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Abstract 
 

Achieving scalable performance in the IPv6 address 

lookup and update poses a challenge to the design of 

existing routers. To concurrently match address prefixes 

with different route entries, we propose a parallel memory 

lookup scheme which uses three-level tables to cover 

various lengths of prefix distributions for the long IP 

address. The scheme employs a parallel CRC address 

compression hardware to reduce the lookup table sizes. 

The multi-cycle implementation of the design has achieved 

an average of 1.6 memory accesses per lookup request. The 

pipeline version features a five-stage pipeline design with a 

mechanism to reduce pipeline stalls due to updates. 

Performance simulation reveals that the number of address 

queue entries significantly influences the lookup throughput 

when frequent table updates occur. The proposed single 

pipeline module with an eight-entry queue stage has 

achieved a maximum rate of 100 × 106 lookups per second. 

With the four-pipeline configuration, the throughput is 

increased by a factor of 2.5 for sparse updates and up to 2.3 

when the update rate increases to 20 percents of the 

lookup’s. This paper has demonstrated a viable IPv6 

lookup design that is scalable for high-throughput routers. 

 

Keywords: IPv6 lookup, longest prefix match, route 

update, scalable throughput. 

 

1 Introduction 

 

The longer address length and larger address space in 

IPv6 pose a challenge to the design of IP address lookup. 

The address lookup involves the longest prefix match 

(LPM) operation, i.e., finding an entry in the lookup table 

with the longest prefix that matches with the incoming 

packet's destination IP address. The longer IPv6 address 

lengthens the latency of an LPM operation and thus slows 

down the lookup rate in routers. For instance, with an 

M-trie based search, the number of memory accesses 

required equals to the depth of the tree. To lookup an IPv6 

address, up to eight accesses are required, more than 

doubling the latency of lookup in IPv4 [1].  

Extending IPv4-based schemes in IPv6 may also 

suffer from performance degradation due to the different 

prefix length distributions in IPv6 routing tables [2]. The 

global IPv6 unicast address is partitioned into several 

segments as a hierarchical tree such as ISP, Site or LAN [3]. 

Observing the address allocation policy and the format of 

the aggregatable global unicast addresses, it is known that 

the prefix length mainly distributes among the TLA (Top 

Level Aggregator), NLA (Next-Level Aggregation), or 

SLA (Site-Level Aggregation) fields. Apparently, the prefix 

length distribution for a switching router changes with the 

hierarchical level at which the switching router is used. 

An address lookup scheme must be scalable in terms 

of memory usage and more importantly achieve scalable 

lookup and update performance. Nonetheless, the lookup 

throughput is hindered by the update operations due to 

route changes, which reportedly changes at a rate 

exceeding several hundred prefix updates per second [4]. 

To tackle the above problems, first performing concurrent 

lookups in multi-range prefixes, we propose a parallel 

memory lookup scheme with reduced table sizes to cover 

various lengths of prefix distributions for the long IP 

address. The multi-cycle implementation of this design has 

achieved an average of 1.6 memory accesses per lookup 

request. 

Next, we present the pipeline design of this lookup 

scheme considering the update operations which are 

quantified by the rate of the occurrences and the latency. 

This five-stage pipeline design includes a queue stage that 

buffers the lookup requests while updates are being 

performed. We evaluate the effect of the queue entry 

number and the multiple-pipeline configuration on the 

lookup throughput. The performance evaluation shows that 

the proposed design is scalable both to the number of 

lookups and update requests for the IPv6 address lookup 

system.  

The rest of this paper is organized as follows. Section 

2 discusses the related work. Section 3 presents the 

proposed address lookup scheme with examples. Section 4 

describes the implementation in multi-cycle as well as in 

pipeline design. Section 5 discusses the simulation results 

of the proposed scheme. Finally, the conclusion is given in 

Section 6. 
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2 Related Work 
 

An extensive survey on IP address lookup algorithms 

can be found in [4] with the focus on trie-based schemes 

which are also used in [5-9]. In [5], the IP address lookup 

problem is modeled as a searching problem on a binary-trie 

which is partitioned into 4-level of subtrees for pipeline 

implementation. Similarly based on the trie structure and 

prefix partition, Chang et al. proposed a lookup table 

design for IPv4 system [6]. The authors in [8] proposed a 

modified PATRICIA trie with the help of hash tables to 

speedup the search. In [10], the core method treats each 

prefix as a range and encodes it using the start and end of 

the range. Then the range entries are arranged in a binary 

search table with a mapping established between the table 

and the corresponding prefix. Differently, the approach in 

[11] uses binary search over the hash tables organized by 

the length of the prefix. 

