

A Packet Forwarding Method for the ISCSI Virtualization Switch

Yi-Cheng Chunga, Stanley Leeb
Network & Communications Technology,

Research & Service Center
Industrial Technology Research Institute

Tainan, Taiwan, R.O.C.
carbooky@itri.org.twa,
stanleylee@itri.org.twb

Chung-Ho Chen
Department of Electrical Engineering and
Institute of Computer and Communication

Engineering
National Cheng-Kung University

Taiwan, R.O.C.
chchen@mail.ncku.edu.tw

Abstract

We present a packet forwarding method for the
implementation of the iSCSI virtualization switch used in
the SANs. Using the existing virtualization software plus
network protocol stacks, first we build up a
network-based storage virtualization switch model in
the architecture of the symmetric approach. In
compliance with the same functionality, our method can
reduce the overheads of protocol processing by using a
packet forwarding method based on caching the
structure ID of the iSCSI session. With the Address
Translator and Duplicating Handler, our design can
also achieve the feature of storage virtualization
management. From the result of our performance
experiment, our forwarding system can achieve a higher
performance on the READ/WRITE operations by
25%~30% and reduce the CPU utilization by 10%~15%
compared to the conventional virtualization switch.

1. Introduction

 There is a tendency towards networking storage
around the developing network. Storage Area
Network(SAN)[1-2] is a topology to attach remote
storage devices such as disk arrays or tape libraries to
servers in a way that serves the clients as local attached
device. SAN is primarily used in large scale, high
performance enterprise storage operations via Fiber
Channel connecting, but the equipments to setup the
SAN is relatively expensive. The emerging internet
SCSI (iSCSI) SAN technology is expected to produce
cheaper SANs. ISCSI [3-6] is a newly developed
network protocol that specifies the access to the SCSI
storages over the TCP/IP network. Any user with an
iSCSI initiator program installed on its local computer
can access the iSCSI SAN by using the original Network
Interface Card (NIC). In the iSCSI SAN, the iSCSI
connections bring together all the individual storage
devices scattered over the IP network as a single SAN.

For the purpose of management, several
implementations, such as XIOtech [7], IBM [8], EMC
[9], etc., are made on the storage virtualization
management. For the advantage of scalability and
facility by virtualization, manager prefers to provide
user the logical capacity rather than the physical one.
Figure 1 shows the system combining the iSCSI and
virtualization technologies.

Host

Storage Storage Storage

Virtualization
Switch

Network

Host Host

Figure 1. System of a SAN with virtualization

switch

 Our purpose is to build up a virtualization switch in
the iSCSI SANs and manage the physical storages to
provide a new storage device for the hosts. Due to the
requirement of the additional software for the host by
the asymmetric approach [10], we prefer the
architecture of the symmetric approach to implement
our virtualization switch. The symmetric approach, also
known as In-band management, virtualization devices
actually sit in the data path between the host and storage.
In [11], it proposes a method to build a switch and route
subsystem to dispatch iSCSI PDUs to the processing
end nodes, but each host and storage has to apply a new
interface before it can join the subsystem. In [12], the
work has proposed a method to extract the iSCSI PDU

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.25

35

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.25

35

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

header from the TCP buffer. Recently the Microsoft [13],
Intel [14] and the University of New Hampshire [15]
have developed their own iSCSI implementations, and it
is common that the Logical Volume Manager [16] is
used for storage virtualization management. We realized
a conventional implementation of iSCSI virtualization
switch. Compared to the conventional implementation,
we proposed a new packet forwarding virtualization
switch to have the same functionality while transmitting
the iSCSI PDUs more efficiently. The rest of this paper
is organized as follows.
 Section 2 presents a conventional implementation of
iSCSI virtualization switch system. Section 3 presents
the architecture of the packet forwarding virtualization
switch system. Section 4 discusses the verification and
performance of the design. This paper is concluded in
Section 5.

