

Design of a Giga-bit Hardware Accelerator for the iSCSI Initiator

Chung-Ho Chena, Yi-Cheng Chungab, Chen-Hua Wanga, and Han-Chiang Chenb

chchen@mail.ncku.edu.tw, carbooky@casmail.ee.ncku.edu.tw
elvik@casmail.ee.ncku.edu.tw, jolly@itri.org.tw

Department of Electrical Engineering and Institute of Computer and Communication Engineering
National Cheng-Kung Universitya

Taiwan, R.O.C.
Network & Communication Technology Center, Computer and Communication Laboratories

Industrial Technology Research Instituteb
Tainan, Taiwan, R.O.C.

Abstract

We present the design of an iSCSI hardware accelerator for
the initiator subsystem of a host bus adapter (iSCSI HBA).
By analyzing the UNH-iSCSI open source code, first we
evaluate the software performance and present a general
methodology that transforms the software C code into the
hardware HDL implementation. For the hardware module,
the datapath design maximizes the concurrent accesses
achievable within a clock cycle by using a dual-port
descriptor memory. The synthesizable iSCSI hardware
accelerator achieves 100 MHz speed and costs about 85K
gates in the 0.18u technology. The design is able to meet the
requirement of 1Gbps network when the average iSCSI
PDU size is greater than 125 bytes.

1. Introduction

The Internet SCSI (iSCSI) is a newly developed network
protocol that specifies the access to the SCSI storages over
the TCP/IP network [1-4]. Until now iSCSI is mostly
appeared in the solution of software implementations, the
source codes released by Intel, IBM, UNH, etc., can be
installed on the Linux operating system [5]. Several works
[6][7] investigate the iSCSI protocol performance by
comparing with other technology related to storage
networks, such as the Fiber channel, NAS, NFS, etc. A
software implementation of the iSCSI protocol bears the
advantage of flexibility; however it consumes the host CPU
utilization, especially for high bit rate networks. For instance,
the CPU utilization for the iSCSI initiator during a WRITE
operation reaches about 36% [8]. There are numerous
developments of iSCSI offload engine that offloads the
iSCSI protocol from the host CPU to the Host Bus Adapter
(HBA). The methods are to use an embedded CPU on the
HBA to run the iSCSI protocol. In [9], it proposes a method
to build a switch and route subsystem to dispatch iSCSI
PDUs to the processing end nodes. In [10], the work has
proposed a method to extract the iSCSI PDU header from
the TCP buffer.

Since the iSCSI is a data-intensive protocol that

involves heavy checking for the data integrity during
transmission [11], an effective hardware design that speeds
up the process and relieves the burden imposed on the host
processor is quite attractive, especially for Giga-bit storage
systems. Our design addresses these issues and develops
schemes to speed up the iSCSI protocol processing for the
read/write operations, including iSCSI PDU creations,
on-the-fly CRC checking, and PDU decompositions. The
rest of this paper is organized as follows. Section 2 presents
the performance profiling tool. Section 3 presents the
initiator hardware architecture and a C-to-HDL translation
methodology. Section 4 discusses the verification and
performance of the design. This paper is concluded in
Section 5.

2. Performance Profiling

To profile the performance, first the instrumented codes are
added into the frequently used top-level functions. Two
check-points (enter and leave) are added at the beginning and
the end of every function. They generate messages into a log
file when the monitored functions are called as shown in Fig.
1. When the execution flow meets the “check point,” it
invokes the “printk” function and the “do_gettimeofday”
function to obtain the current time ticks measured in
micro-second. Then it prints out the information as kernel
messages to a log file.

An analyzing tool called analyzer, implemented in perl
is designed to scan the log file line by line. An instance of one
line in the log file looks as follows:

47755560->Enter Rx_data @1

where the leading number is the time ticks when dumping
this log message. This number comes from a timer since the
time the machine is booted up. The following “Enter” is the
log type (it can alternatively be a “Leave” type). “Rx_data” is
the function name of the logged function. The number
appeared after ‘@’ symbol is the referenced counts for this
function. It is used to trace the Enter and Leave pair of the
same function.

The analyzer checks each line in the log file, calculates

2571-4244-0419-3/06/$20.00 ©2006 IEEE

the average interval time for every invoked function, and
counts how many times the function is used in the entire flow.
This mechanism enables us to trace the program easily and
determine the most frequently-used and time-consuming
functions in the C code. Some functions are called iteratively
in certain operation scenario. The analyzer obtains the
iteration counts of the function used, the average time
interval when calling a function, and the maximum and
minimum iteration time interval the function is called.