To use the IP address as a memory pointer for table 

lookup, a hashing function that takes the longer address is 

often used to produce a shorter index so that the required 

memory size can be reduced [12-13]. In [13], the lookup 

architecture uses parallel EXOR hashing logic for each 

single prefix address table and provides mechanisms for 

collided mapping. For IPv4, the scheme requires one to 

five memory accesses with a small memory requirement. 

In contrast, content addressable memories (CAMs) match 

the incoming IP addresses directly with the contents 

[14-17]. In [14], the routing lookup method based on 

bi-search on prefix length is proposed. It is implemented in 

a pipeline structure taking the advantages of the traditional 

ternary content addressable memories (TCAMs). However, 

for a larger forwarding table, using TCAM-based lookup 

can be very expensive in terms of memory bits used and 

power dissipation. TCAMs are expensive because every 

route bit needs two SRAM cells. As a result, TCAMs are 

the choice for applications that require the ability to mask 

certain bits in each entry to enforce policy lookups or access 

control rules [16]. For cost effectiveness, policy lookups 

and forwarding lookups are often separately implemented 

with different hardware systems [1]. 

In [18], a hardware scheme that improves lookup 

memory access in IP lookup is proposed for IPv4. This 

lookup architecture uses a table storing all route prefixes 

that are up to 24-bits long and a second table for prefixes 

that are longer than 24-bits. Our scheme differs from theirs 

in many aspects. First, to be used in IPv6, we propose the 

use of a parallel CRC technique to reduce table sizes. 

Second, the arrangement of the parallel tables in the 

hierarchy reduces the number of memory accesses, which 

in turn makes fast lookup possible for the long prefixes in 

IPv6. More importantly, we present the scalable pipeline 

design which is not previously unveiled. 

 

3 Longest Prefix Matching with Paral- 

lel Memory Lookup 
 

To design a lookup scheme tailoring directly for 

pipeline operation, we propose to do longest prefix 

matching with a parallel memory lookup (PML) scheme 

that consists of a three-level memory hierarchy. The 

organization of the scheme is shown in Figure 1 where the 

NLA ID and SLA ID are partitioned into several 8-bits 

long segments. 

The scheme organizes the lookup tables in a hierarchical 

layout. First, the first-level table is the TLA-table (TLAT) 

which has 213 entries storing all the possible route prefixes 

that belong to the TLA field. Then, three second-level 

tables are used for the different ranges of prefix length. The 

SLT40 table stores the prefixes of length that is greater 

than 24 bits and up to 40 bits. The other two tables, SLT48, 

and SLT56 store all the route prefixes that are equal to 48 

bits and 56 bits respectively. The rest of the route prefixes 

 

 

Figure 1 The proposed parallel memory lookup (PML) scheme (:: denotes concatenation) 
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If the longest prefix match is in the TLA fieldIf the longest prefix match is beyond the  TLA field

1 bit 1 bit 16 bits16 bits

TLAT entry format

If the longest prefix match is grater than 40 bits

2 bits 2 bits 16 bits

SLT40 entry format

16 bits

If the longest prefix match is less than or equal to 40 bits

2 bits 16 bits

CRC collision happens

If the longest prefix match is grater than 48 bits

2 bits 2 bits 16 bits

SLT48 entry format

16 bits

If the longest prefix match is  equal to 48 bits

2 bits 16 bits

CRC collision happens

If the longest prefix match is grater than 56 bits

2 bits 2 bits 16 bits

SLT56 entry format

16 bits 2 bits 16 bits

If the longest prefix match is  equal to 56 bits CRC collision happens

1 bit 1 bit 16 bits

TLT entry format

16 bits

0 Base address for second-level-table

01 Base address for third-level-table

1 Next output port

11 Next output port

01 Base address for third-level-table

10 Index for CRC collision correction

11 Next output port

0 Clear entry 1 Next output port

10 Index for CRC collision correction

01 Base address for third-level-table 11 Next output port 10 Index for CRC collision correction

(prefix length greater than 40 bits and less than 48 bits, 

greater than 48 bits and less than 56 bits, and greater than 

56 bits and up to 64 bits) are stored in the third-level table 

(TLT). The reason to layout lookup tables in this way is to 

put the most likely prefix distributions in the second-level 

tables for parallel accesses. The specifications of the table 

entries are shown in Figure 2. 

