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ABSTRACT

In this paper, we propose a framework to develop high-
performance system accelerator hardware and the corresponding 
software at system-level. This framework is designed by integrating 
a virtual machine, an electronic system level platform, and an 
enhanced QEMU-SystemC. The enhancement includes a local 
master interface for fast memory transfer, and an interrupt handling 
hardware for software/hardware communication that enables full 
system simulation. Finally, the PAC DSP core is used as examples to 
demonstrate the proposed framework for full system simulation.

1. INTRODUCTION

System-on-a-Chip (SoC) technology requires design of using 
internal processors, specialized hardware accelerators, memory 
systems, and various I/O interfaces. Consequently, SoC design is 
promoted to system level that involves operating system, application, 
device driver, and hardware design. Developing a suitable 
experimental environment for SoC design is the first step before 
successful IC tape-outs. Simulation technique provides a low cost & 
flexible answer to creating the experimental environment while a 
good simulation is a trade-off between accuracy and performance.  

In traditional VLSI design and verification flow, the 
implementation of hardware design must complete before a software 
and hardware co-operational environment that composes of a host 
processor, operating system, and an FPGA verification platform can 
be built up. Thereafter the device drivers and related applications are 
developed in order to complete prototyping verification for the entire 
system. Therefore, architecture revision and software/hardware re-
partition usually need enormous effort.  

To decide a suitable software-hardware partition, we need a 
simulation platform that can run a real world operating system 
without any modification, real world applications, and a virtual 
hardware environment to run the software, as well as provide certain 
timing and other system information for hardware design.  

Since the current hardware system design may be as complicated 
as that of an SoC design, we can therefore apply Electronic System 
Level (ESL) design and verification methodology [1] to shorten the 
development time. ESL design aims to model the behavior of the 
entire system using a high-level language such as C/C++ or SystemC 
[2], and introduces new concepts such as Transaction Level 
Modeling [3], and Event Driven Modeling.  

Current ESL development environment, e.g., CoWare Platform 
Architect [4] or SoC Designer [5], puts emphasis on SoC design, 
consisting of microprocessor, memories, and interconnection 
modules among processing units. To develop a system accelerator or 
IP hardware, the interaction between the host and the accelerator 
subsystem, along with the partition of application tasks and the 
efficiency of the interactions, must be taken into consideration.  

In order to run operating system on the framework, we need a 
high-speed host CPU simulation model. We can make use of the 
microprocessor, which can be an instruction-set simulation (ISS) 
model, provided by the ESL platform to play the role of the host  

CPU. The ISS model without timing information can provide 
acceptable simulation speed, but the system accelerator hardware 
requires having certain acceptable timing information for 
performance evaluation. Figure 1 depicts the system with an ISS 
CPU model and cycle accurate hardware IPs. However, such an 
architecture that is built within an ESL development environment 
may suffer from poor simulation performance when application and 
operating system are also simulated. For this reason, a new 
simulation system that replaces the host CPU is necessary, and using 
a virtual machine is a preferable choice.  

In the development of a system accelerator, a full system 
environment is preferred, such as Simics [6], M5 [7], or QEMU [8]. 

A full system simulation platform (including processor cores, 
peripheral devices, memories, interconnection buses, and network 
connections) is able to boot and run an unmodified commercial 
operating system. It can also run realistic workload under a 
reasonable simulation time. Nevertheless, current support on 
developing virtual hardware for full system simulation platforms is 
not as rich as that found in commercial ESL integrated development 
environment. 

In this paper, we integrate a virtual machine with an ESL 
integrated development environment, to provide a fine-grained 
system-level development and verification framework for high-
performance system accelerators.  

This paper is organized as follows. Section 2 and Section 3 
describe the system architecture and framework respectively. Section 
4 discusses the implementation issues. Section 5 describes two 
examples to demonstrate our system. Finally, Section 6 concludes 
this paper.

2. SYSTEM ARCHITECTURE

Figure 2 shows the system architecture of the simulation 
framework that consists of a virtual machine platform and the 
intended subsystem accelerator. The host system is modeled with the 
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Figure 1. Different simulation models in one platform
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virtual machine whereas the system accelerator can be developed 
using the related tools provided by the ESL design kits [4], [5].  
2.1 Host System 

A good simulation is a trade-off between its accuracy and its 
performance, i.e. simulation time. By simulating only the necessary 
details, we can simulate effectively while still reaching a certain 
acceptable accuracy. Our main target is to build a system accelerator 
development environment, so what is required for the host, is an 
open-source operating system, and a tool-chain to develop the device 
drivers. Due to this need, we have used an un-timed virtual machine 
model to provide full system capability and at the same time to 
accelerate the simulation speed for the host system. To achieve this, 
we have chosen QEMU as our virtual machine. QEMU is an open 
source virtual machine, and is used in many projects, such as Google 
Android [9]. We modify the QEMU source code and build the 
required hardware as un-timed models. If a timed model is required, 
a project, called QEMU-SystemC [10][11] can provide us for such a 
design environment.  

