
Full System Simulation and Verification Framework

Jing-Wun Lin, Chen-Chieh Wang, Chin-Yao Chang, Chung-Ho Chen, Kuen-Jong Lee,
Yuan-Hua, Chu*, Jen-Chieh Yeh*, and Ying-Chuan Hsiao*

Institute of Computer and Communication Engineering
National Cheng Kung University, Tainan, Taiwan

SoC Technology Center
Industrial Technology Research Institute*, Taiwan

ABSTRACT

In this paper, we propose a framework to develop high-
performance system accelerator hardware and the corresponding
software at system-level. This framework is designed by integrating
a virtual machine, an electronic system level platform, and an
enhanced QEMU-SystemC. The enhancement includes a local
master interface for fast memory transfer, and an interrupt handling
hardware for software/hardware communication that enables full
system simulation. Finally, the PAC DSP core is used as examples to
demonstrate the proposed framework for full system simulation.

1. INTRODUCTION

System-on-a-Chip (SoC) technology requires design of using
internal processors, specialized hardware accelerators, memory
systems, and various I/O interfaces. Consequently, SoC design is
promoted to system level that involves operating system, application,
device driver, and hardware design. Developing a suitable
experimental environment for SoC design is the first step before
successful IC tape-outs. Simulation technique provides a low cost &
flexible answer to creating the experimental environment while a
good simulation is a trade-off between accuracy and performance.

In traditional VLSI design and verification flow, the
implementation of hardware design must complete before a software
and hardware co-operational environment that composes of a host
processor, operating system, and an FPGA verification platform can
be built up. Thereafter the device drivers and related applications are
developed in order to complete prototyping verification for the entire
system. Therefore, architecture revision and software/hardware re-
partition usually need enormous effort.

To decide a suitable software-hardware partition, we need a
simulation platform that can run a real world operating system
without any modification, real world applications, and a virtual
hardware environment to run the software, as well as provide certain
timing and other system information for hardware design.

Since the current hardware system design may be as complicated
as that of an SoC design, we can therefore apply Electronic System
Level (ESL) design and verification methodology [1] to shorten the
development time. ESL design aims to model the behavior of the
entire system using a high-level language such as C/C++ or SystemC
[2], and introduces new concepts such as Transaction Level
Modeling [3], and Event Driven Modeling.

Current ESL development environment, e.g., CoWare Platform
Architect [4] or SoC Designer [5], puts emphasis on SoC design,
consisting of microprocessor, memories, and interconnection
modules among processing units. To develop a system accelerator or
IP hardware, the interaction between the host and the accelerator
subsystem, along with the partition of application tasks and the
efficiency of the interactions, must be taken into consideration.

In order to run operating system on the framework, we need a
high-speed host CPU simulation model. We can make use of the
microprocessor, which can be an instruction-set simulation (ISS)
model, provided by the ESL platform to play the role of the host

CPU. The ISS model without timing information can provide
acceptable simulation speed, but the system accelerator hardware
requires having certain acceptable timing information for
performance evaluation. Figure 1 depicts the system with an ISS
CPU model and cycle accurate hardware IPs. However, such an
architecture that is built within an ESL development environment
may suffer from poor simulation performance when application and
operating system are also simulated. For this reason, a new
simulation system that replaces the host CPU is necessary, and using
a virtual machine is a preferable choice.

In the development of a system accelerator, a full system
environment is preferred, such as Simics [6], M5 [7], or QEMU [8].

A full system simulation platform (including processor cores,
peripheral devices, memories, interconnection buses, and network
connections) is able to boot and run an unmodified commercial
operating system. It can also run realistic workload under a
reasonable simulation time. Nevertheless, current support on
developing virtual hardware for full system simulation platforms is
not as rich as that found in commercial ESL integrated development
environment.

In this paper, we integrate a virtual machine with an ESL
integrated development environment, to provide a fine-grained
system-level development and verification framework for high-
performance system accelerators.

This paper is organized as follows. Section 2 and Section 3
describe the system architecture and framework respectively. Section
4 discusses the implementation issues. Section 5 describes two
examples to demonstrate our system. Finally, Section 6 concludes
this paper.