 

3.1 Address Lookup and Entry Insertion 

When an IPv6 destination address is presented to the 

address lookup scheme, the following steps are taken:  

I.  Use the TLA field of the destination IP address as the 

index to access the TLAT table. The result is either the 

base address (x) for the second-level tables or the 

output port identifier. It depends on the number of TLA 

ID to decide the bit length of (x). In the simulation 

result, the bit length of the base address (x) is 8. 

II. For the former, the base address is concatenated with 

the following numbers respectively: (1) with the 

number from {S1, S2}, (2) with the CRC output that 

encodes {S1, S2, S3}, and (3) with the CRC output that 

encodes {S1, S2, S3, S4}. The three resultant addresses 

are used in parallel to access the SLT40, SLT48, and 

SLT56 respectively. The outcome is either the longest 

prefix match found in the second-level tables or the 

base address (y) for the third-level table. 

III. For the later, depending on where the base address is 

obtained (from SLT40, SLT48, or SLT56), it is 

concatenated with the respective segment ({S3}, {S4}, 

or {S5}). 

IV. Last, the output port is found in the TLT table. 

Suppose that a prefix P is to be inserted into the table. 

If P conforms to the length of the TLA field, its output port 

identifier is stored in the TLAT table. Otherwise, the 

addressed entry is written with the assigned base address 

that is used for accessing the second level tables for 

parallel lookup. The SLT40 table contains all route prefixes 

that are greater than 24 bits and up to 40 bits. Prefix length 

in this range is allocated lengthprefix _40
2

−  entries in the SLT40 

table. This is because the number of the don’t-care bits is 

40 - prefix length, considering the way SLT40 is addressed. 

When the prefix length is 40 bits, only one entry (20) is 

allocated for it in STL40. Consequently, an entry 

corresponding to one of the lengthprefix _40
2

−  entries in SLT40 

shares the single 24-bit prefix in the TLAT table. For 

example, the route prefix 20:01:00:13/32 is allocated 256 

entries (240-32) in SLT40, ranging from 01:13:00 to 

01:13:FF (concatenating the base-address 01 obtained from 

TLAT with 13:00 which comes from segment {S1, S2} in 

the route prefix). 

If the prefix length is greater than 40 bits and less than 

48 bits, it is stored in the TLT table and there are 
lengthprefix _48

2
−  entries associated with the route prefix in TLT. 

In this case, the addressed entry in SLT40 contains the base 

address for these entries in TLT. For a prefix length that is 

greater than 48 bits and less than 56 bits, lengthprefix _56
2

−  

entries are allocated in the TLT. The base address is 

obtained from SLT48. To access the SLT48 table, the 

address is obtained by concatenating the base address from 

TLAT with the CRC output that encodes {S1, S2, S3}. 

Similarly, if the prefix length is longer than 56 bits and up 

to 64 bits, there are lengthprefix _64
2

−  entries allocated in the 

TLT table. In this case, the base address for the TLT table is 

obtained from the SLT56 table. The parallel CRC encoder 

uses X16 + X12 + X4 + X1 + 1 as the polynomial. 

 

3.2 Lookup Table Initialization and Update 

In this section, we present the process for filling up 

the lookup tables based on a list of given prefixes. The 

example shows how a control processor establishes the 

data structure for the given prefixes, initializes the lookup 

tables, and maintains the data structure for the insertion 

and deletion of entries in the lookup tables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Entry format of the lookup tables 
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Route prefixes

A = 20:02:00/24

B = 20:03:00:C0/29

C = 20:05:00:B4:51:25/48

D = 20:12:00:01:E4:5F:60/51

E = 20:12:00:01:E4:5F:70/52

F = 20:12:00:01:E4:5F:60:6E/63

A

B

C

D

Null

Rule for Node C:

Prefix64: 20:05:00:B4:51:25:00:00

Length: 48

Limit: 00:01

Hop: C

Rule for Node D:

Prefix64: 20:12:00:01:E4:5F:60:00

Length: 51

Limit: 256 - 51 = 00:20

Hop: D

Rule for Node B:

Prefix64: 20:03:00:C0:00:00:00:00

Length: 29

Limit: 240 - 29 = 08:00

Hop: B

Rule for Node A:

