
Code Compression Architecture for Memory Bandwidth Optimization in
Embedded Systems

Yi-Ying Tsai, Ke-Jia Lee, and Chung-Ho Chen
Department of Electrical Engineering

 National Cheng Kung University, Taiwan, R.O.C.
{magi,over}@casmail.ee.ncku.edu.tw; chchen@mail.ncku.edu.tw

ABSTRACT

To boost clock rate for performance goals, RISC
cores are widely adopted in designing embedded
systems. However the fixed-length instruction sets of
RISC architecture have poor code density thus burden
memory bus contention. For an embedded system, it’s
common to have multiple bus masters connected to
system bus and contend for bandwidth. This paper
proposes code compression architecture to mitigate
such conditions. The scheme we posed can effectively
alleviate the stress on bus contention by reducing traffic
due to program fetch. Meanwhile, the instruction cache
can be virtually expanded to increase performance. Our
results show that memory traffic can be significantly
reduced without performance degradation. The
proposed scheme achieves 47% reduction on memory
traffic and provides 8% performance gain over the
baseline system.

1 Introduction

Traditional embedded systems employ code
compression to meet limited memory budget.
Contemporary embedded design has evolved to more
advanced pipelined processor cores with on-chip caches
for aggressive performance goals. As manufacture
process shrinks, memory footprint is no longer a critical
concern of system budget. Code compression
technology now plays the role of memory system
optimization and power reduction.

According to the abstract level of applying
compression, previously announced code compression
techniques can be classified into two categories:
instruction-level and post-compilation compression
techniques. The former is actually a design refining of
existing processor architecture which extracts a new
instruction set from the origin one and re-encodes them
into a more compact form. Modifications on both
compiler and processor core itself are required to
generate and execute the compressed binaries. Famous
examples of instruction-level compression include
Thumb[1] and MIPS16e[2] . On the other hand,
post-compilation schemes apply compression on
executables generated by compiler and adopt additional
hardware or software mechanisms for correct execution
of compressed code. The instruction set architecture and

compilation tool chain remain unchanged. CodePack [3]
is the most well-know industrial example of
post-compilation schemes that IBM introduce on
PowerPC 400 series embedded processor.

Figure 1. Decompression Architectures of
Post-compilation scheme

In this paper, we propose code compression
architecture of post-compilation scheme. Our work
differs from CodePack in several aspects. CodePack
utilizes Huffman coding and pre-cache architecture [4]
which virtually uses instruction cache as buffer of the
hardware decompression unit. The scheme we propose
introduce a simple dictionary-based coding for lower
decompression overhead and post-cache architecture
for better cache utilization. As shown in Figure 1 the
post-cache architecture has the benefit of virtually
expanded instruction cache because more instructions
can be cached in compressed form. However with a
decompression unit placed between cache and processor
core, the fetch latency is sure to increase. We trade
compression ratio with fetch latency by using a
fix-length dictionary-based compression algorithm
similar to [5]. A subset of the dictionary called “fast
dictionary” resides in the decompression unit for fast
access. Under a fast-dictionary hit, the decompressing
process only invokes one simple table look-up which
has the same latency as a cache hit.

- 236 -

The remainder of this paper is organized as follows.
Section 2 describes some common issues of code
compression and the solutions we pose. The overview
of all components and system architecture of our work
are introduced in Section 3. Section 4 first presents
evaluation methodology and simulation environment
then analyze the experimental results. Finally we
summarize our contributions in Section 5.

2 Code Compression Issues

This section presents some common issues of code
compression and the solutions we proposed to
accommodate them. For a code compression system to
function efficiently there would be some constraints on
the compression algorithm chosen to implement.
Another fundamental issue is the addressing problem of
compressed code, since the addressing space is
compressed with the code itself. Finally for a
Harvard-architecture processor, some data access of
load instructions will cause hazards. We name this kind
of hazard as inline data access because it occurs when a
load target lies inside the text section but not the data
section. The following paragraphs will discuss the
compression algorithm of our system and then present
the techniques we employed to properly adjust fetch
address and resolve the inline data hazard.

2.1 Compression Algorithm

Traditional algorithm for data compression has
focused on compression ratio which can be translated as
the space saving by compression. Much of these
algorithms can only decompress sequentially. (e.g. you
have to decompress the whole text file in order to
extract one paragraph) As the behavior of a program is
surely non-sequential when branch instruction is taken,
the algorithm must be able to decompress from any
place of the compressed code rather than only from the
beginning. Such random access behavior of program
and the need to decompress on-the-fly make the
well-know Ziv-Lempel family algorithms [6] futile.