2. SYSTEM ARCHITECTURE

Figure 2 shows the system architecture of the simulation
framework that consists of a virtual machine platform and the
intended subsystem accelerator. The host system is modeled with the

ISS Model

Cycle Accurate Model

Figure 1. Different simulation models in one platform

2009 Fifth International Conference on Information Assurance and Security

978-0-7695-3744-3/09 $25.00 © 2009 IEEE

DOI 10.1109/IAS.2009.253

165

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 12,2010 at 11:11:30 UTC from IEEE Xplore. Restrictions apply.

virtual machine whereas the system accelerator can be developed
using the related tools provided by the ESL design kits [4], [5].
2.1 Host System

A good simulation is a trade-off between its accuracy and its
performance, i.e. simulation time. By simulating only the necessary
details, we can simulate effectively while still reaching a certain
acceptable accuracy. Our main target is to build a system accelerator
development environment, so what is required for the host, is an
open-source operating system, and a tool-chain to develop the device
drivers. Due to this need, we have used an un-timed virtual machine
model to provide full system capability and at the same time to
accelerate the simulation speed for the host system. To achieve this,
we have chosen QEMU as our virtual machine. QEMU is an open
source virtual machine, and is used in many projects, such as Google
Android [9]. We modify the QEMU source code and build the
required hardware as un-timed models. If a timed model is required,
a project, called QEMU-SystemC [10][11] can provide us for such a
design environment.

2.2 System Accelerator Hardware Environment

Current commercial ESL integrated development environment
can be used as a system accelerator development environment. For
example, CoWare Platform Architect, SoC Designer, or other ESL
development platforms. These ESL development platforms support
SystemC and C/C++ modeling tool, and some even support co-
simulation between SystemC and Hardware Description Language
(HDL).

Designers can use all kinds of microprocessor, on-chip-bus,
peripherals, and other built-in libraries to build the SoC components
in the system accelerator. The behavior model of I/O devices and
DRAM can also be developed using SystemC or C/C++. In
simulations, the power system is not necessary, but it is possible to
include power estimation techniques into ESL models for evaluation.
The details of the interactions between a host and a system
accelerator will be discussed in the later section of implementation.

3. SYSTEM FRAMEWORK

 To demonstrate full system simulation capability of the proposed
framework, we use a practical and simple example to describe the
system framework and procedures of execution flow.

3.1 Procedure of execution flow

According to the top-down concept in ESL design flow, high
level model is adopted to implement the entire system in the
preliminary stage. Then Golden Test bench is set up for use in the
following development and verification stages.

As shown in Figure 3, we can build a Virtual Host by QEMU in
Physical Host, which runs on the real computer, and a system
accelerator hardware development environment in ESL platform, that
is connected to the Virtual Host. As the communication mechanism
is ready for use, application programs and hardware designs can be
developed at the same time as shown in Figure 3 for the execution
flow. First, on QEMU the specified application is run to prepare data
for the hardware device and then transmit to the hardware device by
Virtual Host supports, which include system calls and the driver to
access Host-SA Interface device. Behind the hardware process, the
response data will be replied to Virtual Host via the HOST-SA
Interface and this completes the procedure of an execution flow.

By this method, we can develop hardware devices in the ESL
platform using a high level model and application on the host, which
allows the device drivers and related test bench to be designed and
tested at an early stage.

3.2 Performance Evaluation

With the Golden Test bench, we can use a more accurate model to
implement the system accelerator and continue with the top-down
design flow on the ESL platform. Specifically, the cycle accurate
register transfer level (RTL) design can be used for the accelerator,
so we can evaluate the performance of the system accelerator.

The only limitation in our platform is that there is no timing
information in the host, so it is hard to precisely model the latency
taken by the host CPU to run a program. A Host-SA bridge, however,
has been implemented in the ESL platform, which can be used to
model the bandwidth of the communication channel between the
system accelerator and the host. Hence we are still able to estimate
the performance of the system accelerator.

A possible solution can address to this limitation. We can profile
the events between system accelerator and the host, such as an
interrupt service routine, in functional verification stage. Then the
timestamp is measured by executing these events in real computer or
counting its dynamic instruction count. Finally, we can evaluate the
performance of the whole system by embedding the timing
information into Host-SA bridge module to create appropriate
latency.

Figure 2. System architecture

Applications

Host

I/O
Port

System Accelerator (SA) DRAM
I/O

PHY

Power

ESL Tools (SystemC, C/C++, HDL)

Virtual Machine - QEMU

HOST-SA Interface

HOST-SA Interface

Operating System

Device Driver

Figure 3. Procedure of execution flow

Physical Host

QEMU

Virtual Host
(OS , Drivers)

Host-SA Interface

ESL Tool

System Accelerator Hardware Design
(Behavior or Cycle Accurate)

Host-SA Interface

Applications

Hardware
Process

1

2

3

4

166

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 12,2010 at 11:11:30 UTC from IEEE Xplore. Restrictions apply.

