
Scalable Dynamic Instruction Scheduler
through Wake-Up Spatial Locality

Chung-Ho Chen, Member, IEEE, and Kuo-Su Hsiao

Abstract—In a high-performance superscalar processor, the instruction scheduler often comes with poor scalability and high

complexity due to the expensive wake-up operation. From detailed simulation-based analyses, we find that 95 percent of the wake-up

distances between two dependent instructions are short, in the range of 16 instructions, and 99 percent are in the range of

31 instructions. We apply this wake-up spatial locality to the design of conventional CAM-based and matrix-based wakeup logic,

respectively. By limiting the wake-up coverage to iiþ 16 instructions, where 0 � ii � 15 for 16-entry segments, the proposed wake-up

designs confine the wake-up operation to two matrix-based or three CAM-based 16-entry segments no matter how large the issue

window size is. The experimental results show that, for an issue window of 128 entries ðIW128Þ or 256 entries ðIW256Þ, the proposed

CAM-based wake-up locality design saves 65 percent ðIW128Þ and 76 percent ðIW256Þ of the power consumption and reduces

44 percent ðIW128Þ and 78 percent ðIW256Þ in the wake-up latency compared to the conventional CAM-based design with almost no

performance loss. For the matrix-based wake-up logic, applying wake-up locality to the design drastically reduces the area cost.

Extensive simulation results, including comparisons with previous works, show that the wake-up spatial locality is the key element to

achieving scalability for future sophisticated instruction schedulers.

Index Terms—CAM-based wake-up logic, issue logic, low power, matrix-based wake-up logic, scalable instruction scheduler,

wake-up spatial locality.

Ç

1 INTRODUCTION

IN order to extract more instruction-level parallelism and
boost instructions per cycle (IPC), future generations of

high-performance superscalar processors tend toward the
specification of using a large issue window with a wide
issue width. Consequently, the dynamic scheduler required
for out-of-order execution becomes more complicated and
less scalable. The complex scheduler consumes a lot of
energy and may slow down the clock cycle time of the
processor.

In particular, the complexity of the instruction scheduler

comes mainly from the wake-up logic that traces the

instruction dependences and wakes up the instructions

when their source operands become available. The wake-up

logic is typically implemented by using the CAM structures

that fully match all the source tags in the issue window with

the result tags. However, the CAM structures consume a lot

of energy and slow down the wake-up speed because of

considerable circuit activities and heavy load capacitance.

To see this, Fig. 1 shows the IPC and wake-up power

dissipation for various issue window sizes of the baseline

processor studied in this paper. Table 3 in Section 4 details

the simulator configuration. The IPC increases as the

instruction window size increases from 32 to 256. As

observed, a large window size such as 256 significantly

boosts up the IPC; however, to achieve this, the large CAM-
based issue window consumes disproportionately much
more wake-up power.

The scheduler becomes the major critical path, which
limits the clock cycle time, of the pipeline stages, mainly
due to the complexity of the CAM-based wake-up logic.
Although a pipelined dynamic scheduler can increase the
clock frequency, the operations of instruction wake up and
instruction selection should be an atomic operation to avoid
significant performance degradation. Recent study has
shown that the latencies associated with the wake-up and
selection form the critical path of the pipeline stages [1],
[40]. The wake-up latency increases significantly with both
the issue width and window size and the wake-up logic
dominates the latency for the scheduler. Increasing the
window size and issue width to improve IPC will continue
to increase the burden to the clock cycle time.

For energy consideration, the power consumption
associated with the scheduler constitutes a significant
portion of the processor power consumption. For example,
the issue logic is the most power hungry component of the
Compaq Alpha 21464 processor, responsible for 46 percent
of the total processor power [2], whereas the out-of-order
scheduler of the Intel Pentium 4 processor accounts for
40 percent of the total power consumption. As a result, the
CAM-based wake-up logic not only slows down the clock
speed but also shifts more power budget to the scheduler.

In this paper, we introduce a program metric called
wake-up spatial locality, which refers to the fact that the
distance between two data-dependent instructions is often
short. Based on this observation, two wake-up optimiza-
tions that exploit wake-up spatial locality in the CAM-based
and matrix-based wake-up logic are proposed. The first
optimization divides the monolithic CAM structure into

1534 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

. The authors are with the Department of Electrical Engineering, National
Cheng Kung University, No. 1 Ta-Hsueh Road, 701 Tainan, Taiwan.
E-mail: chchen@mail.ncku.edu.tw, newjimmy@ee.ncku.edu.tw.

Manuscript received 28 June 2006; revised 8 Dec. 2006; accepted 15 May
2007; published online 6 June 2007.
Recommended for acceptance by A. González.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0254-0606.
Digital Object Identifier no. 10.1109/TC070743.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

multiple segments and activates only the necessary seg-

ments during the wake-up process. This design greatly

reduces the power consumption and wake-up latency of the

associative lookup operations. The other optimization

divides the monolithic wake-up logic matrix into multiple

segments and thus narrows the segment width to reduce

the area cost of a conventional matrix design. Both of the

proposed wake-up designs achieve excellent scalability

because the number of segments which need to be activated

during each wake-up process does not increase with the

issue window size.
The remainder of this paper is organized as follows:

Section 2 discusses the baseline processor model used in

this paper, explains the limitations of the wake-up logic

used in dynamic schedulers, and provides a brief review of

related works. Section 3 presents the wake-up spatial

locality found in representative benchmark programs and

details the proposed wake-up designs. Section 4 presents

the experimental methodology and the evaluation results.

In Section 5, we discuss the area usage and variant designs.

Finally, Section 6 concludes this paper.

2 BACKGROUND

2.1 Baseline Processor Model

Fig. 2 depicts the baseline superscalar processor model used

in this paper. The fetch unit retrieves multiple instructions

from the instruction cache with a branch predictor to

speculatively fetch instructions over basic blocks during a

clock cycle time. Subsequently, the instructions are decoded

and their register designators are renamed for resolving the

WAR and WAW dependences. Then, the instructions are

dynamically scheduled for out-of-order execution. After

scheduling, their source operands are read from the register

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1535

Fig. 1. IPC and power consumption of wakeup operation for various issue window size. (a) IPC for 4-wide 32, 64, 128-entry, and 8-wide 256-entry

issue window. (b) Power consumption for 4-wide 32, 64, 128-entry, and 8-wide 256-entry issue window.

Fig. 2. Processor model used in this paper.

file or bypassed from the functional units. Finally, the
instructions are committed in the program order to ensure
the correct completion of the program. This scheduling

model is implemented in HP PA8000 [3], Intel Pentium 4
[4], MIPS R10000 [5], Alpha 21264 [6], and its successors.

In the scheduler stage, the wake-up and select logic
directs the instructions that are waiting for their source
operands to become available or waiting for execution.
After rename, the instructions are inserted into the issue
window to wait for their operands or to wait for execution.
The ready instructions send signals to the select logic to
request execution. Once a functional unit becomes avail-
able, the select logic directs a suitable instruction to that unit
for execution by asserting the corresponding grant signal.
Many selection policies, for instance, the oldest first
selection algorithm [7], have been presented for the case
where the number of ready instructions exceeds the

capacity of the available functional units [7], [8].
In the baseline processor, the grant signals from the

select logic are used not only to select instructions for
execution but also to wake up the dependent instructions.
When forwarding the grant lines for the wake-up opera-
tions, the grant lines are delayed according to the execution
cycle time of the corresponding instructions. Only the grant
lines with one cycle execution time are immediately used
for the following wake-up operation. To wake up the
dependent instructions, the asserted grant lines are used as
the index addresses to read their corresponding destination
tags. Then, the destination tags are forwarded to the wake-
up logic to match with the entire source tags in the issue
window.