Dictionary-based algorithm inherently supports
random access of compressed content since it does not
depend on correlation of adjacent data to decode.
Various code compression systems of dictionary-based
scheme have been proposed in the literature [4, 5, 7]
including CodePack[3]. Our design differs from
previous works in that we try to reduce memory traffic
while providing even better performance than original
system. We suppose code compression can provide both
memory traffic reduction and performance increment by
exploiting the cache expansion property of post-cache
architecture. Hardware simplicity and decompress
efficiency are considered more important than
compression ratio in our opinion. Therefore we devise
our system using a 16-bits fixed-length encoding
scheme of which reasons are stated as follows.

Repetition of object code encoding is the theoretical
basis of dictionary-based schemes. All the repeated

occurrence of the same instruction will be replaced by a
shorter code word. As Luca et al. surveyed in [5], the
static entropy of 10 embedded programs average
smaller than 12 bits and use up to 14 bits of fixed
encoding length. This means for program with K
distinct instructions, log2(K) < 14 for all test program in
[5]. Our analysis on MiBench [8] suite yields a slightly
different result.

0

10000

20000

30000

40000

50000

60000

bit
cn

ts
qs

ort
su

sa
n

cjp
eg

djp
eg

tiff
2b

w

tiff
2rg

ba

tiff
dit

he
r

tiff
med

ian

dij
ks

tra

pa
tric

ia

gh
os

tsc
rip

t
isp

ell

str
ing

se
arc

h bf sh
a crc

un
toa

st

Ave
rag

e

To
ta

l d
is

tin
ct

 in
st

ru
ct

io
ns

Active instruction Inactive instruction

Figure 2. Distinct Instruction Encoding
Distribution

Figure 2 shows the distinct instruction counts of 18

test programs from MiBench. Most testbenches have
instructions below 20,000 and the ghostscript has more
than 50,000 distinct instructions. At least 16 bits must
be employed to encode all distinct instruction patterns.
Another fact we can derived from Figure 2 is that, on
average, only 15% of instructions produced by compiler
(below 3,000 instructions) are active during program
execution. This fact means only a small portion of the
dictionary needs to be accessed by decompression
hardware during program execution. If the dictionary is
properly “cached” closed to the processor, the impact to
fetch latency due to decompression overhead will be
significantly diluted.

2.2 Fetch Address Adjusting

Figure 3. Compressed Code and Address Space

The compressed instructions occupy less space in

memory than original ones as Figure 3 shows. The
processor core must function correctly without knowing
addressing space of a program is compressed. Therefore

- 237 -

the address generate from the fetch stage of processor
must be intercepted and adjusted to proper access the
compressed program. Wolfe and Chanin proposed an
address translation scheme called LAT in [9]. LAT is a
table much like paging table of virtual memory and
needs an address translation buffer called CLB (which
acts like TLB). Their scheme is capable of generating
non-regular compressed addresses of variable-length
code word systems such as CodePack. However LAT is
dependent on size of cache line and only applicable in
pre-cache architecture.

The address adjusting for a fixed-length code word
compression algorithm is much easier and can be
implemented with simple combinatorial circuits as
follow formula:

compressed_address = base_address +
(origin_address – base_address) × compress_ratio

where base_address is the text section start address,
origin_address is the address generated by processor
and the compress_ratio equals to code word length
divide by instruction length. (e.g. in our case, the
compress_ratio = 16/32 = 0.5) Depending on different
compress_ratio, the address generated from the
equation may not be aligned to byte boundaries, and it
might be necessary to apply additional bit masks to
locate the code word.

2.3 Inline Data Access

There are some data such as initial value of loop
counter or stack base address often reside in the text
section of binary image. These read-only values are
often placed below the basic block boundaries where
they can be loaded with small offsets relative to
program counter as Figure 4 depicts. Such data
embedded inside text section will be considered
instructions and compressed like other instructions, so
not only their addresses are shifted but also the actual
values will be replaced by compressed code words.

Figure 4. Example ARM Assembly Code of Inline

Data Access

It’s obvious these data will be filled into instruction
caches with other instructions in compressed form. But

it would be hazardous for processor to access theses
data directly because load requests directly go to data
cache which contains only other uncompressed data of
program. An additional hardware comparator which
checks the load request addresses is deployed to filter
out inline data accesses. Those load requests with target
address located in text section will be intercepted and
perform address adjusting and decompression. Other
load or store requests will be simply bypassed to data
cache.

