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Abstract 

We present the design of an iSCSI hardware accelerator for 
the initiator subsystem of a host bus adapter (iSCSI HBA). 
By analyzing the UNH-iSCSI open source code, first we 
evaluate the software performance and present a general 
methodology that transforms the software C code into the 
hardware HDL implementation. For the hardware module, 
the datapath design maximizes the concurrent accesses 
achievable within a clock cycle by using a dual-port 
descriptor memory. The synthesizable iSCSI hardware 
accelerator achieves 100 MHz speed and costs about 85K 
gates in the 0.18u technology. The design is able to meet the 
requirement of 1Gbps network when the average iSCSI 
PDU size is greater than 125 bytes. 
 

1. Introduction 

The Internet SCSI (iSCSI) is a newly developed network 
protocol that specifies the access to the SCSI storages over 
the TCP/IP network [1-4]. Until now iSCSI is mostly 
appeared in the solution of software implementations, the 
source codes released by Intel, IBM, UNH, etc., can be 
installed on the Linux operating system [5]. Several works 
[6][7] investigate the iSCSI protocol performance by 
comparing with other technology related to storage 
networks, such as the Fiber channel, NAS, NFS, etc. A 
software implementation of the iSCSI protocol bears the 
advantage of flexibility; however it consumes the host CPU 
utilization, especially for high bit rate networks. For instance, 
the CPU utilization for the iSCSI initiator during a WRITE 
operation reaches about 36% [8]. There are numerous 
developments of iSCSI offload engine that offloads the 
iSCSI protocol from the host CPU to the Host Bus Adapter 
(HBA). The methods are to use an embedded CPU on the 
HBA to run the iSCSI protocol. In [9], it proposes a method 
to build a switch and route subsystem to dispatch iSCSI 
PDUs to the processing end nodes. In [10], the work has 
proposed a method to extract the iSCSI PDU header from 
the TCP buffer.  

Since the iSCSI is a data-intensive protocol that 

involves heavy checking for the data integrity during 
transmission [11], an effective hardware design that speeds 
up the process and relieves the burden imposed on the host 
processor is quite attractive, especially for Giga-bit storage 
systems. Our design addresses these issues and develops 
schemes to speed up the iSCSI protocol processing for the 
read/write operations, including iSCSI PDU creations, 
on-the-fly CRC checking, and PDU decompositions. The 
rest of this paper is organized as follows. Section 2 presents 
the performance profiling tool. Section 3 presents the 
initiator hardware architecture and a C-to-HDL translation 
methodology. Section 4 discusses the verification and 
performance of the design. This paper is concluded in 
Section 5.  

2. Performance Profiling 

To profile the performance, first the instrumented codes are 
added into the frequently used top-level functions. Two 
check-points (enter and leave) are added at the beginning and 
the end of every function. They generate messages into a log 
file when the monitored functions are called as shown in Fig. 
1. When the execution flow meets the “check point,” it 
invokes the “printk” function and the “do_gettimeofday” 
function to obtain the current time ticks measured in 
micro-second. Then it prints out the information as kernel 
messages to a log file.  

An analyzing tool called analyzer, implemented in perl 
is designed to scan the log file line by line. An instance of one 
line in the log file looks as follows: 

 
47755560->Enter Rx_data @1 
 

where the leading number is the time ticks when dumping 
this log message. This number comes from a timer since the 
time the machine is booted up. The following “Enter” is the 
log type (it can alternatively be a “Leave” type). “Rx_data” is 
the function name of the logged function. The number 
appeared after ‘@’ symbol is the referenced counts for this 
function. It is used to trace the Enter and Leave pair of the 
same function. 

The analyzer checks each line in the log file, calculates 
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the average interval time for every invoked function, and 
counts how many times the function is used in the entire flow. 
This mechanism enables us to trace the program easily and 
determine the most frequently-used and time-consuming 
functions in the C code. Some functions are called iteratively 
in certain operation scenario. The analyzer obtains the 
iteration counts of the function used, the average time 
interval when calling a function, and the maximum and 
minimum iteration time interval the function is called. 
 

 
Fig. 1. Profiling of the function calls. 

3. iSCSI Accelerator  

Fig. 2 depicts the architecture of the implemented iSCSI 
initiator. The iSCSI initiator system comprises the following 
elements: 
 

 Host interface and TCP interface 
 Descriptor RAM 
 Command management module 
 Tx module 
 Rx module 
 Lookup tables 

 
The descriptor RAM is used to keep the state 

information about sessions, connections, SCSI commands, 
pending commands, and iSCSI protocol data unit. The 
command management module deals with the process of 
transformation from SCSI command to iSCSI PDU, and 
maintains several data structures in the descriptor RAM. An 
iSCSI session uses one Tx module that performs all the PDU 
transmissions from the initiator to a target. The Rx module 
performs the PDU receptions from a target to the initiator. 
The details of these units will be addressed later. The other 
functions such as operations in the login phase are assumed 

to be executed by the host CPU or the embedded processor 
in the TCP/IP offload engine. 
 