Fig. 1. Profiling of the function calls.

3. iSCSI Accelerator

Fig. 2 depicts the architecture of the implemented iSCSI
initiator. The iSCSI initiator system comprises the following
elements:

 Host interface and TCP interface
 Descriptor RAM
 Command management module
 Tx module
 Rx module
 Lookup tables

The descriptor RAM is used to keep the state

information about sessions, connections, SCSI commands,
pending commands, and iSCSI protocol data unit. The
command management module deals with the process of
transformation from SCSI command to iSCSI PDU, and
maintains several data structures in the descriptor RAM. An
iSCSI session uses one Tx module that performs all the PDU
transmissions from the initiator to a target. The Rx module
performs the PDU receptions from a target to the initiator.
The details of these units will be addressed later. The other
functions such as operations in the login phase are assumed

to be executed by the host CPU or the embedded processor
in the TCP/IP offload engine.

Fig. 2. Architecture of the iSCSI initiator.

There are three top modules in the design of the initiator

accelerator. Each of the top modules comprises several
submodules and each submodule is implemented in the same
architecture as shown in Fig. 3. After the enable signal from
the controller is asserted, the activated submodule is
controlled by the step incrementor (or step counter) that
functions similarly to an instruction pointer. The address
generators generate the addresses for accessing the dual-port
descriptor RAM from two pairs of the base and offset values
through the multiplexers. This datapath and control design
maximizes the concurrent dual access rate to the descriptor
RAM in a clock cycle whenever possible. The rationale
behind this design is to make memory accesses out of the
bottleneck in the PDU process while keeping within a
reasonable cost.

Fig. 3. Architecture of a single task module.

258

The job that a submodule has to do is to fill the required
fields of data in the descriptor RAM. One submodule may
communicate with each other by accessing the necessary
data fields through the descriptor RAM. An entire C
procedure is implemented in several submodules since the
same submodule may be called in a particular scenario of the
iSCSI operation, and may not be called in another one. Also,
individual submodule can be shared by two different top
modules.

3.1 C-to-HDL Translation

The way we implement the operations in a specific
submodule is directly based on those implemented in the
corresponding software function. Fig. 4 shows an example of
translating the software operations into the corresponding
hardware implementation. Except for observing the
dependency, the statements in a C module are executed in
parallel in a cycle, if possible, by the provided multi-cycled
hardware datapath. The amount of the hardware parallelism
to provide is determined by the total execution cycles
constrained by the intended network throughput. Translating
the functions in the software into the hardware submodules
uses the following rules:

Fig. 4. C-to-HDL translation.

Mapping a variable to a register
A register bank that can be shared among submodules is used
for keeping temporary values. Whenever we find the use of
variables in the software implementation, these temporary
values are allocated properly to registers. In our design,
modules are classified into several levels. Each level may use
up to five registers in its life time.

Mapping a pointer to a base value with offset
In the C version, a data structure is often used to describe the

entity of a defined type. To translate a data structure, we
allocate a “descriptor” space in the descriptor RAM to hold
the same data structure. Whenever the access for an element
(or a field) of the descriptor occurs, the address is generated
by using the header of this descriptor (that is, the base) plus
the relative position of the element (i.e., offset) in this
descriptor.

Mapping a computation to a combinational circuit
The computations of two or more values are the fundamental
operations found in the software implementation. Since it is
expensive to instantiate extra ALUs, we deploy time-shared
ALUs to perform the operations once the data are ready.

Mapping a branch to a jump
The statements in the source code may not be executed line
by line due to conditional branches. This is resolved by
notifying the step incrementor in the hardware to jump to the
branch position whenever the executing flow encounters a
branch.

Mapping function calls to submodule calls
We map the function calls in the software to the hardware
submodule calls. When a main module needs to activate a
submodule, it just has to give a number that represents the
submodule outside the main module.

Mapping a linked list to a lookup table
When a data structure needs to be added to a linked list in
software implementation, a queuing table in hardware is used
to keep track of the relationship among them.

3.2 Control

The general architecture of a top module is shown in Fig. 5. It
comprises a main module which is the caller of all its
submodules inside the top module. All the modules in the top
module are controlled by the module controller, which is
implemented as a finite state machine, FSM.

Fig. 5. Block diagram of a top module.