4. IMPLEMENTATION ISSUES

Figure 4 shows the detailed structure for our implementation that
uses CoWare Platform Architect for ESL and/or RTL development.

4.1 Operating System and Device Driver

Linux is chosen as our operating system. Since Linux is an open
source environment, it has the flexibility for use to make changes on
the host operating system environment. For different operating
systems and different system accelerators, specific device drivers are
required.

Common device drivers use either I/O register access or memory
access to communicate with the hardware. We have used the specific
APIs to provide these accesses, which provide easy modification that
can be ported to different system accelerators. We have also provided
a standard interrupt service routine, which provides a response to the
hardware suitable for our designated interrupt handler.

4.2 The Interface between Host and System Accelerator

To make our system a general environment, that suits most needs,
we have upgraded the interface in QEMU-SystemC, including a PCI
bus adapter, which can be used in an x86 environment, for studies of
desktop systems, and an AHB bridge, which is used in AMBA
environment, for studies of embedded systems.

The QEMU-SystemC project has provided QEMU a data transfer
interface to access data from the SystemC module. However, it has
not yet provided a complete communication mechanism for software
and hardware.

Typical communication mechanisms for software and hardware
are polling, interrupt, or a combination of both, and require both
software and hardware support. The Linux device driver model has
provided software support, like polling APIs and interrupt service
routine, and the system accelerator in the ESL environment requires
hardware support. Since polling in implementation is just reading the
memory, it requires no extra hardware support. For interrupt, an
interrupt controller is required. Therefore, an interrupt controller is
implemented along with the system accelerator, and an interrupt line
is connected from the system accelerator to the internal interrupt
handler in QEMU. In this way, the system accelerator is able to send
interrupts to the host QEMU, and ask the interrupt service routine in
device driver to respond to this event.

In certain applications, such as network offload engine, which
needs to transfer a large amount of data to the host system, interrupt
is a barrier to high speed transfer. Therefore, an interface that
accesses host memory from the system accelerator is used to improve
speed. Due to this reason, we have designed a local master interface
in HOST-SA Bridge module, to satisfy such needs.

In a system accelerator, many kinds of interfaces can be adopted
to connect the HOST-SA Bridge module and Interrupt Controller
module with different on-chip-bus. In order to set up an AMBA-
based system, we use the API of CoWare AHB TLM to attach these
modules to the AHB bus. In addition, Open Core Protocol (OCP) [12]
can also be used to carry out a more flexible interface that is
compatible with other types of ESL platforms.

4.3 Communication Mechanism

The communication mechanism between QEMU and SystemC
can be classified as either working in a distributed system or in a
single computer. For a distributed system, network sockets can be
used to communicate between processes in different computers. In
this way, the system can be expanded easily, but requires higher
overheads for each communication. For a single computer, kernel
process communication mechanisms, such as shared memory, can be

used. In this way, the system has lower communication overheads,
but is less scalable. Both of the versions have been developed, and
can be applied to different use of environments.

4.4 Virtual Input/Output Interface

The virtual I/O interface function provides us a verification
interface to connect to either a virtual behavior module, or a physical
I/O module. For network issues, it allows designers to connect to the
real world computer through network, or a virtual network test bench.
For graphic issues, it allows designers to connect to a virtual or
physical monitor.

To connect to the physical environment on the network, we have
used Raw Socket [13], a library, to send a self made MAC frame or
IP datagram to the real world network interface card and bypass the
normal TCP/IP flow in the operating system. The network offload
engine can also receive the MAC frames directly from the network
interface card. This provides a channel for the HBA to communicate
with a real computer using MAC frames and interact with the outside
world.

The advantage of the virtual network is that we can simulate a
10Gbps or even 100Gbps network, and measure the system
performance without acquiring a real network interface card.

5. PLATFORM DEMONSTRATION

We have made one example platform to verify our framework
design as shown in Figure 5. First, we implemented a simulation
platform with a PAC DSP [14] instruction set simulator model to
verify the accuracy of the interface between the host and system
accelerator in our framework, including data transfer and interrupt
mechanism.

We developed two multimedia applications, including Fast
Fourier Transform (FFT) and H.264 Decoder, and utilized the PAC
DSP to assist the computation. We use the H.264 decoder application
as an example, and the detailed steps are as follows:

(1) H.264 decoder application is executed to process pre-
calculated data and to prepare routines for PAC DSP.

