of TR cache when cooperated with an instruc-
tion cache with the same capacity as the baseline but much less
complexity, the energy usage rate of a direct-mapped 16 kB in-
struction cache with various instruction delivery schemes are
presented in Fig. 20. The TRC-512 outperforms all other con-
figurations by achieving 31% energy reduction and the lowest
EDP of 0.577.

E. Cost Analysis and Discussions

In this section, we present the area cost analysis of the var-
ious combinations of instruction cache organizations and in-
struction delivery schemes presented in the previous sections.
The combinations selected for our comparison are those that
achieve preferable results of either IPC gain, EDP, or both. Each
of the combinations is considered a possible alternative design
option. We divide these design options into two groups to em-
phasize two different preferences in design strategy: the perfor-
mance-oriented group focuses on the IPC gain while the energy-
efficiency group seeks to trade IPC with better energy-delay
product.

The performance-oriented design options are listed in
Table IX, which is sorted by the IPC gain column. The areas
of the modules referred in each option are summed up and
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TABLE IX
PERFORMANCE-ORIENTED DESIGN OPTIONS

All data including EDPs given in this table are normalized to the baseline
model

TABLE X
ENERGY-EFFICIENCY DESIGN OPTIONS

All data including EDPs given in this table are normalized to the REF model

normalized to the baseline model to present the overall cost.
Besides, the energy-delay products are also collated for the
comparison of energy efficiency. For the aggressive design
strategy of achieving better throughput and energy efficiency at
the expense of additional area cost, the TRC-2048 (option P1)
delivers the best IPC gain and an impressive EDP improvement.

If we consider a more conservative design strategy, for
which not to increase overall area is preferred, downgrading
the instruction cache to trade the area budget for the TR cache
is also beneficial. With the TR cache, the performance loss due
to downgraded instruction cache can be well compensated. As
shown in the table, downgrading the instruction cache from
32-way to direct-mapped results in 8.7% IPC loss (referring
to option DM); however by integrating a 2048-entry TR cache
with the direct-mapped cache, option P3 is able to sustain the
IPC at the same level of the branch-predictor based models
(option P2 and P4), along with less area cost and better EDP.
For a more stringent area budget, option P5 outperforms P6
in both performance and energy efficiency. It can be observed
that the advantage of the TR cache over the hybrid model of
branch predictor and filter cache grows as the instruction cache
is downgraded from 32-way to direct-mapped.

Table X shows the design options for the energy-efficiency
strategy and the table contents are sorted by the energy-delay
product column. Compared to the baseline model, option REF
has much lower circuit complexity and area cost which are com-
monly found in designs with low-power profile and therefore is

considered the basic reference of this table. The other reference
option E1 is the processor with a non-taken predictor and in-
struction cache size of 2 kB which represents the lower bound
of area cost discussed in this paper. By comparing option E1 and
option E2, it can be observed that the filter cache provides very
little EDP improvement for the 2 kB instruction cache. With
roughly the same area cost, the option E5 which incorporates
TRC-64 is able to provide better energy efficiency and perfor-
mance than E2. For those willing to exchange more area cost for
less IPC loss, the combination of a 4 kB instruction cache and
TRC-64 in option E3 will provide better performance, and en-
ergy efficiency very close to the filter cache does in option E4.
Obviously the TR cache is also an attractive design option for
the energy-efficient design strategy.

IV. RELATED WORK

The previous publications related to our work can be clas-
sified into four categories: filter cache, trace cache, instruction
reuse, and branch resolution. In this section, a brief survey will
be presented, and discussions of the differences between these
techniques and the proposed TR cache will be given.

A. Filter Cache

In 1997, Kin proposed the filter cache [15], [16] and indicated
the concept of trading performance with power efficiency. The
original design of the filter cache uses a small level-zero cache,
which dissipates less power than the level-one cache, to filter out
the majority of the cache accesses. The accesses which hit in the
filter cache will save significant energy, but with the price of in-
creased miss latency. Bellas later proposed the loop cache [17],
to filter out the loop code precisely with compiler support. The
loop cache resides at the same level as the conventional instruc-
tion cache; however the processor depends on hints provided
by the compiler to load and access the loop cache. A predic-
tion scheme used to decide whether or not to access the filter
cache is also proposed to mitigate the performance degradation
[19]. Tang further refined the predictive filter cache into a de-
code filter cache [20], which stores the decode instruction to
provide more aggressive energy saving effect. Recently, Janap-
satya proposed the HitME [30] buffer structure, which avoided
the performance degradation via a novel replacement policy.

The TR cache provides energy reduction effect in the same
way these filter cache based schemes do. But either the filter
cache or the loop cache depends on filtering the frequently ac-
cessed instructions from the level-one cache; by contrast the TR
cache directly retrieves the instructions from the back-end of the
processor. Furthermore, the filter cache is accessed in the gran-
ularity of instruction while the TR cache is indexed with traces.
Utilizing the trace as the minimum access unit sacrifices hit rate
but greatly simplifies the management hardware. Moreover, the
trace-based management enables a simple yet effective branch
prediction capability and provides significant performance gain.

B. Trace Cache

Rotenberg et al. proposed the trace cache [10] to break the
bottleneck of fetch bandwidth in superscalar processors. The
concept of rearranging the instruction cache contents with the
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dynamic sequence instead of the static layout provided by com-
piler inspired many follow-up researches in processor architec-
ture [11]. Various techniques that reduce power usage of trace
caches have been proposed through selective trace cache lookup
and update [12] or fetch direction predictor that predicts the next
fetch from the trace cache or the instruction cache [13].