2. A conventional implementation of iSCSI
virtualization switch system

 ISCSI is a network protocol that brings SCSI
commands over the IP network. Any two terminals on
the IP network can be initiator/target to each other by
installing the appropriate iSCSI modules. We attempt to
build up a storage server that plays the role of iSCSI
initiator to take those iSCSI targets as local storage
devices. At the same time, the storage server plays the
role of iSCSI target to provide the service of file sharing
for the hosts who have installed the iSCSI initiator. For
the purpose of storage virtualization, a virtualization
application is involved to help abstracting the physical
location of the data; meanwhile, it presents to the hosts
a logical space for data storage. The virtualization
system that we describe is shown in Figure 2.

Figure 2. Packet flows on a conventional

virtualization system

 Each time when a packet of iSCSI protocol has
reached the virtualization system, several processing of
protocols, including TCP, iSCSI, and SCSI, have to be
done before the true data can be extracted. After the
converting of logical locations to physical ones, the
virtualization system has to find a way to reach the

location of physical space. Consequently, the data (or
command of data requisition) has to be transformed into
the type of SCSI command with payload (if any), and
next a new iSCSI header is generated and appended to
the whole data to become a new iSCSI Protocol Data
Unit (PDU). Finally, the iSCSI PDU is transmitted to
the storage with the interface of iSCSI target over the
TCP/IP protocol. The response of the storage will go the
same way back to the storage server, and further back to
the host. It seems that there are many unnecessary
processes along the packet flows from beginning to end.
We propose a packet fast forwarding method to append
to the conventional virtualization system, called fast
path, and we regard the packet flow on the conventional
virtualization system as a slow path.

3. Architecture of the packet forwarding
virtualization switch system

 Figure 3 shows the packet flows on the virtualization
switch with packet forwarding mechanism. The
forwarding mechanism starts to handle the incoming
iSCSI PDUs as long as the iSCSI session reaches the
status of full feature phase (FFP). On the virtualization
switch, those iSCSI PDUs that follow the last successful
login PDU are transferred within the iSCSI layer
without the process of protocols above the iSCSI layer.

3. Packet flows on the virtualization

switch with packet forwarding mechanism

3.1 Overview of the Forwarding System

 Figure 4 shows the software architecture of the packet
forwarding system. The system works in the middle of
the two sides of TCP connections from host and storage.
ISCSI Protocol Data Units (PDUs) are transferred
directly between a pair of two connections without any
additional process of header decomposing or rebuilding.
Also, the payloads of the iSCSI PDUs are transferred
under the TCP layer, no extra operation of data copy is
required. The system includes several functional blocks:
the Header Extractor, the Dispatcher, the Address
Translator (AT), the PDUs Duplicating Handler (PDH),
the Data mover, and the Header adaptor. The Host

3636

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

iSCSI functional block represents the conventional
functionality of iSCSI virtualization system which is
discussed in section 2.

3.2 The Header Extractor

 The Header Extractor is the first functional block in
the forwarding system. By extracting the size of the
iSCSI header only, the duty of the Header Extractor is to
generate a descriptor about the incoming iSCSI PDU
including the fields of a pointer to the header, the
connection ID, and the number of virtual LUN, and then,
the descriptor will be pushed into a descriptor queue.
Our implementation of the Header Extractor is actually
a thread running on the operating system. The thread is
spawned at the time when an iSCSI session has reached
the FFP. The numbers of how may threads depend on
the connections which come from the hosts.

Figure 4. Architecture of the packet forwarding
system

3.3 The Dispatcher

 Figure 5 shows the design of the Dispatcher. The
purpose of the Dispatcher design is to classify those
packets according to the type of SCSI commands. The

types of common READ/WRITE SCSI commands are
passed to the Forwarding Unit, while the others are sent
back to the slow path. The purpose of the descriptor
queue design is to store the descriptors that may come
concurrently from two different threads of Header
Extractor.

Figure 5. The software design of the Dispatcher

3.4 The Address Translator

 The Address Translator (AT) plays the role of
converting the logical locations to physical ones. The
functionality of the AT is the same as the virtualization
software does, the difference is that it has not only the
simplest feature that converts the access address from
logical to physical, but also it can be run independently
without any other configuration tools.