Figure 4. Detailed implementation

. . .

1

2

3

Data Interrupt Signal

167

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 12,2010 at 11:11:30 UTC from IEEE Xplore. Restrictions apply.

(2) When the driver of PAC DSP is invoked, the data and
routines are transferred from QEMU to the internal memory
of PAC DSP platform through QEMU-SystemC interface.

(3) The driver of the upper layer commands the PAC DSP
hardware module in CoWare PA to decode the data basing on
the decoding routine.

(4) The PAC DSP hardware module informs the upper-layer
QEMU of the completion of the H.264 decoder routine
through interrupt.

(5) At last, QEMU retrieves the interrupt signal from PAC DSP
and then dumps result images.

Our design framework focuses on full system simulation,
including an OS, so using a fast virtual machine instead of a
processor core in CoWare PA is a more suitable method. Table 1
shows the simulation time between a CoWare PA only platform,
which has no OS, and a QEMU-based CoWare PA platform, which
runs an OS.

Table 1. Simulation time of various ESL platforms

 CoWare PA only CoWare PA + QEMU

FFT 7.7 sec 6.3 sec

H.264 60 sec/frame 121 sec/frame

In Table 1, the simulation time of the FFT application is almost
the same for the two systems while for the H.264 application, the
QEMU-based system takes much longer time. This is due to the
significant host and DSP communication of the H.264 program.
Since our communication mechanism uses network sockets, it is
flexible but may incur high simulation overheads should heavy host
and DSP communication occur. The H.264 application has much
more data passing than FFT and this causes the obvious difference in
simulation time. To overcome this disadvantage, other low overhead
but less flexible inter-process communication method, like shared
memory, can be explored to improve this framework.

6. CONCLUSIONS

In this paper, we have enhanced the work of QEMU-SystemC,
including an enhancement between host and system accelerator
communications, a fast transfer support, and a connection to physical
world. Through this work, we have developed a framework that
provides a full system simulation ESL environment for high-

performance system accelerator designs. We also showed a case
study in order to demonstrate the usage of this framework. Designers
can rapidly develop the subsystem hardware or IPs in the ESL
environment and related software, including device drivers in the
virtual machine for full-system hardware-software co-simulation.
This paper focuses on DSP co-simulation; however, our framework
can also be used for other specific system accelerators or IPs in
embedded systems.

ACKNOWLEDGMENT

This work was supported in part by the Industrial Technology
Research Institute (ITRI) and the National Science Council, Taiwan,
under Grant NSC 96-2221-E-006-192-MY3.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, “ESL Design and
Verification: A Prescription for Electronic System Level
Methodology,” Morgan Kaufmann/Elsevier, 2007.

[2] Open SystemC Initiative (OSCI), http://www.systemc.org/.
[3] D. Gajski and L. Cai, “Transaction Level Modeling: An

Overview,” HW/SW Co-Design Conference (CODES), 2003.
[4] CoWare Platform Architect,

http://www.coware.com/products/platformarchitect.php.
[5] SoC Designer, http://carbondesignsystems.com/.
[6] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.

Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” IEEE Computer,
vol. 35, Iss. 2, pp. 50-58, Feb. 2002.

[7] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems,” IEEE Micro, vol. 26, Iss. 4, pp. 52-60,
Jul.-Aug. 2006.

[8] QEMU, http://www.nongnu.org/qemu.
[9] Android - An Open Handset Alliance Project,

http://code.google.com/android/.
[10] QEMU-SystemC, GreenSocs,

http://www.greensocs.com/en/projects/QEMUSystemC.
[11] M. Marius, P. Antoni, M. Marc, M. Borja, and C. Jordi,

“Mixed SW/SystemC SoC Emulation Framework,” IEEE Int’l
Symp. on Industrial Electronics, 2007.

[12] OCP International Partnership, http://www.ocpip.org/.
[13] A brief programming tutorial in C for raw sockets,

http://mixter.void.ru/rawip.html.
[14] PAC DSP, http://www.itri.org.tw/

Figure 5. Framework demonstration for PAC DSP

Physical Host

QEMU

Virtual Host
(Debian Linux)

Socket Interface

CoWare PA

PAC DSP Platform
(Instruction Set Simulator Model)

Socket Interface

H.264FFT

168

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 12,2010 at 11:11:30 UTC from IEEE Xplore. Restrictions apply.