The FSM activates these submodules one by one

according to the asserted signal from the main module.
During the time the main module or a submodule is running,
they all listen to an integer value from the step incrementor as

259

their program counter or sequence controller.
This step incrementor is duplicated in each top module

design. All the submodules in the same top design share only
one step incrementor, except the submodule that is also a top
module instancing other low-level modules. The step
incrementor performs the following jobs:

 The step incrementor outputs an integer value started
from zero and incremented by 1 every clock period, to
the activated submodule. The submodule performs a
designated operation based on this integer value.

 When the step incrementor selects a pair of base and
offset, an address is generated by adding up the base
and offset.

 The step incrementor can issue a predefined integer
value to a submodule according to the jump
mechanism, and it can return to the state which is
stored before the top design calling the submodule.

Fig. 6 shows the state diagram of the FSM for the

control. The state machine stays at the IDLE state when the
system is reset. Until the start signal is asserted, the state
transits to the MAIN state. During the MAIN state, the main
module is activated as the counter value in the step
incrementor being advanced. The FSM won’t transit to the
next SUB_RUN state until the main module asserts the excite
signal to indicate that a chosen submodule is responsible for
doing the corresponding work. At the same time, the current
counter’s value is captured by a restore register. After the
submodule has finished its task, the FSM proceeds to the
RESTORE state to restore the step counter to the previous
value before the main module calls the submodule. After the
main module has reached the final step, the FSM goes back to
the IDLE state which is the end of the top module.

An additional register bank that comprises 16 32-bit
registers is used. This register file provides two ports for
asynchronous reads and one port for synchronous writes. The
purpose of this design is to minimize the amount of registers
used if two different submodules can be arranged to occupy
the same register at different time.

Fig. 6. State transition for the control.

3.3 Configurable CRC Implementation

With the increasing transmission rate to 1 Gb/s or 10 Gb/s,
the CRC (cyclic redundancy check) computation becomes

the performance bottleneck, especially when implemented
in software. We design a configurable parallel CRC module
that generates the CRC result by computing either 32-bit or
8-bit data within one clock period.

This parallel CRC module can deal with the input data
of any length in byte. The CRC module can be attached to a
data bus and generates the checksum for the data sequence at
each clock period. This feature is referred to as on-the-fly
CRC computation. The calculation is done when the data are
in transmission. With this technique, no additional access is
required when generating the CRC result. Fig. 7 depicts the
implemented iSCSI CRC architecture.

X31 X30 X29 X28 X27 X26

X24 X23 X22 X21 X20 X19 +

X18 X17 X16 X15 X11

X10 X9 X7

X3 X2 X1 X0 + Input
bits

+ + + X25 +

+++

+ X14 X13 + + X12

++X8 +X6 +X5

X4

+

Fig. 7. iSCSI CRC architecture for G(x) = X32 + X28 +
X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 +
X13 + X11 + X10 + X9 + X8 + X6 + 1.

3.4 Command Management Module (CMM)

The command management module transforms the SCSI
command to the iSCSI PDU and maintains the related data
structures in the descriptor RAM. Fig. 8 shows the procedure
flow of the CMM.

Fig. 8. Procedure flow in the command management
module.

260

The iSCSI PDU is embedded in the iSCSI command
data structure, which contains the necessary information to
create the iSCSI PDU. The CMM module transforms the
SCSI command to iSCSI command for further transmission
by the Tx module.

3.5 The Transmit (Tx) Module

The performance of the iSCSI accelerator can be improved
by means of duplicating the Tx module. Each iSCSI session
occupies one Tx module that performs all the PDU
transmissions from the initiator to a target. The Tx module
can be activated by the CMM or the Rx module. For the first
case, whenever an iSCSI command is properly filled in by
the CMM, the Tx module is activated to check the pending
command table for the newly setup command. If this
command is a WRITE type command, the submodule
“Build_Write_Cmnd” is called to fill the proper fields. Then,
the “Rdy2Xmit” submodule is called to decide the transmit
size. Finally, the “Do_Tx_send” is called to create a
negotiation message format for the TCP layer, for this new
PDU transmission. Fig. 9 illustrates the procedure flow for
the TX module.

For the second case, if the Tx module is awoken by the
Rx module, the “Rdy2Xmit” submodule is called to decide
the transmit size according to the received “cookie.” Then,
the submodule “setup_dataoutPDU” is called to prepare the
data which are solicited by the “cookie.” Finally, the
“Do_Tx_send” submodule is called. These actions are
similar to those performed in the Tx_thread procedure.