Another processor model uses a reorder buffer and
reservation stations for dynamic instruction scheduling,
such as the model in the Intel P6 [9], PowerPC 604 [10], and
HAL SPARC64 [11]. For this model, the register read stage
is placed before the scheduler stage. After being renamed,
the available operands are read from the register file or the
reorder buffer and then inserted into the reservation station,
together with the corresponding source tags. After execu-
tion, both the result tags and result values are forwarded to
the wake-up logic in the reservation stations to wake up the
dependent instructions. More discussions on this schedul-
ing model can be found in [12].

2.2 Limitations of Conventional Wake-Up Logic

Fig. 3 shows the conventional implementation of the wake-
up logic based on the CAM structure [1]. An extensive
survey for CAM circuits and architectures can be found in
[45]. In Fig. 3, the wake-up design employs two CAM
structures to match the result tags with the left and right
source tags. Two ready bits (Rdy L and Rdy R) are
employed for each entry to indicate whether their corre-
sponding operands are available or not. For the wake-up
operation, the result tags are driven on the tag buses (Tag 1
to Tag w) into the CAM structures to match with the left
and right source tags (Tag L and Tag R). If one of the result
tags is matched with the source tag, the corresponding
ready bit is set to indicate that this operand is available.

The nature of the CAM structure is inefficient in terms of
energy usage and latency. During each wake-up process,
many tag lines should be driven and the load capacitance
on each tag line is heavy for driving all match circuits of the
CAM. Additionally, many match lines are activated in the
wake-up operation whether it is a match or not. Both the tag
driving and match activities consume a lot of energy and
slow down the wake-up speed.

In an effort to improve IPC, scheduler designs often
employ a larger window and more aggressive issue width.
In other words, a larger window will lead to heavier load
capacitances and more match activities; wider issue width
means that more tag lines need to be driven. We can see that
increasing the window size and issue width leads to larger
power consumption and slower wake-up speed. As a result,
the scheduler cannot scale well with the increase in window
size and issue width.

In addition to the CAM-based design, an alternative
approach is implemented by using the bit matrix structure
[13], [14]. Fig. 4 shows this matrix-based wake-up design.
This wake-up design employs two bit-map memory

1536 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 3. Wake-up logic implemented by using the CAM structure.

Fig. 4. Wake-up logic implemented by using the bit-matrix RAM.

structures, of which the height and width are both identical
to the issue window size, to handle the wake-up operations.
In the bit matrix, each bit position represents the data
dependence between two instructions. For example, the bit
located at the intersection of the ith column and the jth row
in the matrix indicates that the jth instruction requires a
source operand from the output of the ith instruction. In the
same way, other instructions that depend on instruction i
will set the corresponding bits in column i.

Differently from the structure of a general RAM, which
outputs a row of data, this matrix outputs a column of data.
To wake up the dependent instructions, the grant lines read
the corresponding columns from the matrix. If the bits on
the selected column have been set, the corresponding ready
bits are set to indicate that the result is now available for the
waiting instructions. This RAM-based wake-up design has
advantages in power dissipation and latency; however, it is
not scalable due to its prohibitive area requirement for a
large issue window. The wire delay of the wake-up path
increases as the logic size grows, leading to excessive wire
delay in the processes of future technology [15].

2.3 Related Work

Numerous previous efforts have attempted to improve the
performance of the CAM-based scheduler, aiming at
reducing the power dissipation, wake-up latency, or both.
The bank design in [1], which is most similar to our design,
segments the monolithic issue window into multiple banks
to improve wake-up delay; however, the result tags still
need to be broadcast to all the banks. This design induces
extra wake-up delay and power consumption due to the
additional driver transistors and tag buses. Hrishikesh et al.
proposed a pipelined-wake-up design that segments the
issue window and wakes up the instructions in the
segments in multiple sequential cycles [16]. Nonetheless,
the limitations are that all of the segments still need to be
searched and the dependent instructions can be issued back
to back only if they are in the first segment.

Folegnani and González presented a gate-off technique
that disables the useless (empty and ready) entries of the
issue window from tag matching [17]. Ramirez et al.
proposed a similar gate-off mechanism based on a multi-
bank issue window to improve the power consumption of
the scheduler [18]. The mechanism has employed an extra
large RAM structure that may slow down the wake-up
speed. Several approaches dynamically manage the sizes of
the issue window and turn off the useless entries [17], [21],
[22], [23]. These designs improve the power consumption of
the scheduler with extra dynamic managers that may
complicate the scheduler.

A tag-elimination scheduler that employs fewer tag
comparators to reduce the complexity of the scheduler has
been proposed by Ernst and Austin [24]. This scheduler also
has a last tag speculator to reduce the frequency of tag
matching. Based on the same observation, Sharkey et al.
presented an instruction-packing technique. This technique
schedules the two instructions, which have only one
nonavailable source operand, into the same entry of the
issue window [25].

Kim and Lipasti proposed a sequential wake-up me-
chanism to reduce the complexity of the scheduler [26]. This

mechanism places the last-arrival operand into the fast
wake-up logic and wakes up the left and right source
operands of an instruction in two sequential steps.
Aggarwal et al. proposed a reduced wake-up width
scheduler to reduce the complexity of the scheduler by
reducing the maximum number of input result tags for the
wake-up logic [27].

The wake-up-free schedulers [28], [29] predict the issue
latency of the instructions and then issue the instructions
into a FIFO-based issue queue. These schedulers replace the
complex wake-up logic with a simple FIFO queue. On the
other hand, Brown et al. presented the select-free scheduler
[13]. This scheduler removes the instruction-selection
process from the scheduling critical path.

Several proposals [30], [31], [32] employ a two-level issue
window to reduce the complexity of the scheduler. The
critical instructions are dispatched to the small and first
issue window and the noncritical instructions, for example,
the instruction waiting for a load that misses in cache, are
dispatched to the large and slow window.

On the other hand, many wake-up designs employ custom
components instead of CAM structures. Goshima et al.
presented a wake-up design that uses bit matrix structures
[14]. Henry et al. presented a cyclic segmented prefix (CSP)
circuit to improve the performance of the wake-up logic [33].
Hsiao and Chen presented a wake-up design which pre-
decodes the source tags and matches the decoded outputs
directly with the grant lines to improve the wake-up speed
and power consumption [34]. Ponomarev et al. used three
techniques, efficient comparators, 0-B encoding, and bit-
line segmentation, to reduce the energy dissipation of the
issue window [35].

Several designs reduce the complexity of the issue logic
through index-based techniques using pointers to connect
the producer instructions and consumer instructions [36],
[37], [38]. Some works reduce the complexity of the
scheduler by prescheduling dependent instructions into a
data-flow-based issue window [39], [40], [41].

3 SCALABLE WAKE-UP LOGIC THROUGH WAKE-UP

SPATIAL LOCALITY

In this section, we first show that most of the distances
between two data-dependent instructions are short in
programs. Motivated by this wake-up spatial locality, two
scalable wake-up designs, a CAM-based one and a matrix-
based one, are proposed for the dynamic scheduler.