2.2 System Accelerator Hardware Environment 

Current commercial ESL integrated development environment 
can be used as a system accelerator development environment. For 
example, CoWare Platform Architect, SoC Designer, or other ESL 
development platforms. These ESL development platforms support 
SystemC and C/C++ modeling tool, and some even support co-
simulation between SystemC and Hardware Description Language 
(HDL). 

Designers can use all kinds of microprocessor, on-chip-bus, 
peripherals, and other built-in libraries to build the SoC components 
in the system accelerator. The behavior model of I/O devices and 
DRAM can also be developed using SystemC or C/C++. In 
simulations, the power system is not necessary, but it is possible to 
include power estimation techniques into ESL models for evaluation. 
The details of the interactions between a host and a system 
accelerator will be discussed in the later section of implementation.

3. SYSTEM FRAMEWORK

 To demonstrate full system simulation capability of the proposed 
framework, we use a practical and simple example to describe the 
system framework and procedures of execution flow.  

3.1 Procedure of execution flow 

According to the top-down concept in ESL design flow, high 
level model is adopted to implement the entire system in the 
preliminary stage. Then Golden Test bench is set up for use in the 
following development and verification stages. 

As shown in Figure 3, we can build a Virtual Host by QEMU in 
Physical Host, which runs on the real computer, and a system 
accelerator hardware development environment in ESL platform, that 
is connected to the Virtual Host. As the communication mechanism 
is ready for use, application programs and hardware designs can be 
developed at the same time as shown in Figure 3 for the execution 
flow. First, on QEMU the specified application is run to prepare data 
for the hardware device and then transmit to the hardware device by 
Virtual Host supports, which include system calls and the driver to 
access Host-SA Interface device. Behind the hardware process, the 
response data will be replied to Virtual Host via the HOST-SA 
Interface and this completes the procedure of an execution flow. 

By this method, we can develop hardware devices in the ESL 
platform using a high level model and application on the host, which 
allows the device drivers and related test bench to be designed and 
tested at an early stage. 

3.2 Performance Evaluation 

With the Golden Test bench, we can use a more accurate model to 
implement the system accelerator and continue with the top-down 
design flow on the ESL platform. Specifically, the cycle accurate 
register transfer level (RTL) design can be used for the accelerator, 
so we can evaluate the performance of the system accelerator.  

The only limitation in our platform is that there is no timing 
information in the host, so it is hard to precisely model the latency 
taken by the host CPU to run a program. A Host-SA bridge, however, 
has been implemented in the ESL platform, which can be used to 
model the bandwidth of the communication channel between the 
system accelerator and the host. Hence we are still able to estimate 
the performance of the system accelerator.  

A possible solution can address to this limitation. We can profile 
the events between system accelerator and the host, such as an 
interrupt service routine, in functional verification stage. Then the 
timestamp is measured by executing these events in real computer or 
counting its dynamic instruction count. Finally, we can evaluate the 
performance of the whole system by embedding the timing 
information into Host-SA bridge module to create appropriate 
latency.

Figure 2. System architecture
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4. IMPLEMENTATION ISSUES

Figure 4 shows the detailed structure for our implementation that 
uses CoWare Platform Architect for ESL and/or RTL development.  

4.1 Operating System and Device Driver 

Linux is chosen as our operating system. Since Linux is an open 
source environment, it has the flexibility for use to make changes on 
the host operating system environment. For different operating 
systems and different system accelerators, specific device drivers are 
required. 

Common device drivers use either I/O register access or memory 
access to communicate with the hardware. We have used the specific 
APIs to provide these accesses, which provide easy modification that 
can be ported to different system accelerators. We have also provided 
a standard interrupt service routine, which provides a response to the 
hardware suitable for our designated interrupt handler.  

4.2 The Interface between Host and System Accelerator 

To make our system a general environment, that suits most needs, 
we have upgraded the interface in QEMU-SystemC, including a PCI 
bus adapter, which can be used in an x86 environment, for studies of 
desktop systems, and an AHB bridge, which is used in AMBA 
environment, for studies of embedded systems. 

The QEMU-SystemC project has provided QEMU a data transfer 
interface to access data from the SystemC module. However, it has 
not yet provided a complete communication mechanism for software 
and hardware. 

Typical communication mechanisms for software and hardware 
are polling, interrupt, or a combination of both, and require both 
software and hardware support. The Linux device driver model has 
provided software support, like polling APIs and interrupt service 
routine, and the system accelerator in the ESL environment requires 
hardware support. Since polling in implementation is just reading the 
memory, it requires no extra hardware support. For interrupt, an 
interrupt controller is required. Therefore, an interrupt controller is 
implemented along with the system accelerator, and an interrupt line 
is connected from the system accelerator to the internal interrupt 
handler in QEMU. In this way, the system accelerator is able to send 
interrupts to the host QEMU, and ask the interrupt service routine in 
device driver to respond to this event. 