Trace cache designs are not popular in embedded processors
due to the contradictory demands in power and throughput. Not
using a sophisticated branch predictor to predict the trace at the
front-end of an embedded processor, we demonstrated that the
idea of trace delivery is still possible using the TR cache design.
The TR cache delivers instructions in the form of traces like the
trace cache, but with a much simpler management mechanism
and lower complexity feasible for embedded processors.

C. Instruction Reuse

The other topic related to our work is the instruction reuse
[31] proposed by Sodani in 1997. Early researches of instruc-
tion reuse have focused on avoiding the trivial computations to
boost performance. Then the instruction recycling [32] is pro-
posed to recycle the redundant trace in the SMT machine. To im-
prove the ILP of superscalar processors, [33] and [34] proposed
to apply instruction reuse in trace granularity. In 2006, Yang
proposed a low-power trace reuse scheme [21] for the balanced
performance between ILP and power. The mechanism proposed
to identify reusable traces in [21] is similar to the TET lookup
we proposed. However, the RIU in [21] employs a fully-associa-
tive structure and provides more sophisticated trace prediction
and threading with the support of branch predictor.

A common feature of instruction reuse and trace reuse is the
preserving and recycling of the decoded information. The ILP
or power efficiency is improved via effectively buffering and
reusing those repeated micro-operations, much like the decode
filter cache [20] mentioned above. The TR cache we proposed
does not attempt to reuse the repeated computation results or
decode signals; only the instruction sequence preserved in the
trace is extracted. Nevertheless, for processors that use com-
plex out-of-order design, the number of reusable instructions in
the reorder buffer may fluctuate since the pipeline utilization
may change constantly. As a result, instruction reuse design in
these processors tends to be complicated and not easy for exten-
sion. Moreover, the scalability of the instruction reuse schemes
is mostly bounded by the instruction capacity of the pipeline.
In the contrast, the TR cache is decoupled from the pipeline
and hence provides a steady amount of reusable instructions and
better scalability for extension.

D. Branch Resolution

Traditionally, the branch resolution includes two phases: one
is the branch direction prediction and the other is the target
address resolution. Algorithms for branch direction prediction
have evolved from static and simple dynamic prediction re-
ported in [1], [2] to complex schemes such as [3] for extremely
high accuracy. Many of these prediction schemes incorporate
a branch target buffer (BTB) as the means to acquire the pre-
dict-taken target addresses at the pipeline front-end. However,
for the relatively simple pipeline of an embedded processor,
the BTB itself imposes considerable power and area overhead.

Petrov and Orailoglu proposed an application-specific BTB in
[4] to eliminate such power and area overhead of conventional
branch resolution schemes. The branch folding technique
was also proposed in [5] to reduce the occurrences of branch
instructions, which further reduce the requirement in the size
of prediction logic. Salamat et al. also proposed to employ
an adaptive hybrid direction prediction algorithm along with
confidence-based pipeline gating in [6] as an alternative way
to incorporate cost-effective branch resolution for embedded
processors.

The TR cache combines the branch direction prediction and
target address resolution in the process of trace reuse. Being an
inherent feature of the trace-based instruction delivery mecha-
nism, the branch resolution provided by the TR cache is solely
hardware-based and does not require compiler support or pro-
filing while [4] and [5] do. This offers better program binary
compatibility and allows the TR cache to better serve as the op-
tion of improving an existing system. Moreover, the branch res-
olution schemes proposed in [4]–[6], though small in size, still
impose power overheads on instruction delivery while the TR
cache is able to reduce a significant portion of energy consump-
tion in instruction delivery.

V. CONCLUSION

In this paper, the TR cache architecture is proposed as an
alternative source for instruction delivery of embedded proces-
sors. The TR cache consists of a HTB to store the executed
instructions and a TET to maintain a list of the trace-entry
addresses and their positions in the HTB. By comparing the
address of the incoming instruction with the trace-entry records
in the TET, the processor is able to identify the reusable traces
captured in the HTB. The processor can switch to the TR
cache when a reusable trace is identified. In contrast with the
conventional instruction cache which stores the pre-execution
code with a static layout generated by the compiler, the TR
cache preserves the post-execution program information in the
form of dynamic instruction sequences. Such a post-execution
cache offers the inherent capability of delivering traces without
the support of complex trace-prediction and trace-construction
hardware, therefore presents a feasible trace-based instruction
delivery scheme for embedded processors. This trace-based
delivery of instructions enables the TR cache to contribute
branch prediction effect when it is activated. For an embedded
processor with non-taken prediction scheme, the proposed TR
cache is able to boost the prediction rate up to 92% along with
21% performance gain compared to the baseline processor.
Moreover, due to the reduced hardware complexity, the TR
cache is able to deliver instructions with lower energy costs
than the conventional instruction cache. Experimental results
indicate that the TR cache is able to provide the same level of
energy-saving effect as the filter cache.

From the aspect of instruction delivery, the TR cache virtually
expands the capacity of the conventional instruction cache. Our
experiments showed that the TR cache is capable of sustaining
the same level of IPC in a processor with downgraded instruc-
tion cache design. Specifically, the TR cache with 2048 entries
is able to sustain 97% of the original IPC performance when
the instruction cache capacity is significantly reduced from 16
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to 2 kB. The capability of boosting performance and improving
energy efficiency at the same time along with the use to par-
tially substitute the function of a conventional instruction cache
makes the TR cache a preferable choice among the design op-
tions of an embedded processor. Considering the overall area
cost of the instruction delivery mechanism, our analysis con-
cludes that adopting the TR cache can provide the performance
gain of the branch predictor with the energy efficiency of the
filter cache.
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