3.1 Wake-Up Spatial Locality

The wake-up spatial locality is an inherent spatial feature of
two data-dependent instructions in programs, where the
consumer instruction is often close to the producer
instruction. We call this program characteristic “wake-up
spatial locality” or simply “wake-up locality” for the wake-
up operation in an out-of-order execution processor. The
wake-up spatial locality is measured by the instruction
count between two data-dependent instructions in the
program. The instruction count is also referred to as the
wake-up distance.

To quantify the degree of the distance between two
dependent instructions, a dynamic scheduled processor

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1537

was simulated. When instructions were dispatched into the
issue window, the instruction distance between two
dependent instructions was counted. Fig. 5 shows the
distribution of the wake-up distances for all of the wake-up
operations of the simulated programs. The statistics are
based on a 4-wide processor with a 128-entry issue window
(the simulation environment for the experiment is pre-
sented a later section). Results are shown for 16 of the
SPEC2000 benchmarks and five of the Media-bench
programs [44].

As observed, 95 percent of the wake-up distances are
within the range of 16 instructions on the average. More-
over, only about 1 percent of the wake-up operations come
with the wake-up distances larger than 32 instructions. In
particular, applications such as the gcc, mcf, adpcm, and
g721 programs show a very strong wake-up spatial locality.
Almost all of the wake-up operations have wake-up
distances of less than 32 instructions.

The wake-up spatial locality comes from the fact that
dependent instructions are often arranged in proximity to
improve the data transfer and register utilization. For the
integer and media benchmark programs, the wake-up
distances are shorter than those of the floating-point
programs. This is because the integer and media programs
tend to have less global value passing and smaller
subroutines.

3.2 Scalable CAM-Based Wake-Up Logic

It is possible to take advantage of the wake-up spatial
locality by searching fewer entries of the CAM-based wake-
up logic during the wake-up process. Conventional wake-
up design employs monolithic CAM structures to handle
wake-up operations with wake-up distances up to the issue
window size. Due to the heavy load capacitance and
considerable circuit activities, this monolithic CAM design
has poor scalability and is inefficient both in terms of
energy and speed. Since the distances of wake-up opera-
tions are often short, it is not necessary to search all of the
source tags in the wake-up logic during the wake-up
process. The proposed design takes advantage of this
locality by using smaller segmented CAM structures that
support shorter wake-up distance.

The smaller CAM segments used in this design are

classified into two types, a full segment (Fseg) and multiple

reduced segments. The reduced segments support the

wake-up operations only for instructions having wake-up

distances in the limited wake-up range. The Fseg is used to

handle wake-up operations for instructions that are out of

the limited wake-up range.
Recalling that 99 percent of the wake-up distances are

less than or equal to 31 instructions and 95 percent less than

or equal to 16 instructions, this indicates that a good

segment size to use is 16. In order to cover up to

31 instructions for the wake-up distance, assignment of

instructions to the reduced segments can be arranged, as

shown in Fig. 6, where the logical structure of the 256-entry

issue window is assumed to be a circular ring. Specifically, the

wake-up range of an instruction at position ii in a reduced

segment can be described as iiþ 16, where 0 � ii � 15. That is,

the instruction at location ii of a reduced segment can be

awakened by a previous source instruction that is as far as

iþ 16 instructions away. In this way, the wake-up range for

the instruction at the first entry of a reduced segment includes

the 16 preceding instructions before the first entry and,

consequently, the wake-up range for the instruction at the last

entry of a reduced segment includes the 31 preceding

instructions ahead of the last entry.

1538 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 5. Runtime distribution of the wake-up distances for a 4-issue 128-entry processor.

Fig. 6. Instruction assignment and wake-up coverage for the reduced

segments ðIW ¼ 256Þ.

Fig. 7 illustrates the example of the proposed wake-up
design for a 256-entry issue window. A total of 16 reduced
segments and one Fseg are used. Each reduced segment
consists of 16 entries of the CAM structure. Each entry is
assigned an entry number in the same sequential order as
that in the conventional design.

Since the wake-up range of the reduced segments is
limited to the coverage of iiþ 16 instructions, where
0 � ii � 15, the bit length of the inputs (result tags) and
the source tags for matching can be reduced to five bits
instead of log2 IW, where IW is the issue window size. For
the example in Fig. 7, the least significant five bits of an 8-bit
result tag are used as inputs for the reduced segments and,
thus, the source tag fields in the reduced segment store only
the five low-order bits of the source tags.

In addition to the reduced segments, an Fseg, shown at
the bottom in Fig. 7, is employed to handle the wake-up
operations for the instructions with the wake-up distances
out of the range supported by the reduced segments. The
Fseg is a small segment of the conventional wake-up logic
that handles the wake-up operations without constraint on
the wake-up range. Since only about 1 percent to 5 percent
of the wake-up distances of the dynamic instructions are
out of the limited range, an Fseg of 16-entry can handle the
wake-up operations for the out-of-range instructions well.

More discussion about the trade-off between the perfor-
mance and the entry number used by the Fseg will be
presented later. One side issue arising due to the use of the
Fseg is that the instruction order is no longer maintained as
in the case of a single issue window. Despite this, they are
still in their respective age order in the reduced segments,
as well as the Fseg, allowing the select logic to do an age-
based issue policy. We will revisit this subject in the
performance section.

The insertion of a source tag into the proposed wake-up
design works as follows: After rename, the instruction is
allocated a destination tag (entry number) that indexes the
issue window for writing into. This destination tag is also
used to select a reduced segment and allocate an entry from
the selected segment for writing the source tag into,
provided that both of the source tags of the instruction
are within the specified wake-up distance. On the other
hand, the source tag of the instruction with a wake-up
distance out of the range of the allocated segment is inserted
into the Fseg, including that one source tag is within the
range, whereas the other is not, of the same instruction. As
illustrated in Fig. 8, the source tags of instruction I28 are
allocated to the reduced segment S2 since both of the source
instructions that generate operands, R1 and R4, are within
the specified wake-up coverage. However, the source tags
of instruction I34 must be allocated to the Fseg because one
of its source operand generating instructions, I0, is out of
the specified range. Note that, if the distance of I0 were
within the coverage, then I34 would be allocated to the
reduced segment S3. In this example, it is assumed that
instruction I0 has long execution latency and I34 must wait
for the wake up, whereas both registers Rx and Ry are
within the specified range with a destination tag of
11111100 and 11111101, respectively.

It is straightforward to determine whether the wake-up
distance is out of range or not by checking the most
significant bits (distance codes) of the source tag. Table 1

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1539

Fig. 7. An example of the CAM-based wake-up locality design for a

256-entry issue window.

Fig. 8. Illustration of source tag insertion in the split segments.

TABLE 1
Distance Codes and the Corresponding Wake-Up Coverage for a 256-Entry Issue Window

shows the distance codes and the wake-up coverage of the
respective reduced segment. The distance codes are simply
the segment identifiers, which are numbered from 0 to
IW/SS-1, where IW is the issue window size and SS is the
segment size. The number of bits used by the distance code
equals log2 (IW/SS).