3 System Architecture

Figure 5 provide an overview of our system.
The components surrounded by dash line are hardware
components. The colored blocks are data modified or
components integrated due to code compression. A code
compressor is developed to parse the original ELF file
generated from GNU tool chain and compresses the text
section of it. Note the data section is left uncompressed
since in most cases the input to the program is unknown
at compilation time. The new text section image
generated by compressor contains the compressed
instructions and the dictionary used to decode it. As
previously mentioned the decompression unit is placed
between processor and cache memories. The
decompression unit shares the same main memory bus
interface with cache system.

Figure 5. System Overview

3.1 Decompression Unit

The block diagram of decompression unit is
depicted in Figure 6. An instruction buffer is used to
hold multiple compressed code words of sequential
addresses. Another buffer called “inline data buffer”
holds the recently used inline data to eliminate inline
access penalty. We adopted a fast dictionary similar to
[5] for fast decompression, and further improved its
structure by integrating a dynamic table in it. The
intention of fast dictionary is to store the most
frequently executed instructions near the processor for
fast decompression.

- 238 -

I-Cache

Inline Data
Buffer

Dynamic
Table

Static Table

Original
Instruction

Instruction
Address

Instruction
Buffer

Address
adjusting &

Buffer refill unit

Memory Bus

Fast Dictionary

Address
adjusting &

Buffer refill unit

Inline access
check

Load
address

Inline Data

Figure 6. Block Diagram of Decompression Unit

In the origin design, the contents of fast dictionary
are obtained by running trace analysis of different
benchmarks and are fixed after generation. The fast
dictionary with fixed contents, we called it static table,
exhibits limited adaptability. We integrated a dynamic
table to adapt temporal locality of instruction fetch. The
dynamic table behaves like a fully-set associative cache
with a FIFO replacement policy (refer to Figure 7). As
the program proceeds, the contents of dynamic table are
refreshed every time a fast dictionary miss occurs.

Figure 7. Mapping Relation of Static Table and

Dynamic Table

3.2 Decompression Flow

After the compressed program is loaded into
memory and decompression unit is initialized, program
execution starts. The processor core and cache memory
act as if the code were not compressed. The processor
generates uncompressed address requests and receives
decompressed original instruction and data. Also, the
instruction cache receives altered fetch address and feed
compressed instructions to decompression unit after
transferring them from main memory. The
decompression unit acts as a proxy to both sides,
filtering all requests from processor and generate proper
commands to memory systems.

Figure 8 shows two major work flows carried out
in decompression unit. Figure 8a presents the process
of decompressing instruction corresponding to the left
half of Figure 6. The instruction buffer stores

consecutive 16 bytes of compressed instructions for fast
dictionary lookup. As mentioned the static table inside
fast dictionary contains fixed entries of most frequently
fetched instructions while the dynamic table collects the
recently used ones. The contents of the two tables are
exclusive to each other and a fast dictionary miss is
generated when neither table contains the information to
decompress. Upon a fast dictionary miss the slow
dictionary will be accessed to retrieve original
instruction and the dynamic table will be updated.

Instruction
Address

Address
Adjusting

Instruction
Buffer hit?

I-Cache
Access &

Buffer Refill

Fast
Dictionary

hit?

Slow
Dictionary

Lookup

Static /
Dynamic

Table lookup

Update
Dynamic

Table

Original
Instruction

Yes

Yes

No

No

Load
Address

Inline Data
Access?

Bypass to
D-Cache

Inline Data
Buffer Hit?

Address
Adjusting

Access
Compressed

Code

Slow
Dictionary

Lookup

Update Inline
Date Buffer

Inline Data

No

Yes

YesNo

(a) (b)

Figure 8. Decompression Flowchart

The inline data access hazard described in 2.3 is

handled with hardware components depicted in the right
half of Figure 6. Since only load instructions may
induce inline access, all the store requests are directly
bypassed to data cache and only load requests are
checked. Inline access is checked by comparing the
target address of load instruction to the text section
boundary address. If the load target is affirmed as an
inline datum the inline data buffer will be accessed
otherwise the load request will be bypassed to data
cache. The inline data buffer has structure similar to
branch target buffer and stores the original address and
corresponding inline datum for fast access. As Figure
8b depicts, if the access to inline data buffer is a miss,
the compressed inline datum will be read using adjusted
address and a slow dictionary lookup will be issued. It’s
obvious an inline data buffer miss will incur two
memory transfers, which are expensive overhead and
should be avoided. In our work the buffer contains 64
entries to meet the inline data access needs.