Prefix64: 20:02:00:00:00:00:00:00

Length: 24

Limit: 1

Hop: A

A B

Null

C

D

E

Rule for Node D:

Prefix64: 20:12:00:01:E4:5F:60:00

Length: 51

Limit: 00:10

Hop: D

Rule for Node E:

Prefix64: 20:12:00:01:E4:5F:70:00

Length: 52

Limit: 00:10

Hop: E

D20:12:00:01:E4:5F:70

E

20:12:00:01:E4:5F:7F

20:12:00:01:E4:5F:60

Address range due to doǹ t care bits

The preprocess function run by the control processor 

constructs the linked-list data structure that is used to 

initialize and update the lookup tables when a route change 

occurs. To do this, the control processor issues the update 

commands to the interface unit of the lookup engine. Each 

node in the linked-list has four items: prefix64, length, limit, 

and hop. For instance, if prefix Y is 20:12:00:01:E4:5F:70/52, 

then the prefix64 field is 20:12:00:01:E4:5F:70:00, padding 0 

to 64 bits. The length field is simply the prefix length. The 

limit field represents the number of entries to be allocated 

in the chosen table, in this case 256 - 52 entries in TLT, and 

the hop field is the output port identifier.  

For longest prefix matching, the preprocess function 

checks if the address range of an input prefix overlaps with 

the existing one in the lookup table. For a received route 

prefix whose address range is not overlapped with existent 

prefixes in the linked list, a new node is directly 

constructed for the input prefix. Otherwise, the preprocess 

function checks whether the input prefix and the 

overlapped prefix belong to the same second-level table. If  

 

Figure 3 The linked list after prefix A, B, C, and D are inserted 

 

 

Figure 4 Prefix E is overlapped with the prefix D; both of which are 

accessed via the same second-level table: SLT48 

they are in the same second-level table, the preprocess 

function splits the overlapped address space at the boundary 

for longest prefix matching. If the two overlapped prefixes 

are not accessed from the same second-level table, the 

preprocess function relocates the overlapped blocks of the 

shorter prefix in the TLT table to allow the access from the 

second-level table assigned according to the longer prefix. 

As an example, assume that there are six prefixes: A, 

B, C, D, E, and F shown in Figure 3 to be prepared for the 

lookup table. Initially, a new node for prefix A is 

constructed and inserted into the linked list. Since the 

address ranges of prefix A, B, C, and D are not overlapped 

with each other, prefix B, C, and D are inserted into the 

linked list with the same procedure used by prefix A. For 

the time being, the resultant linked list is shown in Figure 3. 

The process proceeds with prefix E which is overlapped 

with prefix D. Since their lengths are greater than 48 bits 

and less than 56 bits, they are accessed from the same 

second-level table, SLT48. For longest prefix match, the 

overlapped address space from 20:12:00:01:E4:5F:70: to 

20:12:00:01:E4:5F:7F: is now assigned to prefix E and 

consequently prefix D is revised. The number of entries 

allocated to E in TLT is 16 ( 5256
2

− ). Figure 4 illustrates the 

resultant data structure.  

Because of its prefix length, the last prefix F, which is 

overlapped with prefix D, is accessed from SLT56 different 

from the shorter prefix D. To include prefix F in the lookup 

table, the 28 entries out of prefix D that covers prefix F are 

made accessible from SLT56 instead of the SLT48 table. 

The complete lookup table is now shown in Figure 5 in 

which the dotted blocks are the moved entries for prefix D. 

 
 

Content:
SLT40

SLT48

SLT56

Entry Number: Content:
...

C001:F1:00

...

...

Entry Number: Content:

0102:BE:7F

...

TLT

Entry 

Number: Content:

D

...

D

D

E

D

00:00:00 + 60

...

F

F

00:00:00 + 61

00:00:00 + 7F
...

...

D
...

...

Entry 

Number: Content:
...

A1

00

10

TLAT

00:02:00
...

00:03:00

00:12:00

00:05:00
...

...

...

...

...

20

02:E7:35
...

10

00:01:00 + 6E

00:01:00 + 6F

D

D

D

D

00:01:FF

00:01:70

00:01:6D

00:01:00

Routing Entries

A = 20:02:00/24

B = 20:03:00:C0/29

C = 20:05:00:B4:51:25/48

D = 20:12:00:01:E4:5F:60/51

E = 20:12:00:01:E4:5F:70/52

F = 20:12:00:01:E4:5F:60:6E/63

D00:00:00 + 6F

E

E

E

00:00:00 + 70

...