To compare the wake-up coverage, the most significant
four bits of the two source tags are matched with the
distance code(s) shown in Table 1 according to the allocated
segment. For the even segments, S2 for example, we do not
care about the last bit of the codes so that a single three-bit
code is enough. If there is a match, the wake-up distance of
the source tags is in the wake-up range of the allocated
segment and, then, the least significant five bits of each
source tag are inserted into the allocated entry. If the wake-
up distance is out of the range, then the two source tags are
inserted into the Fseg. In the above example, the most
significant three bits (000) of the two source tags for I28 are
used to compare with the distance code of S2 in Table 1,
respectively. The match indicates that the source tags of I28

should be allocated to S2. As for I34, the most significant
four source tag bits for R1 is 0000, which is compared with
the distance code for S3 according to the IW entry number
of I34. In this case, it is a mismatch and, thus, the source tags
of I34 should go to the Fseg.

During the wake-up process, the result tag is always
used as the input for the Fseg; however, the result tag is
only used as the input for reduced segments that have the
same distance codes as the result tag. As a whole, only two
reduced segments and the Fseg are activated for matching.
Continuing with the example in Fig. 8, in the wake-up
process, assume that I0 has completed the execution and its
result tag, 00000000, is driven. Only S1 and S2 out of the
reduced segments are searched because of the same
distance code 0000, whereas the Fseg is always searched.

For comparison, Table 2 shows the distance codes and
the wake-up coverage for a 128-entry issue window. The
source tag field remains 5-bits long since the wake-up
coverage is still iiþ 16 instructions for 0 � ii � 15, whereas
the distance codes need only three bits ðlog2 128=16 ¼ 3Þ.

Compared to the conventional design, the proposed
design has three major advantages: smaller load capacitance
on the tag bus, shorter length of the source tag fields in the
reduced segments, and fewer match activities during the
wake-up process. These factors significantly improve the
power consumption and wake-up latency of the scheduler
that employs a relatively large issue window. Another
advantage of this design is the excellent scalability. No
matter how large the issue window size is, the number of

the activated segments remains the same during the wake-
up process.

3.3 Scalable Matrix-Based Wake-Up Logic

In this section, we present the application of wake-up
spatial locality in a matrix-based wake-up design. The bit
matrix is an alternative way to implement the associative
match operations in the wake-up logic. A wake-up logic
that employs bit matrices is efficient in terms of latency and
energy usage. However, this design comes at the expense of
a large area cost when the issue window size is increased
because the area of this design is proportional to the square
of the issue window size. Based on the wake-up spatial
locality, the area requirement can be greatly reduced by
limiting the wake-up range of the matrix-based design.
Similarly to the CAM-based wake-up locality design, the
proposed optimization divides the monolithic bit matrix
into multiple segments. The basic idea of this design is to
reduce the area cost by narrowing the width of the matrix
structures.

The structure of the matrix-based wake-up locality design
is shown in Fig. 9. There are three major differences between
this design and the CAM-based wake-up locality design.
First, the components used in this design are the RAM-like
structures (matrixes) not the CAM structures. Second, the
inputs for this design are the grant lines from the select logic.

1540 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

TABLE 2
Distance Codes and the Corresponding Wake-Up Coverage for a 128-Entry Issue Window

Fig. 9. An example of the matrix-based wake-up locality design for a

256-entry issue window.

Last, there is no Fseg for this design. The segments are small
bit matrices; the width (input lines) of the matrices is reduced
by limiting the wake-up range of each segment. Similarly, the
input lines (width) of a 16-entry segment can be reduced to
32 grant lines, where the wake-up range of this segment is
limited to iiþ 16 instructions, where 0 � ii � 15. The 32 grant
lines for each segment are arranged as the wake-up coverage
shown in Table 1 for a 256-entry issue window. The wake-up
coverage can be extended by having the segments connected
with more grant input lines, for instance, 48 grant lines for the
wake-up coverage of iiþ 32 instructions ð0 � ii � 15Þ. The
results of a bit-matrix design with different wake-up coverage
are presented later.

In the bit matrix, each bit position represents the data
dependence between two instructions. For example, the bit
located at the intersection of the ith column and the jth row
in the bit matrix indicates that the jth instruction requires a
source operand from the output of the ith instruction. In the
same way, other instructions that depend on instruction i
will set the corresponding bits in column i.

An instruction’s source tag can only be inserted into the
allocated segment when the wake-up distance of this
instruction is within the wake-up range. The wake-up
distance of the instruction is checked using the distance
codes, as mentioned in the previous section. If it is in the
range of the allocated segment, the destination tag of the
instruction is used as an address to select a row and the five
low-order bits of the source tag are decoded to select a
column and the bit at the intersection is set. In other words,
only one bit is set in the selected row during each insertion.
If the wake-up distance is out of the wake-up range, the
insertion of instruction is stalled until this dependence is
resolved.

Since the bit matrix is a RAM-like structure, the wake-up
operation of this design can be finished through a read from
the bit matrix. The difference between the bit matrix used
here and a general RAM structure is that the bit matrix
outputs a column of data, whereas a general RAM structure
outputs a row of data. The wake-up operation is performed
through a column read from the selected segment. The
asserted grant lines read the corresponding columns from
the bit matrix. If the bits on these selected columns have
been set, the outputs of these bits drive the corresponding
ready bits to indicate the availability of the operands.

Differently from the CAM-based wake-up locality de-
sign, this design employs no Fseg for handling the out-of-
range instructions. This is because the matrix-based Fseg is
inefficient in terms of area usage for the number of grant
lines (256, for instance) it must connect to. Besides, an Fseg
of this kind slows down the wake-up speed since the wake-
up delay of the Fseg is longer than that of the reduced
segments.

This matrix-based wake-up locality design removes the
fatal disadvantage of the conventional bit matrix scheme by
greatly reducing the area cost. The design with 16-entry and
32-bit matrixes takes only 12.5 percent ðIW256Þ and
25 percent ðIW128Þ of the area cost of the conventional
matrix design. This design is much faster and more energy-
efficient because only two segments, which are much
smaller than that of the monolithic matrix, are activated

during the wake-up process. The downside of this design is
that limiting the wake-up range may block the insertion of
instructions into the issue window.

4 EXPERIMENTAL EVALUATION AND ANALYSIS

This section presents the experimental methodology and
discusses the results of latency, power, and performance for
the proposed optimizations and previous designs.

4.1 Experimental Methodology

The power consumption and IPC results of the evaluated
designs were obtained through architectural simulation,
which was conducted by using the Wattch [42] and
SimpleScalar [43] toolsets. These execution-driven simula-
tors simulate a superscalar processor with two-level caches,
branch predictors, dynamic scheduler, and so forth, by
performing cycle-by-cycle instruction-level simulation, in-
cluding execution down any speculative path, until a
branch misprediction is detected.

Table 3 lists the architectural parameters for the 4-wide
and 8-wide superscalar processors. In Wattch, the RAM cell
of the bit matrix was extended from the conventional RAM
cell. The other configurations for the Wattch include a
1 GHz clock frequency, 1.8 V voltage, and 0.18 �m
technology process. The simulation results were collected
from seven integer and nine floating-point programs of the
SPEC2000 benchmark suite. The test input set was used for
the SPEC2000 benchmark programs. Additionally, five
programs of Media-bench were also employed for a more
comprehensive evaluation. All of the selected benchmark
programs were compiled with full optimization (-O4). The
programs were fastforwarded for the first 50 million
instructions and the following 500 million instructions were
simulated.