3.5 The PDUs Duplicating Handler

 The functional block of PDUs Duplicating Handler
(PDH) has two major jobs. One job is to build the
relationship between the two sides of host and storage.
The second one is to deal with the problem whenever
the data of a single request is spread over two more
physical locations. The two main functions are
explained below:
 (1) The forwarding unit has the capability of
transferring the iSCSI PDUs between two certain iSCSI
sessions. The first iSCSI command request of a
READ/WRITE transaction must be issued from the host
side, and the data response to this command comes from
the storage side. During the communication of the entire
transaction, the rule of packet transferring must be held
by an entry that is pending in the Dynamic Session
Mapping Table (DSMT). Figure 6 shows the fields of
the mapping entry in the DSMT. Each entry in the
DSMT stands for a task that is proceeding between the
host and storage. The entry contains the session ID and
ITT number of both sides, and an additional field is
added with the v-bit set to represent the mapping
relationship as one-to-one mapping or not. The

3737

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

forwarding unit may encounter a situation that the host
issues a single access of data that the required data is
spread over two different physical regions. The second
main function of the PDH is going to solve this
problem.

Figure 6. The DSMT in the Forwarding Unit

 (2) When an iSCSI header is passed to the PDH, the
virtual access location and access length of the SCSI
command are extracted to be the inputs for the Address
Translator (AT). After the converting of AT, the virtual
access location and length are resolved into physical
ones, and a great care must be taken if the result turns
out to be two more physical locations over the different
iSCSI sessions. For this situation, one command request
must be taken apart into two requests for the data.
Figure 7 illustrates that one request is split into two
corresponding mapping entries by the PDH, and finally
these mapping entries are added to the DSMT. On the
DSMT, duplicating entries from a single request can be
recognized by the value of v-bit at the end of the entry.

Figure 7. Two entries from one single request

 After the duplicating process of PDH, the transaction
of a single request on the forwarding system is showed
in Figure 8. When a request comes from the client side
that actually contains two physical locations (Block
A+B), it will be separated into two requests for the two
different physical locations, and then they will be issued
to the storage side one by one. By the feature of the
PDH, the client will get the same response as issuing an
access to a single storage device whenever it generates a
request to the forwarding system.

3.6 Header adaptor

 The header adaptor is designed to form a legal iSCSI
header that ready to be transmitted. By the information

of DSMT, the header adaptor can find the structure of
iSCSI session, and it can get enough information to
carry out the replacements for several fields on the
iSCSI header.

Figure 8. The transaction of a single request to
two targets

3.7 The Data mover

 The data mover is designed to generate the arguments
for the need of TCP socket transferring. It is activated
by the PDH after the header adaptor has finished the
transmission of its new iSCSI header. The payloads that
stay at the TCP socket buffer will be redirected to be the
transmitting data by adapting the receiving arguments
for transmitting ones.

4. Verification and Performance Evaluation

 In testing environment, all the hosts with different OS
could access LUN correctly as long as they have
installed the iSCSI initiator driver, and the packet
forwarding virtualization switch could control the
various storage systems well. This proves that the
forwarding switch is compatible with multi OS and with
various storage. To verify the functionality of our design,
we evaluated the performance of the packet forwarding
system with the iometer, which is a standard benchmark
used for measuring I/O performance. It can measure the
READ/WRITE performance in a sequential/random
manner and test the I/O latency. The software iSCSI
virtualization switch runs on a system illustrated in Table
1. We mapped one disk to one host, and the host issued
random read/write commands with different data block
sizes to the remote disks. The two implementations,
conventional and forwarding, were under test, and an
end-to-end implementation was also shown to indicate
the best performance between the host and disk by
connecting each other directly without any server or

3838

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

switch involved in its data path. Figure 9 shows the read
throughput of the three implementations, and Figure 10
shows the write results.

