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ABSTRACT 

To boost clock rate for performance goals, RISC 
cores are widely adopted in designing embedded 
systems. However the fixed-length instruction sets of 
RISC architecture have poor code density thus burden 
memory bus contention. For an embedded system, it’s 
common to have multiple bus masters connected to 
system bus and contend for bandwidth. This paper 
proposes code compression architecture to mitigate 
such conditions. The scheme we posed can effectively 
alleviate the stress on bus contention by reducing traffic 
due to program fetch. Meanwhile, the instruction cache 
can be virtually expanded to increase performance. Our 
results show that memory traffic can be significantly 
reduced without performance degradation. The 
proposed scheme achieves 47% reduction on memory 
traffic and provides 8% performance gain over the 
baseline system. 
 
 
1 Introduction 
 

Traditional embedded systems employ code 
compression to meet limited memory budget. 
Contemporary embedded design has evolved to more 
advanced pipelined processor cores with on-chip caches 
for aggressive performance goals. As manufacture 
process shrinks, memory footprint is no longer a critical 
concern of system budget. Code compression 
technology now plays the role of memory system 
optimization and power reduction. 

According to the abstract level of applying 
compression, previously announced code compression 
techniques can be classified into two categories:   
instruction-level and post-compilation compression 
techniques. The former is actually a design refining of 
existing processor architecture which extracts a new 
instruction set from the origin one and re-encodes them 
into a more compact form. Modifications on both 
compiler and processor core itself are required to 
generate and execute the compressed binaries. Famous 
examples of instruction-level compression include 
Thumb[1] and MIPS16e[2] . On the other hand, 
post-compilation schemes apply compression on 
executables generated by compiler and adopt additional 
hardware or software mechanisms for correct execution 
of compressed code. The instruction set architecture and 

compilation tool chain remain unchanged. CodePack [3] 
is the most well-know industrial example of 
post-compilation schemes that IBM introduce on 
PowerPC 400 series embedded processor. 

 

 
 

Figure 1.  Decompression Architectures of 
Post-compilation scheme 

 
 

In this paper, we propose code compression 
architecture of post-compilation scheme. Our work 
differs from CodePack in several aspects. CodePack 
utilizes Huffman coding and pre-cache architecture [4] 
which virtually uses instruction cache as buffer of the 
hardware decompression unit. The scheme we propose 
introduce a simple dictionary-based coding for lower 
decompression overhead and post-cache architecture 
for better cache utilization. As shown in Figure 1 the 
post-cache architecture has the benefit of virtually 
expanded instruction cache because more instructions 
can be cached in compressed form. However with a 
decompression unit placed between cache and processor 
core, the fetch latency is sure to increase. We trade 
compression ratio with fetch latency by using a 
fix-length dictionary-based compression algorithm 
similar to [5]. A subset of the dictionary called “fast 
dictionary” resides in the decompression unit for fast 
access. Under a fast-dictionary hit, the decompressing 
process only invokes one simple table look-up which 
has the same latency as a cache hit.  
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The remainder of this paper is organized as follows. 
Section 2 describes some common issues of code 
compression and the solutions we pose. The overview 
of all components and system architecture of our work 
are introduced in Section 3. Section 4 first presents 
evaluation methodology and simulation environment 
then analyze the experimental results. Finally we 
summarize our contributions in Section 5. 

 
2 Code Compression Issues 
 

This section presents some common issues of code 
compression and the solutions we proposed to 
accommodate them. For a code compression system to 
function efficiently there would be some constraints on 
the compression algorithm chosen to implement. 
Another fundamental issue is the addressing problem of 
compressed code, since the addressing space is 
compressed with the code itself. Finally for a 
Harvard-architecture processor, some data access of 
load instructions will cause hazards. We name this kind 
of hazard as inline data access because it occurs when a 
load target lies inside the text section but not the data 
section. The following paragraphs will discuss the 
compression algorithm of our system and then present 
the techniques we employed to properly adjust fetch 
address and resolve the inline data hazard. 