00:00:00 + 71

Entry Number:

B1

...

B1

B1

B1

B1

B1

00:C0:00

...

00:C0:00 + 1

00:C0:00 + 7:FE

00:C0:00 + 7:FF
...

...

 
 

Figure 5 An example shows the insertion of routes in the lookup tables for 

the given prefixes 
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4 System Implementation 
 

First, we present the implementation of the lookup 

engine in a multi-cycle design. Figure 6 shows the multi- 

cycle datapath and the finite state machine (FSM) for the 

design. The lookup FSM transfers to S1 state as the 

incoming packet is received. In S1 state, the TLAT table is 

accessed. If no LPM is found, the control transits to S2 

where all the second-level tables are accessed in the same 

cycle. Similarly, if no LPM is found, the state transits to S3 

for the lookup in the third-level table. During the lookup in 

the second-level table, if a CRC collision is found from the 

addressed entry, the state transfers to S4 to activate the 

correction operation that directs the access to the small 

table inside the unit. This table maintains the mapping 

between the collided address and its next hop identification. 

 

4.1 Pipeline Design 

The development of the pipeline micro-architecture 

for the PML scheme is based on the lookup procedure 

depicted in Figure 6. The PML pipeline consists of five 

stages, which are TLAT lookup, address queue, second 

lookup, third lookup, and write back. Figure 7 illustrates 

the pipeline architecture.  

At the TLAT lookup stage, the TLA field of the 

incoming destination address issued by the lookup/update 

dispatch unit is used to consult the TLAT table. The output 

result, which is either the next hop or the base address, of 

the first stage is then written into the queue stage. The 

address queue is a circular queue which buffers lookup 

requests in case of stalling due to the on-going update 

process. Each queue entry has three fields for the status, 

incoming destination address, and the output result from 

 

 

Figure 6 Multi-cycle implementation and its finite state machine 

TLAT. The status field includes the following states: clear 

(empty queue entry), wait (waiting for the result of address 

lookup), finish (destination address lookup in the queue 

entry is finished), and block (the entry is in block state 

before the update of the lookup table is completed). The 

allocation of the address queue is governed by the 

head-index and tail-index pointers. If there is a new 

destination address received from the previous stage, the 

new address is stored into the corresponding entry pointed 

to by the tail-index pointer and the status is set as wait. The 

entry pointed to by the head-index is chosen for address 

lookup. When the blocked entries are released, they have a 

higher priority than the other entries to enter the next stage. 

The third stage of pipeline is the Second Lookup stage 

where all the second-level tables are accessed simultaneously 

by using the respective concatenated addresses. If there is a 

CRC collision at the third stage, the collision entry is 

bypassed to the next stage.  

The fourth stage is the Third Lookup stage that uses 

the pointer from the previous stage to access the third-level 

table or performs the CRC correction that is the same as 

the operation in the S4 of multi-cycle implementation. 

Finally, the write back stage writes back the lookup result 

into the LPM match register and releases the entry in the 

address queue.  

 

4.2 Lookup and Update Coordination 

Updating (insertion or deletion) entries for a prefix in 

the lookup table takes a similar action depicted in Figure 6. 

For the pipeline, the update request is also issued by the 

lookup/update dispatch unit. For an update request, 

depending on the prefix, the corresponding lookup tables 

are updated accordingly. While the entries of the second- 

level and/or the third-level tables are being updated, new 

lookup requests can be queued in the queue stage. The 

circular queue at the second stage of the pipeline is used to 

mitigate the performance loss due to route update. The 

circular storage can buffer the lookup requests blocked by 

 

Address  Queue Second  Lookup Third Lookup Write Back

SLT40

SLT48

SLT56

TLT

Destination IP 

Queue

Match 

LPM

Match LPM

::
Lookup/Update 

dispatch

TLAT Lookup

CRC 

Correction

TLAT

 

Figure 7 The pipeline architecture supporting IP address lookup and 

update 
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Length of the parallel CRC output

Test Pattern B Test Pattern C

SLT48 (5,000 prefixes)

SLT56 (5,000 prefixes)

SLT48 (10,000 prefixes)

SLT56 (10,000 prefixes)