To understand the effects on the wake-up delay, the
circuit characteristics of the evaluated designs must be
examined. The circuit models were extended from the one
proposed by Ernst and Austin [24] and the timing results
for the evaluated designs were extracted by using the
Avant! Hspice tool. Finally, the parameters of CMOS
transistors and wires were all conformed to the TSMC
0.18 �m technology process.

4.2 Performance Comparisons

Figs. 10 and 11 present the IPCs of the 4-wide and 8-wide
processors that employ different wake-up logic. These
results are normalized to the IPC of the baseline processor
that employs the conventional CAM-based wake-up logic.
Besides, the IPC performance of the bank design [1], the
conventional matrix design, and the gated-off design [17]
are the same as that of the baseline processor. The bank
design segments the monolithic CAM structure into multi-
ple banks. The bit matrix design replaces the CAM
structures with the RAM-like structures. The gated-off
design gates off the ready and empty entries of the CAM
structures. All three of these designs do not change the
architectural configurations; thus, the IPC results are the
same as that of the baseline processor.

The first two bars show that the IPC drops due to the tag
elimination design and sequential wake-up design. The tag

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1541

elimination design, configured as 32 two-tag stations,
64 one-tag stations, and 32 zero-tag stations for the 4-wide
processor and twice the stations for the 8-wide processor,
loses about 3 percent ðIW256Þ and 5 percent ðIW128Þ of IPC
due to the issue policy and the capacity conflicts. Since the
number of stations is more sufficient in the 8-wide
configuration, the capacity conflicts do not occur frequently
and this slightly mitigates the IPC loss. On the other hand,
the IPC drop due to the sequential wake-up design is

measured to be 7 percent ðIW128Þ and 11 percent ðIW256Þ.
Obviously, waking instructions up in two sequential cycles

induces nonnegligible performance degradation.
There is almost no performance degradation for the

proposed CAM-based wake-up locality (WL þ 16-entry-

Fseg) design. The IPC loss is measured to be only 0.2 percent

for the 8-wide processor and no IPC loss for the 4-wide

processor as shown in the fifth bars. The slight IPC drop for

1542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 10. The normalized performance of the 4-wide 128-entry processor with a different wake-up logic.

TABLE 3
Processor Configurations

Fig. 11. The normalized performance of the 8-wide 256-entry processor with a different wake-up logic.

the 8-wide processor comes from the extra dispatch stall
when the Fseg has no more available entry for the incoming
out-of-range instruction.

The third bars show the performance for the proposed
design without the Fseg. Although only 1 percent to
4 percent of the dynamic instructions are out of the wake-
up range, the dispatch stalls due to these instructions
induce 6 percent ðIW128Þ and 14 percent ðIW256Þ IPC drop.
The fourth bars show that using an 8-entry Fseg can avoid
most of the performance degradation due to the dispatch
stalls. In addition, the sixth bars show the performance of
the wake-up spatial locality design with the oldest first
issue policy. The performance is the same as that of the
WL design without the oldest-first issue policy. In the wake-
up locality design, since the instructions are dispatched into
the reduced and Fsegs, the instruction order cannot be kept
the same as that in the conventional design. During the
instruction issue process, the proposed design cannot do
the oldest first issue. Instead, the instructions in the reduced
segments are assigned a higher priority than those in the
Fseg; we call this policy dual-priority aged issue. Although
the instructions lose their program order, they are still in
their age order in the reduced segments and Fseg,
respectively. Based on the position (entry number), the
instructions in the reduced segments or the Fseg can be
issued in the aged-issue policy. The performance of the
WL design with the dual-priority aged-issue policy, shown
in the fifth bars, is as good as that of the WL design with the
oldest first issue policy, shown in the sixth bars.

Finally, the last four bars show the performance of the
matrix-based wake-up spatial locality design (WL matrix)
with different configurations. For the configuration that
the wake-up range is limited to iiþ 16 instructions

(WL_matrix/16), although only 4 percent of the dynamic
instructions are out of the wake-up range, the dispatch
stalls due to these instructions induce 6 percent ðIW128Þ and
14 percent ðIW256Þ IPC drop. As expected, the IPC of this
design becomes better when the wake-up range increases.
The performance degradation is close to 0 percent ðIW128Þ
and 1.3 percent ðIW256Þ after increasing the wake-up
coverage to iiþ 64 instructions (WL_matrix/64), where
0 � ii � 15.

To summarize, although the wake-up range is limited to
iiþ 16 instructions ð0 � ii � 15Þ, the CAM-based wake-up
locality design achieves almost no performance degradation
due to the employment of the Fseg. As for the matrix-based
wake-up locality design, the performance impact can be
reduced to 1.3 percent when the wake-up coverage grows to
iiþ 64 instructions. For some of the cases where the
normalized IPC is greater than 100 percent, we examined
these simulation scenarios and found the cause coming
from branch prediction. With the wake-up range being
limited, fewer consecutive branches will be issued and this
reduces the chance of misprediction in these circumstances.

4.3 Power Consumption

Figs. 12 and 13 present the power consumption of the wake-
up logic for the 4-wide and 8-wide processors. Note that, in
this paper, only dynamic power is evaluated. The power
consumption of the conventional CAM design, shown in
the leftmost bars, is found to be much higher than others.
This is due to the heavy load capacitance and the surplus
circuit activities of the monolithic CAM structure. The
gated-off design reduces 28 percent ðIW128Þ and 29 percent
ðIW256Þ power consumption of the CAM scheme by gating
the ready and empty entries from tag matching. Due to the

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1543

Fig. 12. Power consumption of the wake-up designs for a 4-issue 128-entry processor.

Fig. 13. Power consumption of the wake-up designs for an 8-issue 256-entry processor.

inherent nature of the CAM structure, the power consump-
tion of the gated-off design is still high, as shown in the
third bars.

The second bars show that the bit matrix design takes
about 25 percent ðIW256Þ and 29 percent ðIW128Þ of the
power consumed by the CAM scheme. This significant
improvement comes from the nature of the bit matrix. This
design replaces the CAM structures, which are associative
lookup units, with the RAM-like structures that are direct
access units.

The fourth to sixth bars show the power consumption for
the banked wake-up design [1]. Overall, the 4-bank design
improves the power consumption by reducing the load
capacitance of tag driving in the CAM structures. However,
the overhead for the extra tag line and driver transistors
becomes significant in the wider-banked design. This
overhead of the extra tag line deteriorates 3-29 percent
power consumption of the conventional design for the
16-bank design.

The power consumption of the tag elimination and
sequential wake-up designs are shown in the seventh and
eighth bars. The configuration of the tag-reduced design is
equivalent to half of the entries of the CAM scheme; thus,
this design saves 53 percent ðIW256Þ and 56 percent ðIW128Þ
power consumption of the conventional design. In con-
trast, although the sequential wake-up design wakes up
instructions in two phases, this design still drives two
monolithic CAM structures, as the conventional design
does. It is measured that the power consumption of the
sequential wake-up design is similar to that of the
conventional CAM design.

The power consumption of the proposed CAM-based
wake-up locality scheme is shown in the next bars. It is
measured to be only 24 percent ðIW256Þ and 35 percent
ðIW128Þ that of the conventional CAM scheme. This
excellent energy saving comes from the wake-up range
limitation. Most needless tag driving and tag matching are
filtered; thus, this design is highly efficient in terms of
energy usage.