Table 1. Measurement Environment for
Software iSCSI virtualization switch

Host CPU: Pentium IV 2.8GHz, 1GB
memory, Windows XP,
Microsoft iSCSI initiator 1.06

Storage CPU: Pentium IV 2.8GHz, 1GB
memory, Fedora 1 default Kernel
2.4.22, unh-iscsi-target 1.5.03

Virtualization
switch

CPU: Pentium IV 2.8GHz, 1GB
memory, Fedora 1 default Kernel
2.4.22, unh-iscsi-initiator 1.5.03,
and unh-iscsi-target 1.5.03

Network Ethernet 1Gbps

Figure 9. The read throughput

Figure 10. The write throughput

 The results show that the forwarding switch has an
average of 30% read throughput better than the
conventional switch, and a less of about 5 MB/s to
achieve the best throughput measured by the end-to-end
implementation. In the case of write test, the forwarding
switch has an about 25% throughput better than
conventional switch, and a less of about 3 MB/s to
achieve the best performance. The CPU utilization of
the two implementations is shown in Figure 11. The

CPU utilization of the forwarding system was
10%~15% lower than the conventional implementation
after the access block size is greater than 512KB. For
the results, the forwarding implementation has a higher
data throughput while having a lower CPU utilization,
proving that it can improve the performance of the
conventional virtualization switch.

Figure 11. The CPU utilization

5. Conclusion

 This paper presents the design and analysis of an
iSCSI virtualization switch. We have described a packet
forwarding method to reduce the protocol overheads of
the upper layers. First, we design a conventional
implementation of iSCSI virtualization switch. The
proposed forwarding subsystem can be easily integrated
into the contemporary virtualization switch system. Our
performance evaluation shows that the forwarding
system has increased about 30% of READ throughput
and about 25% of WRITE throughput compared to the
conventional system on the typical block size of 512kB.
The proposed forwarding system reduces the CPU
utilization about 10%~15% compared to the
conventional system.

References

[1] B.Phillips, “Have Storage Area Networks Come of Age?”
[J] IEEE Computer, vol.31,no.7, 10-12, July 1998.

[2] R. Khattar, et al., Introduction to Storage Area Network:
Redbooks Publications (IBM),1999.

[3] John L. Hufferd, ISCSI The Univeral Storage Connection,
Addison-Wesley, ISBN 0-202-78419-X, 2002.

[4] Internet Small Computer Systems Interface (iSCSI), RFC
3720, http://www.ietf.org/rfc/rfc3720.txt.

[5] Kalman Z. Meth and Julian Satran, “Design of the iSCSI
Protocol”, Proceedings of the 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and
Technologies (MSST’03).

[6] Mallikarjun Chadalapaka, “iSCSI State Diagrams”,
Networked Storage Architecture, NSSO, Rev 0.7, Jan. 07,
2002.

[7] XIOTech Corp., http://www.xiotech.com/,May, 2004.
[8] IBM Corp.

3939

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg2454
70.pdf, March 2003.

[9] EMC Corp.,
http://www.emc.com/products/storage_management/contr
olcenter/pdf/H1140_cntrlctr_srm_plan_ds_ldv.pdf, May
2004.

[10] Andr’e, B., Michael, H.V., ”Drive - Costs and Benefits of
an Out-of-Band Storage Virtualization System". In
Proceedings of the 12th NASA Goddard, 21st IEEE
Conference on Mass Storage Systems and Technologies,
College Park, Maryland, USA 2004.

[11] William Todd Boyd, Douglas J. Joseph, Michael Anthony
Ko, and Renato John Recio, “iSCSI Driver To Adapter
Interface Protocol”, US Patent # 20040049603.

[12] Shay Mizarchi, Rafi Shalom, and Ron Grinfeld, “iSCSI
Receiver Implementation”, US patent # 20030058870.

[13] Microsoft Corp, “iSCSI Software Initiator”,
http://www.microsoft.com .

[14] Intel Corp, “Intel iSCSI project”,
http://sourceforge.net/projects/intel-iscsi,2001.

[15] Ashish Palekar, “Design and Implementation of A Linux
SCSI Target for Storage Area Networks”, Proceedings of
the 5th Annual Linux Showcase & Conference. 2001.

[16] David C. Teigland, Heinz Mauelshagen, Volume
Managers in Linux, Sistina Software Inc.
http://www.sistina.com, 2001.

4040

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 14, 2009 at 02:49 from IEEE Xplore. Restrictions apply.