 
2.1 Compression Algorithm 
 

Traditional algorithm for data compression has 
focused on compression ratio which can be translated as 
the space saving by compression. Much of these 
algorithms can only decompress sequentially. (e.g. you 
have to decompress the whole text file in order to 
extract one paragraph) As the behavior of a program is 
surely non-sequential when branch instruction is taken, 
the algorithm must be able to decompress from any 
place of the compressed code rather than only from the 
beginning. Such random access behavior of program 
and the need to decompress on-the-fly make the 
well-know Ziv-Lempel family algorithms [6] futile. 

Dictionary-based algorithm inherently supports 
random access of compressed content since it does not 
depend on correlation of adjacent data to decode. 
Various code compression systems of dictionary-based 
scheme have been proposed in the literature [4, 5, 7] 
including CodePack[3]. Our design differs from 
previous works in that we try to reduce memory traffic 
while providing even better performance than original 
system. We suppose code compression can provide both 
memory traffic reduction and performance increment by 
exploiting the cache expansion property of post-cache 
architecture. Hardware simplicity and decompress 
efficiency are considered more important than 
compression ratio in our opinion. Therefore we devise 
our system using a 16-bits fixed-length encoding 
scheme of which reasons are stated as follows. 

Repetition of object code encoding is the theoretical 
basis of dictionary-based schemes. All the repeated 

occurrence of the same instruction will be replaced by a 
shorter code word. As Luca et al. surveyed in [5], the 
static entropy of 10 embedded programs average 
smaller than 12 bits and use up to 14 bits of fixed 
encoding length. This means for program with K 
distinct instructions, log2(K) < 14 for all test program in 
[5]. Our analysis on MiBench [8] suite yields a slightly 
different result.  
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Figure 2.  Distinct Instruction Encoding 
Distribution 

 
Figure 2 shows the distinct instruction counts of 18 

test programs from MiBench. Most testbenches have 
instructions below 20,000 and the ghostscript has more 
than 50,000 distinct instructions. At least 16 bits must 
be employed to encode all distinct instruction patterns. 
Another fact we can derived from Figure 2 is that, on 
average, only 15% of instructions produced by compiler 
(below 3,000 instructions) are active during program 
execution. This fact means only a small portion of the 
dictionary needs to be accessed by decompression 
hardware during program execution. If the dictionary is 
properly “cached” closed to the processor, the impact to 
fetch latency due to decompression overhead will be 
significantly diluted. 
 
2.2 Fetch Address Adjusting 
 

 
Figure 3.  Compressed Code and Address Space 

 
The compressed instructions occupy less space in 

memory than original ones as Figure 3 shows. The 
processor core must function correctly without knowing 
addressing space of a program is compressed. Therefore 
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the address generate from the fetch stage of processor 
must be intercepted and adjusted to proper access the 
compressed program. Wolfe and Chanin proposed an 
address translation scheme called LAT in [9]. LAT is a 
table much like paging table of virtual memory and 
needs an address translation buffer called CLB (which 
acts like TLB). Their scheme is capable of generating 
non-regular compressed addresses of variable-length 
code word systems such as CodePack. However LAT is 
dependent on size of cache line and only applicable in 
pre-cache architecture.  

The address adjusting for a fixed-length code word 
compression algorithm is much easier and can be 
implemented with simple combinatorial circuits as 
follow formula: 

 
compressed_address = base_address + 
(origin_address – base_address) × compress_ratio 
 
where base_address is the text section start address, 
origin_address is the address generated by processor 
and the compress_ratio equals to code word length 
divide by instruction length. (e.g. in our case, the 
compress_ratio = 16/32 = 0.5) Depending on different 
compress_ratio, the address generated from the 
equation may not be aligned to byte boundaries, and it 
might be necessary to apply additional bit masks to 
locate the code word. 
 