The last four bars show the power consumption of the
matrix-based wake-up locality design with different con-
figurations. Because the nature of the RAM-based design is
energy efficient and only the necessary segments are
activated during the wake-up process, the power consump-

tion of this design is much smaller than that of other
designs. This design achieves excellent energy saving that
takes only 6-29 percent power consumption of the conven-
tional CAM scheme for the 4-wide configuration and
2-11 percent for the 8-wide configuration.

4.4 Wake-Up Latency

The wake-up delay of the CAM-based wake-up designs can
be summarized as follows:

TCAM ¼ Ttagread þ Ttagdrive þ Ttagmatch þ TmatchOR;

where Ttagread is the time for reading the destination tag
from the tag RAM, Ttagdrive is the time for driving the tag
into the CAM structure, Ttagmatch is the time spent by the
match circuit in pulling the match line low, and TmatchOR is
the time for performing a logical OR operation with the
match lines.

The wake-up latency of the matrix-based scheme can be
represented as follows:

TbmRAM ¼ Twordline þ Tbitline þ Tsenseamp;

where Twordline is the delay as the word line driver drives the
grant signal into the bit-map RAM, Tbitline is the time for
activating the bitline, and Tsenseamp is the time for amplifying
the bitline.

Fig. 14 shows the wake-up latencies of the wake-up
designs in the 4-wide and 8-wide processors. The wake-up
latencies of the conventional CAM design and gated-off
design are presented in the first and the third bars. Since the
gated-off scheme only gates the match lines in the empty
and ready entries from activities and this does not affect the
critical path of the wake-up operation, the wake-up latency
of the gated-off design is the same as that in the
conventional CAM design.

Compared to these CAM-based schemes, the bit matrix
design is efficient in terms of wake-up latency because the
nature of the RAM-like structure is much simpler than that
of the CAM structure. The second bar shows that the wake-
up latency of the bit matrix design is 64 percent and
46 percent that of the CAM scheme for the 4-wide and
8-wide processors.

Compared to the conventional CAM design, the banked
design improves 36-40 percent wake-up latency in the
4-wide processor and improves 71-76 percent wake-up

1544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 14. Wake-up latencies of different wake-up approaches (ns).

latency in the 8-wide processor. This improvement comes
from the smaller banked segments that perform wake-up
operations in parallel.

The tag elimination design has an equivalent half of the
CAM structure to that of the conventional design for the
wake-up operation. The wake-up latency of this design is
measured to be 45 percent and 57 percent that of the
conventional design for the 4-wide and 8-wide processors.
In contrast to the tag elimination design, the sequential
wake-up design has almost the same wake-up latency as
that of the conventional design because the critical path of
the sequential wake-up design is the same as that of the
conventional design.

The proposed CAM-based wake-up locality design
performs much faster than the conventional design. The
proposed design is measured to be 44 percent ðIW128Þ and
78 percent ðIW256Þ faster than the conventional design and
49 percent faster than the tag elimination design for the
8-wide processor. Compared to the banked design, our
proposed design is measured to be 7-8 percent faster in the
4-wide and 8-wide processors, respectively. This advantage
comes from the fact that only the necessary segments are
activated during the wake-up process. In addition, the
matrix-based wake-up locality design achieves the best
wake-up delay compared to the other designs when the
wake-up range is limited to iiþ 16 instructions with
0 � ii � 15.

5 AREA USAGE AND VARIANT DESIGNS

From the experimental results, we can observe that the
major limiting factor for the scalability of the conventional
CAM design is the complexity that induces significant
overhead in terms of latency and power consumption. As
for the bit matrix scheme, the limiting factor is its large area
requirement. Table 4 shows the estimated memory require-
ments in terms of SRAM cells for the different wake-up
designs. We assume that a typical CAM cell consists of two
SRAM cells [45]. The proposed CAM-based wake-up
locality design, the WL16 model, which has a wake-up
coverage of iiþ 16 instructions for 0 � ii � 15, uses fewer
SRAM cells than the conventional designs despite the use of
an Fseg. In contrast to the conventional CAM design, the
CAM-based wake-up locality design is scalable with the

issue window because only two reduced segments and one
Fseg are searched during the wake-up process regardless of
the window size. The proposed CAM-based WL design
shows the advantages in the wake-up speed, power
efficiency, and area cost with no performance compromise.

Both the WL_matrix/16 and WL_matrxi/64 configura-
tions have shown good scalability with respect to the issue
window size. Compared to the conventional matrix design,
the matrix-based wake-up locality design has reduced the
area cost drastically in addition to the advantages in wake-up
speed and power dissipation. The matrix-based wake-up
locality design with a wake-up range of iiþ 16 instructions
ð0 � ii � 15Þ takes only 12.5 percent ðIW256Þ and 25 percent
ðIW128Þ the area cost of the conventional matrix design.

Wake-up locality is most useful for large instruction
windows because the design is based on the program’s
wake-up distances that are mostly less than 32. For each
wake-up, there are two reduced segments and one Fseg that
are searched. With 16-entry segments, this means that the
number of entries which are searched is always limited to
48, no matter how large the issue window size is and, hence,
the essence of the proposed WL-based scheme is the
excellent scalability for large issue windows. Generally,
this advantage gradually diminishes as the issue window
size gets smaller. The WL-based scheme inherently does not
provide useful improvement for a small window size, such
as 32 entries or around 48 entries, despite the split structure.
For example, in a 32-entry issue window, two reduced
segments can be used without the Fseg. However, for each
wake-up, the two reduced segments are searched; this is
fundamentally the same as in a 32-entry single monolithic
structure. Nevertheless, with a large issue window, the
wake-up locality design can always bound the number of
wake-up operations to a split system of three 16-entry
segments without IPC loss.

5.1 Variant of CAM-Based Wake-Up Locality Design

In this section, we present the variants of the CAM-based
wake-up locality designs by changing the segment size and
wake-up coverage. One change is to use a smaller segment
size such as eight entries while maintaining the same
wake-up coverage as the 16-entry segment example shown
previously. The wake-up coverage of this variant can be
described as iiþ 24 instructions with 0 � ii � 7, denoted as

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1545

TABLE 4
The Number of SRAM Bits Used

WL24. Other models include the wake-up coverage of iiþ
32 instructions ð0 � ii � 31Þ, WL32, and iiþ 48 instructions

ð0 � ii � 15Þ, WL48. These two models have the same

maximum wake-up coverage but use different segment

sizes. Fig. 15 shows the IPC comparisons of these variants

with the previous example, iiþ 16 instructions with 0 � ii �
15 (WL16). The first two bars show that the WL16 and

WL24 models, each with a 16-entry Fseg, have achieved

about the same IPC without degradation. For the WL32 and

WL48 models, no Fseg is used since their maximum wake-

up coverage is up to 63 instructions. On the average, the

WL32 model has lost about 5 percent of the IPC, whereas

the WL48 model has lost around 2 percent. These two

models experience serious IPC loss for some of the

benchmark programs, for example, wupwise and mesa,

because of the lack of the Fseg.

Figs. 16 and 17 show comparisons of wake-up latency

and power consumptions, respectively. As noted, there is

no obvious difference among these variant designs.