4 Performance Analysis

This section presents the methodology and metrics
we used to evaluate the performance of our design. The
code compression architecture we proposed is applied to
an ARM platform. Test benches selected from
MiBench[8] are compiled with GNU tool chain then
further compressed with the compressor we developed.
A cycle-accurate processor simulator is used to execute
the compressed programs and generate performance
reports. Two metrics, namely IPC (instruction per cycle)
and memory traffic, are used to evaluate our design.

- 239 -

4.1 Simulation Environment

A modified version of SimpleScalar-ARM[10,11] is
used to execute the compressed program and model the
additional fetch latency of code compression
architecture. The architectural parameters listed in
Table 1 are modeled after Intel’s SA-1100 StrongARM
embedded processor except cache sizes. The instruction
cache size is intentionally reduced to emphasize the
effect of code compression.

Table 1. Simulator Configuration

Fetch Queue size 8
Issue Width 2
Decode Width 1
Commit Width 2
Memory Access Latency 64 cycles
Memory Bus Width 4 bytes
Integer ALU 1
FP MUL 1
FP ALU 1
Branch Prediction not taken
I-Cache 4 KB / line size=16 bytes /

direct map
D-Cache 8 KB / line size=16 bytes /

direct map
Instruction Buffer size 16 bytes
Inline Data Buffer size 64 entries
Static Table Size 256 entries
Dynamic Table Size 256 entries
Instruction Buffer Miss Penalty 1 cycle (I-Cache hit)

64 cycles(I-Cache miss)
Fast Dictionary Miss Penalty 64 cycles
Inline Data Buffer Miss Penalty 128 cycles

The colored columns in Table 1 are the parameters

of the decompression unit. The miss penalties listed
above do not include the delay due to bus contention
failure. However the bus arbitration and contention
behaviors are correctly modeled in the simulator, so the
actual latencies collected in our result are possibly
longer than listed. The sizes of dynamic and static table
are selected based on result of preliminary experiment
on fast dictionary structure. Our result shows that for a
total of 512 table entries, the static/dynamic allocation
of 256/256 has best adaptability throughout all
benchmarks.

To evaluate the relative performance of memory
traffic and IPC, all benchmarks are executed on original
SimplScalar-ARM with the same configuration listed in
Table 1 to collect baseline statistics of original system.

4.2 Simulation Result: Memory Traffic

In this paper we intend memory traffic as the whole
amount of memory transfers induced by instruction
fetching. For the original system only instruction cache
misses will incur memory transfer, but for the
decompression-on-fetch architecture we devised, two
additional overhead will be accumulated: fast dictionary
miss and inline data buffer miss. The relative memory
traffic is obtained from the following formula:

relative memory traffic =

————————————————————————— decomtraffic of compressed system + pression overhead

traffic of original system

All traffics are measured with the number of word
transfers on system bus since it’s common for such
systems to have bus width of 32 bits. For example, a
cache miss induces 4 word transfers to fill the 16-byte
cache line while an inline data buffer miss induces 2
word transfers, one for compressed datum load and the
other for slow dictionary lookup.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

bit
cn

ts
qs

ort

su
sa

n-c

su
sa

n-e

su
sa

n-s
cjp

eg
djp

eg

tiff
2b

w

tiff
2rg

ba

tiff
dit

he
r

tiff
med

ian

dij
ks

tra

pa
tric

ia

gh
os

tsc
rip

t
isp

ell

str
ing

se
arc

h
bf-

e
bf-

d
sh

a crc

un
toa

st

*av
era

ge

I-Cache Miss Fast Dictionary Miss Inline Data Buffer Miss

Figure 9. Relative Memory Traffic

In Figure 9 we can see instruction cache miss times

of all benchmarks are reduced. Most benchmarks (14
out of 18) still has more than 38% memory traffic
reduction after accumulating the decompression
overhead. The memory traffic summation of all
benchmarks are calculated in both compressed and
baseline system to derive averaged relative traffic. The
average traffic ratio over all benchmarks is 52.38%, i.e.
47.62% memory traffic reduction on average.