Fig. 9. Procedure in the Tx module.

3.6 The Receive (Rx) Module

The Rx module performs the PDU receptions from a target to
the initiator. The iSCSI accelerator’s performance can also be
improved by using more of the Rx modules. When the Rx

module is notified by the iSCSI driver that an iSCSI PDU is
received in the TCP buffer, the Rx module is activated to
receive just the size of a PDU header (by invoking
recv_pdu_header) and check if the incoming PDU is a legal
iSCSI PDU. Some checks (CRC, command SN, etc.) are
done on the iSCSI header. After these routine checks on the
PDU’s header have been completed, an appropriate function,
according to the opcode field in the PDU’s header, is called to
process the incoming iSCSI PDU. Fig. 10 shows the
procedure for the Rx module.

Fig. 10. Procedure in the Rx module.

3.7 Lookup Tables

There are four types of tables used for the communications
among tasks. They are session table, pending command table,
pending cookie table, and Iovector table.

The session table is used for looking up sessions when
the CMM receives a target ID from the iSCSI driver.

The pending command table is used for holding the
pointers of outstanding command tasks. The pending
command table is added by the command management
module, and removed by the Tx module or the Rx module.

The pending cookie table is used for queuing the
information received from the R2T PDU, and the Tx module
can send the next “DataOut” PDU, according to the received
cookie entry. The Iovector table is used for collecting the
pairs of header and length of the data to be sent out from the
iSCSI initiator system.

4. Verification and Performance Evaluation

To verify the functionality of our design, we compare the
output results of the software version with that of the
hardware version given the same inputs. We have
synthesized our design using the UMC 0.18u technology.
The design is able to operate at the speed of 100MHz in the
system clock. The gate count of the respective module is as

261

follows:
top_Qcmnd module = 12’816.
top_TX module = 35’095.
top_RX module = 37’338.
The total area is 85’249.

The software iSCSI runs on a system illustrated in
Table 1. We estimate the performance of each function call in
the software implementation based on the performance
profiling tool presented above. From this, the average time
consumed when calling a certain function can be measured.

Table 1. Measurement Environment for Software iSCSI.
Initiator/Target CPU: Pentium III 1GHz,

512MB memory, Linux
Kernel 2.4.20-8.

Network Ethernet 100Mbps
SCSI adapter/disk TekramDC-390U3W/

Hitachi10000RPM/8MB/Ultra
320.

For the hardware accelerator, since the required clock

cycles to finish a specific task module is a fixed value (e.g.,
the AtchPndCmnd module needs 15 clock cycles, HR2TC
module needs 5 clock cycles, etc.), it is straightforward to
obtain the cycle counts of the measured operation. The
results of the three modules are shown in the Fig. 11 to Fig.
13 respectively. Due to the effectiveness of the translation,
the hardware implementation even with a very low clock rate
still performs much better than that of the software version.

Fig. 11. Execution time for the CMM modules.

Fig. 12. Execution time for the modules in Tx.

Fig. 13. Execution time for the modules in Rx.

Note that the graph also shows which function requires

the longest execution latency. For instance, in the Tx module,
the execution time of the Build_write_Cmnd operation is the
largest while in the Rx module, it is the Recv_data_in_data
operation that takes the longest execution time.

To compare read/write performance without the impact
of the network, Fig. 14 shows the required time spent in
read/write operations assuming zero network latency. The
read operation is the command issued by the initiator to read
data from the target while the write operation is issued by the
initiator which writes the data to the target.

The time evaluated for each bar is acquired from the
summation of multiplying the iterations with the time
consumed by every function (module) for the operation.
Note that the hardware implementation has drastically
reduced the execution time in comparison with the software
version. For a one-Gbps network, sending the shortest PDU
(52-byte header only) needs 416 ns. The current 100 MHz
design with dual-port descriptor RAMs requires 1000 ns to
prepare the PDU. For an IP storage system, the length of the
transmitted PDUs is expected to be much larger than that of
the minimum PDU. Thus, this design is able to meet the
one-Gbps requirement when the average PDU length is
greater than 125 bytes, including the header.

1

10

100

1000

10000

100000

1000000

10000000

Rea
d_

11
M

B

W
rit

e_
7M

B

Rea
d_

66
M

B

W
rit

e_
50

M
B

Operation

μ
se

c

SW

AoII_1MHz

AoII_10MHz

AoII_100MHz

Fig. 14. Execution time in read/write operations.