Comparing the IPC, power usage, and wake-up latency, it

is found that the WL16 and WL24 models are the preferred

configurations. However, the WL16 model requires less

circuitry for the distance code comparisons, making the

WL16 model most attractive to use.

5.2 Other Multiple-Bank CAM-Based Wake-Up Logic

Another way of doing multiple-bank wake-up design is to

assign each segment a number as its wake-up address, which

simply comes from the high-order bits of the source tag. To

access the segments, the bits of the tag, source tag or result tag,

are divided into two parts: index (wake-up address) and

reduced tag. The index is the high-order bits of the tag that are

used to select a segment. The other part, reduced tag, is the

1546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 15. The normalized performance of the 8-wide 256-entry processor for different wake-up locality designs.

Fig. 16. Wake-up latency for the different wake-up locality designs.

Fig. 17. Power consumption of the wake-up locality designs for an 8-issue 256-entry processor (w).

low-order bits of the tag that are used as input for the wake-up
logic for associative lookup. During the wake-up process, the
result tag is compared with only the source tags that have the
same wake-up address, that is, the same high-order bits. In
this way, the instructions that have the same wake-up
address are dispatched to the same segment.

During the wake-up process, the wake-up operation is
performed only in the selected segment. The high-order bits
(wake-up address) of the result tag are used to select one of
the segments. The low-order bits of the result tag are used
as the input for the wake-up logic to match with the source
tags in this segment. The source tags in the other segments
are not involved in this wake-up operation. This approach
achieves the same effect as the wake-up locality design in
the respect that only the selected segment is activated. A
variant of the design can use the low-order bits of the tag to
select a segment. However, segmenting the wake-up logic
either with the high-order or the low-order bits of the
source tag has several side-effects that may undermine the
achievable IPC because of the stalling of instruction
dispatch. This situation can be explained as follows.

When inserting instructions into the issue window, two
scenarios will lead to the instruction not being dispatched to
the selected segment. First, the same instruction has two
wake-up addresses indexing to two different segments.
Second, the segment selected by the wake-up address of the
instruction is full; no more available entry of this segment
can be allocated for the incoming instruction. Although this
bank overflow occurs in the segments, others may suffer
from bank underflow. Most importantly, the instruction
order is lost and, thus, it is difficult to implement an age-
based issue policy. Readers who are interested in more
details of this design can refer to the work in [46]. Due to the
loss of age-based issue order, the performance degradation
in IPC is about 2.5-5 percent for the 4-wide and 8-wide
processors. Although the wake-up latency is similar to
those of the WL-based designs, the wake-up power
consumption is about 1 to 2 watts higher than the WL-based
designs due to the use of more supporting segments to
reduce issue stalling.

6 CONCLUSION

In this paper, we show that most of the distances between
two data dependent instructions are short in nature. It is
found that 99 percent of the wake-up range is smaller than
31 instructions and 95 percent smaller than 16 instructions.
Taking advantage of this wake-up spatial locality, two
effective wake-up designs are proposed to improve the
wake-up delay, power requirement, and scalability of the
dynamic scheduler. For the CAM-based wake-up logic, the
issue window is divided into IW/16 reduced segments,
where IW is the issue window size. The wake-up range of a
reduced segment is limited to iiþ 16 instructions, where
0 � ii � 15 to cover 95-99 percent of the wake-up operations.
An Fseg of the same size is used to handle the wake-up
operations for the instructions that are out of the limited
wake-up range. This design significantly improves
44-78 percent of the wake-up delay and saves 65-76 percent
power consumption compared to the conventional CAM
scheme. Next, the matrix-based wake-up locality design,

which limits the wake-up range to iiþ 16 instructions,

requires only 12.5-25 percent area usage of the monolithic

matrix design. Applying wake-up locality to the CAM-

based and matrix-based wake-up logic has shown excellent

scalability because the number of the activated segments

during the wake-up process remains the same, regardless of

the issue window size. In conclusion, the proposed wake-

up designs remove the limiting factor from the dynamic

scheduler and enable the processor to employ a more

sophisticated scheduler for performance.

ACKNOWLEDGMENTS

The authors thank all the reviewers for their helpful

suggestions that strengthen the paper. Chia-Jung Hsu

contributed in part of the simulations. This work was

supported in part by the National Science Council, Taiwan,

Grant NSC 94-2220-E-006-008.

REFERENCES

[1] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Quantifying the
Complexity of Superscalar Processors,” Technical Report CS-1328,
Univ. of Wisconsin-Madison, May 1997.

[2] K. Wilcox and S. Manne, “Alpha Processors: A History of Power
Issues and a Look to the Future,” Proc. 32nd Ann. Int’l Symp.
Microarchitecture, Cool Chips Tutorial, Nov. 1999.

[3] A. Kumar, “The HP PA8000 RISC CPU,” IEEE Micro, vol. 17, no. 2,
pp. 27-32, Apr. 1997.

[4] G. Hinton et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., Feb. 2001.

[5] K.C. Yeager, “MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

[6] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
vol. 19, no. 2, pp. 24-36, Mar./Apr. 1999.

[7] M. Butler and Y.N. Patt, “An Investigation of the Performance of
Various Dynamic Scheduling Techniques,” Proc. 25th Ann. Int’l
Symp. Microarchitecture (MICRO ’92), pp. 1-9, Dec. 1992.

[8] S.T. Srinivasan and A.R. Lebeck, “Load Latency Tolerance in
Dynamically Scheduled Processors,” Proc. Ann. Int’l Symp.
Microarchitecture (MICRO ’98), pp. 148-159, Dec. 1998.

[9] L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,”
Microprocessor Report, vol. 9, no. 2, pp. 1-7, Feb. 1995.

[10] S.P. Song, M. Denman, and J. Chang, “The PowerPC 604 RISC
Microprocessor,” IEEE Micro, vol. 14, no. 5, pp. 8-17, Oct. 1994.

[11] L. Gwennap, “HAL Reveals Multichip SPARC Processor,”
Microprocessor Report, vol. 9, no. 3, pp. 1-7, Mar. 1995.

[12] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, second ed. Morgan Kaufmann, 1996.

[13] M. Brown, J. Stark, and Y. Patt, “Select-Free Instruction Schedul-
ing Logic,” Proc. Ann. Int’l Symp. Microarchitecture (MICRO ’01),
pp. 204-213, Dec. 2001.

[14] M. Goshima et al., “A High-Speed Dynamic Instruction Schedul-
ing Scheme for Superscalar Processors,” Proc. Ann. Int’l Symp.
Microarchitecture (MICRO ’01), pp. 225-236, Dec. 2001.

[15] R. Ho, K.W. Mai, and M.A. Horowitz, “The Future of Wires,” Proc.
IEEE, vol. 89, pp. 490-504, Apr. 2001.

[16] M.S. Hrishikesh, N.P. Jouppi, and K.I. Farkas, “The Optimal
Useful Logic Depth per Pipeline Stages Is 6-8 FO4,” Proc. Ann. Int’l
Symp. Computer Architecture (ISCA ’02), pp. 14-24, May 2002.

[17] D. Folegnani and A. González, “Energy-Effective Issue Logic,”
Proc. Ann. Int’l Symp. Computer Architecture (ISCA ’01), pp. 230-239,
July 2001.

[18] M.A. Ramı́rez et al., “A Simple Low-Energy Instruction Wakeup
Mechanism,” Proc. Int’l Symp. High-Performance Computing (ISHPC
’03), pp. 99-112, Oct. 2003.