2.3 Inline Data Access 
 

There are some data such as initial value of loop 
counter or stack base address often reside in the text 
section of binary image. These read-only values are 
often placed below the basic block boundaries where 
they can be loaded with small offsets relative to 
program counter as Figure 4 depicts. Such data 
embedded inside text section will be considered 
instructions and compressed like other instructions, so 
not only their addresses are shifted but also the actual 
values will be replaced by compressed code words. 

 

 
Figure 4.  Example ARM Assembly Code of Inline 

Data Access 
 

It’s obvious these data will be filled into instruction 
caches with other instructions in compressed form. But 

it would be hazardous for processor to access theses 
data directly because load requests directly go to data 
cache which contains only other uncompressed data of 
program. An additional hardware comparator which 
checks the load request addresses is deployed to filter 
out inline data accesses. Those load requests with target 
address located in text section will be intercepted and 
perform address adjusting and decompression. Other 
load or store requests will be simply bypassed to data 
cache.  
 
3 System Architecture 
 

Figure 5  provide an overview of our system.  
The components surrounded by dash line are hardware 
components. The colored blocks are data modified or 
components integrated due to code compression. A code 
compressor is developed to parse the original ELF file 
generated from GNU tool chain and compresses the text 
section of it. Note the data section is left uncompressed 
since in most cases the input to the program is unknown 
at compilation time. The new text section image 
generated by compressor contains the compressed 
instructions and the dictionary used to decode it. As 
previously mentioned the decompression unit is placed 
between processor and cache memories. The 
decompression unit shares the same main memory bus 
interface with cache system.  

 

Figure 5.  System Overview 
 

3.1 Decompression Unit 
 

The block diagram of decompression unit is 
depicted in Figure 6. An instruction buffer is used to 
hold multiple compressed code words of sequential 
addresses. Another buffer called “inline data buffer” 
holds the recently used inline data to eliminate inline 
access penalty. We adopted a fast dictionary similar to 
[5] for fast decompression, and further improved its 
structure by integrating a dynamic table in it. The 
intention of fast dictionary is to store the most 
frequently executed instructions near the processor for 
fast decompression. 
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Figure 6.  Block Diagram of Decompression Unit 
 

In the origin design, the contents of fast dictionary 
are obtained by running trace analysis of different 
benchmarks and are fixed after generation. The fast 
dictionary with fixed contents, we called it static table, 
exhibits limited adaptability. We integrated a dynamic 
table to adapt temporal locality of instruction fetch. The 
dynamic table behaves like a fully-set associative cache 
with a FIFO replacement policy (refer to Figure 7). As 
the program proceeds, the contents of dynamic table are 
refreshed every time a fast dictionary miss occurs.  

 

 
Figure 7.  Mapping Relation of Static Table and 

Dynamic Table 
 
3.2 Decompression Flow 
 

After the compressed program is loaded into 
memory and decompression unit is initialized, program 
execution starts. The processor core and cache memory 
act as if the code were not compressed. The processor 
generates uncompressed address requests and receives 
decompressed original instruction and data. Also, the 
instruction cache receives altered fetch address and feed 
compressed instructions to decompression unit after 
transferring them from main memory. The 
decompression unit acts as a proxy to both sides, 
filtering all requests from processor and generate proper 
commands to memory systems.  

Figure 8 shows two major work flows carried out 
in decompression unit. Figure 8a presents the process 
of decompressing instruction corresponding to the left 
half of Figure 6. The instruction buffer stores 

consecutive 16 bytes of compressed instructions for fast 
dictionary lookup. As mentioned the static table inside 
fast dictionary contains fixed entries of most frequently 
fetched instructions while the dynamic table collects the 
recently used ones. The contents of the two tables are 
exclusive to each other and a fast dictionary miss is 
generated when neither table contains the information to 
decompress. Upon a fast dictionary miss the slow 
dictionary will be accessed to retrieve original 
instruction and the dynamic table will be updated. 
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Figure 8.  Decompression Flowchart 