SLT48 (20,000 prefixes)

SLT56 (20,000 prefixes)

SLT48 (30,000 prefixes)

SLT56 (30,000 prefixes)

SLT48 (40,000 prefixes)

SLT56 (40,000 prefixes)

SLT48 (50,000 prefixes)

SLT56 (50,000 prefixes)

SLT48 (60,000 prefixes)

SLT56 (60,000 prefixes)

Table 1 Prefix length distributions 

 A (%) B (%) C (%) 

24-40 5 10 34 

41-48 15 30 57 

49-56 20 40 6 

56-64 60 20 3 

total 100 100 100 

 

the update procedure. The number of the circular queue 

entries is a factor that determines the lookup performance 

as will be shown later. 

 

4.3 Multiple-Pipeline Configuration 

To improve the throughput of address lookup, a 

system employing multiple pipelines can be used. In this 

case, the dispatch interface dispatches the incoming route 

prefix to the addressed pipeline according to the most 

significant bits of the TLA ID field. To configure this 

system, the preprocess function assigns the incoming route 

prefix to the addressed pipeline. Thus, in the linked list, a 

field called pipeline is added into the node to indicate 

which pipeline the incoming route prefix belongs to. The 

preprocess function classifies all the route prefixes by the 

TLA field of the destination address and assigns each route 

prefix to the addressed pipeline module. 

 

5 Simulation System and Results 

 
To evaluate the performance of the proposed scheme, 

we refer to the use of a synthesis IPv6 routing table [2] which 

inherits the features of IPv4 tables. Three test patterns A, B 

and C are generated and their prefix length distributions are 

shown in Table 1. Test pattern C is similar to the prefix 

length distribution from Figure 6 of [2] where /48 prefixes 

dominate. Test pattern A and B are generated for the 

comparisons of the performance. 

Our simulation system consists of the following parts. 

First, the random route prefix generator generates the route 

prefixes. Second, the route prefixes are fed into the 

preprocess function run by the ARM ADS tool kits. The 

preprocess function constructs the linked list corresponding 

to the route prefixes. Finally, the linked list is used as the 

test bench to initialize the lookup tables in the lookup 

engine which is implemented in Verilog and simulated in 

the ModelSim environment that generates the simulation 

results. Using the TSMC 0.25u technology, the achieved 

clock frequency for the PML pipeline engine is 100 MHz. 

The critical path of the pipeline is the queue stage 

assuming the memory for the lookup tables are available. 

 

5.1 Results and Discussions 

To determine the output length of the CRC module to 

be used, we evaluate the number of CRC collisions per 106 

memory entries. The simulation results are shown in Figure 8. 

Test pattern C has fewer collisions per 106 memory entries 

than test pattern A and B. For test pattern A and B, about 

one collision occurs per 106 memory entries when the 

length of CRC output is set to 13 bits. As the CRC output 

is increased to 16 bits, the CRC collision virtually ceases to 

occur. For this reason, this design proposes the use of a 

16-bit CRC output for the PML lookup scheme. 

The worst case occurs when a lookup needs to access 

the TLT. Thus, it always takes three memory accesses to 

finish address lookup in the multi-cycle implementation. 

For the pipeline implementation, the increased number of 

memory accesses does not impact the throughput.  

5.1.1 Number of Memory Accesses in Multi-Cycle 

Architecture 

For the multi-cycle architecture, the proposed scheme 

takes one to three memory accesses to complete the 

address lookup. The average number of memory accesses 

required is shown in Figure 9. For test pattern C, with less 

than two memory accesses on the average, the output port 

can be identified. In addition, we also compare the PML 

scheme with the previous work, DP-Trie [9], MultiWay 

[10], and Binary Search [11]. Achieving an average of 1.6 

memory accesses in test pattern C, the PML design has 

outperformed the rest in comparison. This result comes 

from the arrangement of the lookup tables that enable 

simultaneous accesses for the different ranges of prefixes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Collisions per 106 memory entries 
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5.1.2 Memory Requirement 

The memory requirement of the proposed scheme is 

evaluated and the result is shown in Figure 10. The total 

occupied entries take about 20 MB to 26 MB of the 

memory for 60,000 prefixes, roughly the same size with 

respect to other schemes except the DP-Trie scheme. 