5. Conclusion

This paper presents the design and analysis of an iSCSI
initiator accelerator. We have described a C-to-HDL
translation methodology to realize the design. First, a profile

SW ticks vs ASIC cycles

0
10
20
30
40
50
60
70
80
90

Tx (
ASI

C o
nly

)

Buil
d_

writ
e_

Cmnd

Se
tH

dri
ov

inc
r_

iov
 (A

SIC
 on

ly)

Cr2t
C (A

SI
C on

ly)

Hoo
ku

p_
r2t

C

Rdy
2X

m
it

se
tup

_d
ata

ou
tP

DU

do
_tx

_s
en

d

module names in Tx module

μ
se

c
ti

ck
s

SW
ASIC_1MHz
ASIC_10MHz

 SW vs. HW

SW ticks vs ASIC cycles

0
5

10
15
20
25
30
35
40
45

Rx
(A

SI
C o

nl
y)

Rx_
rsp

Do_
SC

SI
_R

sp

Rx_
da

ta

Rec
v_

da
ta_

in
_d

ata

in
cr

_i
ov

 (A
SI

C o
nl

y)

Rec
v_

io
ve

ct
or

Rx_
r2

t

Rx_
pa

ck
_c

k

Hoo
ku

p_
r2

tC

Rec
v_

PDU_H
dr

CaU
Cm

dS
n

module names in Rx module

μ
se

c
ti

ck
s

SW
ASIC_1MHz
ASIC_10Mhz

 SW vs. HW

SW ticks vs ASIC cycles

0

5

10

15

20

25

30

Qcm
nd

se
ssi

on
_ta

ble

SC
2iS

C

Se
tup

Cmnd

cre
ate

_ic
mnd

att
ac

h_
pe

nd
ing

module names in CMM

μ
se

c
ti

ck
s

SW
ASIC_1MHz
ASIC_10MHz

 SW vs. HW

262

analyzer is used to extract the execution time and frequency
of the major procedure calls in the iSCSI C code. The most
time consuming modules are identified and implemented in
the hardware. For the hardware module, the datapath design
maximizes the parallelism achievable within a clock cycle
in using the descriptor dual-port memory. The iSCSI
hardware accelerator achieves 100 MHz speed and costs
about 85K gate counts in the UMC 0.18 technology. This
design meets the requirement of one Gigabps when the
average PDU length is greater than 125 bytes.

Acknowledgements

The work in this paper was in part supported by the National
Science Council, Taiwan, under NSC 94-2220-E-006-004.

References

[1] John L. Hufferd, “iSCSI The Univeral Storage
Connection,” Addison-Wesley, ISBN 0-202-78419-X,
2002.

[2] Internet Small Computer Systems Interface (iSCSI), RFC
3720, http://www.ietf.org/rfc/rfc3720.txt.

[3] Kalman Z. Meth and Julian Satran, “Design of the iSCSI
Protocol,” Proceedings of the 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and
Technologies (MSST’03).

[4] Mallikarjun Chadalapaka, “iSCSI State Diagrams,”
Networked Storage Architecture, NSSO, Rev 0.7, Jan.
07, 2002.

[5] UNH-iSCSI software code,
http://sourceforge.net/projects/unh-iscsi

[6] Stephen Aiken, Dirk Grunwald, Andrew R. Pleszkun,
and Jesse Willeke, “A Performance Analysis of the
iSCSI Protocol,” Proceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST’03).

[7] Dimitrios Xinidis, Angelos Bilas, and Michail D. Flouris,
“Performance Evaluation of Commodity iSCSI-based
Storage Systems,” Proceedings of the 22nd IEEE/ 13th
NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST’05).

[8] Anshul Chadda and Ro D. Russell, “Design,
Implementation, and Performance Analysis of Session
Layer Protocols for SCSI over TCP/IP,” Tech. Report
TR 01-06, University of New Hampshire, August 2001.

[9] William Todd Boyd, Douglas J. Joseph, Michael
Anthony Ko, and Renato John Recio, “iSCSI Driver To
Adapter Interface Protocol,” US Patent #
20040049603.

[10] Shay Mizarchi, Rafi Shalom, and Ron Grinfeld, “iSCSI
Receiver Implementation,” US patent # 20030058870.

[11] R.J Glaise and X. Jacquart, “Fast CRC Calculation,”
IEEE International Conference on Computer Design, pp.
602-605, 1993.

263