 
The inline data access hazard described in 2.3 is 

handled with hardware components depicted in the right 
half of Figure 6. Since only load instructions may 
induce inline access, all the store requests are directly 
bypassed to data cache and only load requests are 
checked. Inline access is checked by comparing the 
target address of load instruction to the text section 
boundary address. If the load target is affirmed as an 
inline datum the inline data buffer will be accessed 
otherwise the load request will be bypassed to data 
cache. The inline data buffer has structure similar to 
branch target buffer and stores the original address and 
corresponding inline datum for fast access. As Figure 
8b depicts, if the access to inline data buffer is a miss, 
the compressed inline datum will be read using adjusted 
address and a slow dictionary lookup will be issued. It’s 
obvious an inline data buffer miss will incur two 
memory transfers, which are expensive overhead and 
should be avoided. In our work the buffer contains 64 
entries to meet the inline data access needs. 

 
4 Performance Analysis 
 

This section presents the methodology and metrics 
we used to evaluate the performance of our design. The 
code compression architecture we proposed is applied to 
an ARM platform. Test benches selected from 
MiBench[8] are compiled with GNU tool chain then 
further compressed with the compressor we developed. 
A cycle-accurate processor simulator is used to execute 
the compressed programs and generate performance 
reports. Two metrics, namely IPC (instruction per cycle) 
and memory traffic, are used to evaluate our design.  
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4.1 Simulation Environment 
 

A modified version of SimpleScalar-ARM[10,11] is 
used to execute the compressed program and model the  
additional fetch latency of code compression 
architecture. The architectural parameters listed in 
Table 1 are modeled after Intel’s SA-1100 StrongARM 
embedded processor except cache sizes. The instruction 
cache size is intentionally reduced to emphasize the 
effect of code compression.  
 

Table 1.  Simulator Configuration 
 

Fetch Queue size 8 
Issue Width 2 
Decode Width 1 
Commit Width 2 
Memory Access Latency 64 cycles 
Memory Bus Width 4 bytes 
Integer ALU 1 
FP MUL 1 
FP ALU 1 
Branch Prediction not taken 
I-Cache 4 KB / line size=16 bytes / 

direct map 
D-Cache 8 KB / line size=16 bytes / 

direct map 
Instruction Buffer size 16 bytes 
Inline Data Buffer size 64 entries 
Static Table Size 256 entries 
Dynamic Table Size 256 entries 
Instruction Buffer Miss Penalty 1 cycle (I-Cache hit) 

64 cycles(I-Cache miss) 
Fast Dictionary Miss Penalty 64 cycles 
Inline Data Buffer Miss Penalty 128 cycles 

 
The colored columns in Table 1 are the parameters 

of the decompression unit. The miss penalties listed 
above do not include the delay due to bus contention 
failure. However the bus arbitration and contention 
behaviors are correctly modeled in the simulator, so the 
actual latencies collected in our result are possibly 
longer than listed. The sizes of dynamic and static table 
are selected based on result of preliminary experiment 
on fast dictionary structure. Our result shows that for a 
total of 512 table entries, the static/dynamic allocation 
of 256/256 has best adaptability throughout all 
benchmarks. 

To evaluate the relative performance of memory 
traffic and IPC, all benchmarks are executed on original 
SimplScalar-ARM with the same configuration listed in 
Table 1 to collect baseline statistics of original system. 
 