Noticing the way the table address is concatenated, the 

most significant bits (x or y) are assigned by the preprocess 

function and thus one can allocate the memory entries 

linearly from the lowest address for each table. The 

utilization of each lookup table depends on the distribution 

of the prefix length, which changes with the hierarchical 

level where the switching router is used. Also it depends on 

the allocation of the prefix lengths the table covers. In 

general, the SLT40 and TLT table require a larger size 

because the prefix lengths they cover. To adapt to the 

variation of prefix distributions, a programmable technique 

can be used to configure the memory size for each lookup 

table. Consequently, the required memory space of our 

scheme does not increase significantly as the route prefixes 

is increased due to the use of the parallel CRC compression 

method.  

5.1.3 Pipeline Throughput 

For the lookup pipeline, we present the pipeline 

throughput, which is defined as the number of address 

lookups per clock cycle. The simulation results for single 

pipeline and four-pipeline systems are shown in Figure 11. 

An update operation clearly stalls the address lookup 

process in the pipeline. The number of the queue entries at 

the second stage is a significant factor that affects the 

throughput of address lookup. 
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Figure 9 Comparisons in the number of memory accesses 
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Figure 10 Comparisons of memory requirement 

We examine different entry number in the circular 

queue to observe the variation of the throughput. The 

update operations are represented by how many address 

lookups are stalled due to the update requests. For instance, 

when the percentage of the update operation is 20%, this 

indicates that for every five address lookups, there is one 

update request. In this simulation, there are 60,000 prefixes 

of test pattern C and the latency of an update is evenly 

distributed between one to 216 cycles; the latter is the worst 

case for updating the SLT40 table.  

For a four-entry circular queue, the throughput 

degrades rapidly. Examining the throughputs obtained, an 

eight-entry circular queue appears to be the cost-effective 

configuration. When updates are rare, the pipeline 

throughput is close to one for the single pipeline system. In 

the multiple-pipeline architecture where four pipeline 

modules are used, the design achieves a throughput of 

about 2.5 address lookups per clock cycle when updates 

are rare. The loss of throughput in this multiple-pipeline 

configuration comes from the fact that not every pipeline is 

used at the same time for the input steam. 

An interesting result comes up, which reveals that the 

impact of updates on the throughput for the multiple- 

pipeline configuration is decreased. This can be explained 

as follows. With multiple-pipelines, if some pipeline 

modules are halted by the update operations, others can 

continuously perform the lookup requests. Thus, the 

multiple-pipeline architecture not only extends the lookup 

ranges for the routing table but also reduces the impact of 

route updates. 

 

6 Conclusion 

 

In this paper, we propose an address lookup/update 

scheme for IPv6 system. We propose the use of three-level 

tables to cover various lengths of prefix distributions for 

the long IP address. To achieve concurrent lookups of 

different prefix lengths, we design a parallel memory lookup 

scheme by incorporating a parallel CRC compression 

mechanism to reduce the table sizes. The multi-cycle 

implementation requires only an average of 1.6 memory 

accesses for each lookup request. This lookup latency is 

 

 

Figure 11 Throughput of the route lookup engine 
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achieved without increasing the memory requirement 

compared with the previous works. 

We further present the pipeline design for the 

proposed lookup/update scheme. The five-stage pipeline 

structure naturally fits with the lookup/update process with 

the deployment of a queue stage which buffers lookup 

requests to allow table updates. Performance simulation 

shows that the number of queue entries significant affects 

the lookup throughput when frequent table updates happen. 

Using the TSMC 0.25u technology, the proposed PML 

pipeline engine with an eight-entry queue stage has achieved a 

clock frequency of 100 MHz which equivalently translates to 

a maximum of 100 × 106 lookups per second. The lookup 

rate can be further increased by using multiple pipelines. 

The evaluated four-pipeline configuration improves the 

throughput by a factor of 2.5 for sparse update arrivals. 

With multiple-pipelines, the impact of updates on the 

throughput is reduced because lookups and updates can 

perform at the same time in different pipelines. This paper 

has demonstrated a viable pipeline design that is scalable 

both to the lookups and update requests for the IPv6 

system.  

As so far, the proposed PML supports unicast address. 

However, it is easy to extend the proposed PML to 

multicast address. If the multicast address is detected, the 

Group ID address is used to perform the address lookup. 

For the lookup of Group ID address of the IPv6 multicast 

address, an additional PML set is required and the Group 

ID address is segmented to perform parallel address 

lookup. 
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