[19] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power
Requirements of Instruction Scheduling through Dynamic Alloca-
tion of Multiple Datapath Resources,” Proc. Ann. Int’l Symp.
Microarchitecture (MICRO ’01), pp. 90-101, Dec. 2001.

CHEN AND HSIAO: SCALABLE DYNAMIC INSTRUCTION SCHEDULER THROUGH WAKE-UP SPATIAL LOCALITY 1547

[20] J. Abella and A. González, “Power-Aware Adaptive Issue Queue
and Register File,” Proc. Int’l Conf. High-Performance Computing
(HiPC ’03), Dec. 2003.

[21] D.H. Albonesi, “Dynamic IPC/Clock Rate Optimization,” Proc.
Ann. Int’l Symp Computer Architecture (ISCA ’98), pp. 282-292, June
1998.

[22] A. Buyuktosunoglu et al., “A Circuit Level Implementation of an
Adaptive Issue Queue for Poweraware Microprocessors,” Proc.
Great Lakes Symp. VLSI (GLSVLSI ’01), pp. 73-83, Mar. 2001.

[23] S. Dropsho et al., “Integrating Adaptive On-Chip Storage
Structures for Reduced Dynamic Power,” Proc. 11th Parallel
Architectures and Compilation Techniques, pp. 141-152, Sept. 2002.

[24] D. Ernst and T.M. Austin, “Efficient Dynamic Scheduling through
Tag Elimination,” Proc. Ann. Int’l Symp. Computer Architecture
(ISCA ’02), pp. 37-46, May 2002.

[25] J.J. Sharkey et al., “Instruction Packing: Reducing Power and
Delay of the Dynamic Scheduling Logic,” Proc. Int’l Symp. Low
Power Electronics and Design (ISLPED ’05), pp. 30-35, Aug. 2005.

[26] I. Kim and M.H. Lipasti, “Half-Price Architecture,” Proc. Ann. Int’l
Symp Computer Architecture (ISCA ’03), pp. 28-38, June 2003.

[27] A. Aggarwal et al., “Defining Wakeup Width for Efficient
Dynamic Scheduling,” Proc. Int’l Conf. Computer Design (ICCD
’04), pp. 36-41, Oct. 2004.

[28] D. Ernst, A. Hamel, and T. Austin, “Cyclone: A Broadcast-Free
Dynamic Instruction Scheduler with Selective Replay,” Proc. Ann.
Int’l Symp Computer Architecture (ISCA ’03), pp. 253-262, June 2003.

[29] J. Hu, N. Vijaykrishnan, and M. Irwin, “Exploring Wakeup-Free
Instruction Scheduling,” Proc. Int’l Symp. High Performance
Computer Architecture (HPCA ’04), pp. 232-241, Feb. 2004.

[30] A.R. Lebeck et al., “A Large, Fast Instruction Window for
Tolerating Cache Misses,” Proc. Ann. Int’l Symp Computer
Architecture (ISCA ’02), pp. 59-70, May 2002.

[31] B. Fields, S. Rubin, and R. Bodı́k, “Focusing Processor Policies via
Critical-Path Prediction,” Proc. Ann. Int’l Symp. Computer Archi-
tecture (ISCA ’01), pp. 74-85, July 2001.

[32] E. Brekelbaum et al., “Hierarchical Scheduling Windows,” Proc.
Ann. Int’l Symp. Microarchitecture (MICRO ’02), pp. 27-36, Nov.
2002.

[33] D.S. Henry, B.C. Kuszmaul, G.H. Loh, and R. Sami, “Circuits for
Wide-Window Superscalar Processors,” Proc. Ann. Int’l Symp.
Computer Architecture (ISCA ’00), pp. 236-247, June 2000.

[34] K.S. Hsiao and C.H. Chen, “An Efficient Wakeup Design for
Energy Reduction in High-Performance Superscalar Processors,”
Proc. Int’l Conf. Computing Frontiers (CF ’05), pp. 353-360, May
2005.

[35] D.V. Ponomarev et al., “Energy-Efficient Issue Queue Design,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 11,
pp. 789-800, Oct. 2003.

[36] M. Huang, J. Renau, and J. Torrellas, “Energy-Efficient Hybrid
Wakeup Logic,” Proc. Int’l Symp. Low Power Electronics and Design
(ISLPED ’02), pp. 196-201, Aug. 2002.

[37] R. Canal and A. González, “A Low-Complexity Issue Logic,” Proc.
Int’l Conf. Supercomputing (ICS ’00), pp. 327-335, May 2000.

[38] R. Canal and A. Gonzalez, “Reducing the Complexity of the Issue
Logic,” Proc. Int’l Conf. Supercomputing (ICS ’01), pp. 312-320, June
2001.

[39] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. Ann. Int’l Symp Computer Architec-
ture (ISCA ’97), pp. 206-218, June 1997.

[40] P. Michaud and A. Seznec, “Data-Flow Prescheduling for Large
Instruction Windows in Out-of-Order Processors,” Proc. Int’l
Symp. High Performance Computer Architecture (HPCA ’04), pp. 27-
36, Jan. 2001.

[41] S.E. Raasch, N.L. Binkert, and S.K. Reinhardt, “A Scalable
Instruction Queue Design Using Dependence Chains,” Proc.
Ann. Int’l Symp Computer Architecture (ISCA ’02), pp. 318-329,
May 2002.

[42] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
Ann. Int’l Symp Computer Architecture (ISCA ’00), pp. 83-94, June
2000.

[43] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, v2.0,”
Technical Report CS-1342, Univ. of Wisconsin-Madison, June
1997.

[44] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
Tool for Evaluating Multimedia and Comm. Systems,” Proc. Ann.
Int’l Symp. Microarchitecture (MICRO ’97), pp. 330-335, Dec. 1997.

[45] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable
Memory (CAM) Circuits and Architecture: A Tutorial and
Survey,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 712-727,
Mar. 2006.

[46] K.S. Hsiao and C.H. Chen, “Improving Scalability and Complexity
of Dynamic Scheduler through Wakeup-Based Scheduling,” Proc.
Int’l Conf. Computer Design, Oct. 2006.

Chung-Ho Chen received the MS degree in
electrical engineering from the University of
Missouri, Rolla, in 1989 and the PhD degree in
electrical engineering from the University of
Washington, Seattle, in 1993. In 1993, he
became a faculty member in the Department of
Electronic Engineering at National Yunlin Uni-
versity of Science and Technology. In 1999, he
joined the Department of Electrical Engineering,
National Cheng Kung University, where he is

currently a professor. His research interests include advanced computer
architecture, video technology, and network storages. He is a coholder
of a US patent on a multicomputer cluster-based processing system and
of a Republic of China patent on a multiple-protocol storage structure.
He was the technical program chair of the 2002 VLSI Design/CAD
Symposium held in Taiwan. He is a member of the IEEE.

Kuo-Su Hsiao received the BS degree in
computer and communication engineering from
the National Kaohsiung First University of
Science and Technology, Kaohsiung, Taiwan,
in 1999 and the MS degree in electrical engineer-
ing and the PhD degree in electrical engineering
from the National Cheng Kung University, Tai-
nan, Taiwan, in 2001 and July 2006, respectively.
His research interests include computer archi-
tecture, low-power processor, and VLSI design.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1548 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