4.3 Simulation Result: IPC

The IPC relative to original system is defined as:

relative IPC = —————————————
IPC of compression system

IPC of original system

As we supposed, the decompression overhead will
be redeemed by the virtual expansion of cache capacity.
In Figure 10, most benchmarks (15 out of 18) achieve
more than 80% relative IPC and 8 of them even
outperform the original system. The average IPC of all
programs is derived from the following formula:

average IPC = —————————————
Total instruction count

Total cycle count

where total instruct count is the summation of
committed instruction count from all executed
benchmark, and total cycle count is the accumulated

- 240 -

cycle count of all executed benchmark. The average IPC
reaches 108% of original system and indicates a
speedup of 1.08 over original system.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

bit
cn

ts
qs

ort

su
sa

n-c

su
sa

n-e

su
sa

n-s
cjp

eg
djp

eg

tiff
2b

w

tiff
2rg

ba

tiff
dit

he
r

tiff
med

ian

dij
ks

tra

pa
tric

ia

gh
os

tsc
rip

t
isp

ell

str
ing

se
arc

h
bf-

e
bf-

d
sh

a crc

un
toa

st

*av
era

ge

Normalized IPC

Figure 11. Relative IPC

4.4 Hardware Cost Estimation

The majority of the decompression unit is memory
component like cache or buffer. So we tried to estimate
the approximate hardware cost of the decompression
unit in the form of required memory capacity. The first
row of Table 2 lists our baseline for evaluation and its
cost is estimated using the capacity summation of tag
array and data array of the 4K instruction cache. Our
code compression system is labeled 4K+cc in the table
and the cost is estimated using capacity accumulation of
instruction buffer, inline data buffer, fast dictionary and
4K cache. Additional performance reports of the 18
benchmarks are generated using an 8-KB instruction
cache configuration and the average data are collected.
The last row of Table 2 lists the cost and performance
of the 8K-cache system.

Table 2. Cost and Performance Comparison
 Total

Memory
Area Cost Traffic

Reduction
Relative

IPC
4K 37,888 bits 100% 0% 100%
4K+cc 62,466 bits 164.87% 47.62% 108.52%
8K 75,264 bits 198.65% 41.59% 131.10%

From the table we can tell that our code

compression architecture can achieve even better
memory traffic reduction rate than a system with
doubled cache capacity. The hardware cost of
decompression unit is approximately 65% of a 4K
direct-mapped instruction cache while a 8K-cache
system needs 98% additional cost.

5 Conclusion

This paper proposes a scheme of code compression
architecture to improve memory bandwidth of
embedded systems. The devised decompression unit can
be easily integrated into existing embedded systems
because no modification is done on processor and cache
interfaces. We applied it to an ARM platform and

performed cycle-accurate performance simulation on 18
embedded benchmarks selected from MiBench. The
memory bandwidth is evaluated with traffic reduction
and IPC gain. The proposed architecture achieves
speedup of 1.08 over the baseline system and 47%
reduction on memory traffic. For an embedded system,
it’s common to have multiple bus masters connected to
system bus and contend for bandwidth. Reduction on
the memory traffic from processor can relieve the
contention and potentially increase system performance.
Moreover, the reduction on bus traffic also contributes
to dynamic energy saving since the activities on bus
lines are reduced.

References

1. S. Segars, K. Clarke, and L. Goude, “Embedded Control

Problems, Thumb and the ARM7TDMI,” IEEE Micro,
vol.16, no.6, pp.22-30, 1995.

2. K.D. Kissell, “MIPS16: High-Density MIPS for the
Embedded Market,” Proc. Real Time System ’97
(RTS97), 1997.

3. IBM, “CodePack PowerPC Code Compression Utility
User’s Manual Version 3.0,” IBM, 1998.

4. Yuan Xie, Wayne Wolf, Haris Lekatsas, “Profile-driven
Selective Code Compression,” IEEE Design Automation
and Test in Europe Conference and Exhibition, 2003.

5. Luca Benini, Francesco Menichelli, Mauro Olivieri, “A
Class of Code Compression Schemes for Reducing
Power Consumption in Embedded Microprocessor
Systems,” IEEE Transactions on Computers ,Volume 53,
NO.4 ,APRIL 2004.

6. J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Trans. Information
Theory, vol.23, no.3, pp. 337-343, May 1997.

7. I. Kadayif and M.T. Kandemir, “Instruction compression
and encoding for low-power systems,” IEEE 15
International ASIC/SOC Conference, 2002.

th

8. Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, Richard B. Brown,
“MiBench: A free, commercially representative
embedded benchmark suite,” IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX,
December 2001.

9. A. Wolf and A. Chanin, “Executing Compressed
Programs on an Embedded RISC Architecture,”
Proceedings of the International Symposium on
Microarchitecture, pp. 81-91, December 2001.

10. D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Computer Architecture News 25(3), pp.
13-25, June 1997.

11. SimpleScalar LLC,
http://www.simplescalar.com/v4test.html

- 241 -

http://www.simplescalar.com/v4test.html