In certain applications, such as network offload engine, which 
needs to transfer a large amount of data to the host system, interrupt 
is a barrier to high speed transfer. Therefore, an interface that 
accesses host memory from the system accelerator is used to improve 
speed. Due to this reason, we have designed a local master interface 
in HOST-SA Bridge module, to satisfy such needs.  

In a system accelerator, many kinds of interfaces can be adopted 
to connect the HOST-SA Bridge module and Interrupt Controller 
module with different on-chip-bus. In order to set up an AMBA-
based system, we use the API of CoWare AHB TLM to attach these 
modules to the AHB bus. In addition, Open Core Protocol (OCP) [12] 
can also be used to carry out a more flexible interface that is 
compatible with other types of ESL platforms.  

4.3 Communication Mechanism 

The communication mechanism between QEMU and SystemC 
can be classified as either working in a distributed system or in a 
single computer. For a distributed system, network sockets can be 
used to communicate between processes in different computers. In 
this way, the system can be expanded easily, but requires higher 
overheads for each communication. For a single computer, kernel 
process communication mechanisms, such as shared memory, can be 

used. In this way, the system has lower communication overheads, 
but is less scalable. Both of the versions have been developed, and 
can be applied to different use of environments.

4.4 Virtual Input/Output Interface 

The virtual I/O interface function provides us a verification 
interface to connect to either a virtual behavior module, or a physical 
I/O module. For network issues, it allows designers to connect to the 
real world computer through network, or a virtual network test bench. 
For graphic issues, it allows designers to connect to a virtual or 
physical monitor. 

To connect to the physical environment on the network, we have 
used Raw Socket [13], a library, to send a self made MAC frame or 
IP datagram to the real world network interface card and bypass the 
normal TCP/IP flow in the operating system. The network offload 
engine can also receive the MAC frames directly from the network 
interface card. This provides a channel for the HBA to communicate 
with a real computer using MAC frames and interact with the outside 
world. 

The advantage of the virtual network is that we can simulate a 
10Gbps or even 100Gbps network, and measure the system 
performance without acquiring a real network interface card.

5. PLATFORM DEMONSTRATION

We have made one example platform to verify our framework 
design as shown in Figure 5. First, we implemented a simulation 
platform with a PAC DSP [14] instruction set simulator model to 
verify the accuracy of the interface between the host and system 
accelerator in our framework, including data transfer and interrupt 
mechanism.  

We developed two multimedia applications, including Fast 
Fourier Transform (FFT) and H.264 Decoder, and utilized the PAC 
DSP to assist the computation. We use the H.264 decoder application 
as an example, and the detailed steps are as follows: 

(1) H.264 decoder application is executed to process pre-
calculated data and to prepare routines for PAC DSP.  

Figure 4. Detailed implementation
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(2) When the driver of PAC DSP is invoked, the data and 
routines are transferred from QEMU to the internal memory 
of PAC DSP platform through QEMU-SystemC interface. 

(3) The driver of the upper layer commands the PAC DSP 
hardware module in CoWare PA to decode the data basing on 
the decoding routine. 

(4) The PAC DSP hardware module informs the upper-layer 
QEMU of the completion of the H.264 decoder routine 
through interrupt. 

(5) At last, QEMU retrieves the interrupt signal from PAC DSP 
and then dumps result images. 

Our design framework focuses on full system simulation, 
including an OS, so using a fast virtual machine instead of a 
processor core in CoWare PA is a more suitable method. Table 1 
shows the simulation time between a CoWare PA only platform, 
which has no OS, and a QEMU-based CoWare PA platform, which 
runs an OS. 

Table 1. Simulation time of various ESL platforms 

  CoWare PA only CoWare PA + QEMU 

FFT 7.7 sec 6.3 sec 

H.264 60 sec/frame 121 sec/frame 

In Table 1, the simulation time of the FFT application is almost 
the same for the two systems while for the H.264 application, the 
QEMU-based system takes much longer time. This is due to the 
significant host and DSP communication of the H.264 program.  
Since our communication mechanism uses network sockets, it is 
flexible but may incur high simulation overheads should heavy host 
and DSP communication occur. The H.264 application has much 
more data passing than FFT and this causes the obvious difference in 
simulation time. To overcome this disadvantage, other low overhead 
but less flexible inter-process communication method, like shared 
memory, can be explored to improve this framework. 

6. CONCLUSIONS

In this paper, we have enhanced the work of QEMU-SystemC, 
including an enhancement between host and system accelerator 
communications, a fast transfer support, and a connection to physical 
world. Through this work, we have developed a framework that 
provides a full system simulation ESL environment for high-

performance system accelerator designs. We also showed a case 
study in order to demonstrate the usage of this framework. Designers 
can rapidly develop the subsystem hardware or IPs in the ESL 
environment and related software, including device drivers in the 
virtual machine for full-system hardware-software co-simulation. 
This paper focuses on DSP co-simulation; however, our framework 
can also be used for other specific system accelerators or IPs in 
embedded systems.
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Figure 5. Framework demonstration for PAC DSP
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