4.2  Simulation Result: Memory Traffic 
 

In this paper we intend memory traffic as the whole 
amount of memory transfers induced by instruction 
fetching. For the original system only instruction cache 
misses will incur memory transfer, but for the 
decompression-on-fetch architecture we devised, two 
additional overhead will be accumulated: fast dictionary 
miss and inline data buffer miss. The relative memory 
traffic is obtained from the following formula: 

 
relative memory traffic = 

 
————————————————————————— decomtraffic of compressed system + pression overhead

traffic of original system  
 

All traffics are measured with the number of word 
transfers on system bus since it’s common for such 
systems to have bus width of 32 bits. For example, a 
cache miss induces 4 word transfers to fill the 16-byte 
cache line while an inline data buffer miss induces 2 
word transfers, one for compressed datum load and the 
other for slow dictionary lookup. 
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Figure 9.  Relative Memory Traffic 

 
In Figure 9 we can see instruction cache miss times 

of all benchmarks are reduced. Most benchmarks (14 
out of 18) still has more than 38% memory traffic 
reduction after accumulating the decompression 
overhead. The memory traffic summation of all 
benchmarks are calculated in both compressed and 
baseline system to derive averaged relative traffic. The 
average traffic ratio over all benchmarks is 52.38%, i.e. 
47.62% memory traffic reduction on average. 
 
4.3  Simulation Result: IPC 
 

The IPC relative to original system is defined as:  
 
 

relative IPC = ————————————— 
IPC of compression system

IPC of original system 
 

As we supposed, the decompression overhead will 
be redeemed by the virtual expansion of cache capacity. 
In Figure 10, most benchmarks (15 out of 18) achieve 
more than 80% relative IPC and 8 of them even 
outperform the original system. The average IPC of all 
programs is derived from the following formula: 
 
 

average IPC = ————————————— 
Total instruction count 

Total cycle count  
 
where total instruct count is the summation of 
committed instruction count from all executed 
benchmark, and total cycle count is the accumulated 
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cycle count of all executed benchmark. The average IPC 
reaches 108% of original system and indicates a 
speedup of 1.08 over original system.  
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Figure 11.  Relative IPC 

 
4.4 Hardware Cost Estimation 
 

The majority of the decompression unit is memory 
component like cache or buffer. So we tried to estimate 
the approximate hardware cost of the decompression 
unit in the form of required memory capacity. The first 
row of Table 2 lists our baseline for evaluation and its 
cost is estimated using the capacity summation of tag 
array and data array of the 4K instruction cache. Our 
code compression system is labeled 4K+cc in the table 
and the cost is estimated using capacity accumulation of 
instruction buffer, inline data buffer, fast dictionary and 
4K cache. Additional performance reports of the 18 
benchmarks are generated using an 8-KB instruction 
cache configuration and the average data are collected. 
The last row of Table 2 lists the cost and performance 
of the 8K-cache system. 
 

Table 2.  Cost and Performance Comparison 
 Total 

Memory  
Area Cost Traffic 

Reduction 
Relative 

IPC 
4K 37,888 bits 100% 0% 100% 
4K+cc 62,466 bits 164.87% 47.62% 108.52%
8K 75,264 bits 198.65% 41.59% 131.10% 

 
From the table we can tell that our code 

compression architecture can achieve even better 
memory traffic reduction rate than a system with 
doubled cache capacity. The hardware cost of 
decompression unit is approximately 65% of a 4K 
direct-mapped instruction cache while a 8K-cache 
system needs 98% additional cost. 
 
5 Conclusion  
 

This paper proposes a scheme of code compression 
architecture to improve memory bandwidth of 
embedded systems. The devised decompression unit can 
be easily integrated into existing embedded systems 
because no modification is done on processor and cache 
interfaces. We applied it to an ARM platform and 

performed cycle-accurate performance simulation on 18 
embedded benchmarks selected from MiBench. The 
memory bandwidth is evaluated with traffic reduction 
and IPC gain. The proposed architecture achieves 
speedup of 1.08 over the baseline system and 47% 
reduction on memory traffic. For an embedded system, 
it’s common to have multiple bus masters connected to 
system bus and contend for bandwidth. Reduction on 
the memory traffic from processor can relieve the 
contention and potentially increase system performance. 
Moreover, the reduction on bus traffic also contributes 
to dynamic energy saving since the activities on bus 
lines are reduced. 
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