 
Fig. 2. Architecture of the iSCSI initiator. 

 
There are three top modules in the design of the initiator 

accelerator. Each of the top modules comprises several 
submodules and each submodule is implemented in the same 
architecture as shown in Fig. 3. After the enable signal from 
the controller is asserted, the activated submodule is 
controlled by the step incrementor (or step counter) that 
functions similarly to an instruction pointer. The address 
generators generate the addresses for accessing the dual-port 
descriptor RAM from two pairs of the base and offset values 
through the multiplexers. This datapath and control design 
maximizes the concurrent dual access rate to the descriptor 
RAM in a clock cycle whenever possible. The rationale 
behind this design is to make memory accesses out of the 
bottleneck in the PDU process while keeping within a 
reasonable cost. 

 

 
Fig. 3. Architecture of a single task module. 

258



 

The job that a submodule has to do is to fill the required 
fields of data in the descriptor RAM. One submodule may 
communicate with each other by accessing the necessary 
data fields through the descriptor RAM. An entire C 
procedure is implemented in several submodules since the 
same submodule may be called in a particular scenario of the 
iSCSI operation, and may not be called in another one. Also, 
individual submodule can be shared by two different top 
modules. 

3.1 C-to-HDL Translation 

The way we implement the operations in a specific 
submodule is directly based on those implemented in the 
corresponding software function. Fig. 4 shows an example of 
translating the software operations into the corresponding 
hardware implementation. Except for observing the 
dependency, the statements in a C module are executed in 
parallel in a cycle, if possible, by the provided multi-cycled 
hardware datapath. The amount of the hardware parallelism 
to provide is determined by the total execution cycles 
constrained by the intended network throughput. Translating 
the functions in the software into the hardware submodules 
uses the following rules:  
 

 
Fig. 4. C-to-HDL translation. 

 
Mapping a variable to a register 
A register bank that can be shared among submodules is used 
for keeping temporary values. Whenever we find the use of 
variables in the software implementation, these temporary 
values are allocated properly to registers. In our design, 
modules are classified into several levels. Each level may use 
up to five registers in its life time. 
 
Mapping a pointer to a base value with offset 
In the C version, a data structure is often used to describe the 

entity of a defined type. To translate a data structure, we 
allocate a “descriptor” space in the descriptor RAM to hold 
the same data structure. Whenever the access for an element 
(or a field) of the descriptor occurs, the address is generated 
by using the header of this descriptor (that is, the base) plus 
the relative position of the element (i.e., offset) in this 
descriptor. 
 
Mapping a computation to a combinational circuit 
The computations of two or more values are the fundamental 
operations found in the software implementation. Since it is 
expensive to instantiate extra ALUs, we deploy time-shared 
ALUs to perform the operations once the data are ready.  
 
Mapping a branch to a jump 
The statements in the source code may not be executed line 
by line due to conditional branches. This is resolved by 
notifying the step incrementor in the hardware to jump to the 
branch position whenever the executing flow encounters a 
branch. 
 
Mapping function calls to submodule calls 
We map the function calls in the software to the hardware 
submodule calls. When a main module needs to activate a 
submodule, it just has to give a number that represents the 
submodule outside the main module. 
 
Mapping a linked list to a lookup table 
When a data structure needs to be added to a linked list in 
software implementation, a queuing table in hardware is used 
to keep track of the relationship among them.  

3.2 Control  

The general architecture of a top module is shown in Fig. 5. It 
comprises a main module which is the caller of all its 
submodules inside the top module. All the modules in the top 
module are controlled by the module controller, which is 
implemented as a finite state machine, FSM.  

 

 
Fig. 5. Block diagram of a top module. 

 
The FSM activates these submodules one by one 

according to the asserted signal from the main module. 
During the time the main module or a submodule is running, 
they all listen to an integer value from the step incrementor as 
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their program counter or sequence controller. 
This step incrementor is duplicated in each top module 

design. All the submodules in the same top design share only 
one step incrementor, except the submodule that is also a top 
module instancing other low-level modules. The step 
incrementor performs the following jobs: 

 The step incrementor outputs an integer value started 
from zero and incremented by 1 every clock period, to 
the activated submodule. The submodule performs a 
designated operation based on this integer value. 

 When the step incrementor selects a pair of base and 
offset, an address is generated by adding up the base 
and offset.  

 The step incrementor can issue a predefined integer 
value to a submodule according to the jump 
mechanism, and it can return to the state which is 
stored before the top design calling the submodule. 

 
Fig. 6 shows the state diagram of the FSM for the 

control. The state machine stays at the IDLE state when the 
system is reset. Until the start signal is asserted, the state 
transits to the MAIN state. During the MAIN state, the main 
module is activated as the counter value in the step 
incrementor being advanced. The FSM won’t transit to the 
next SUB_RUN state until the main module asserts the excite 
signal to indicate that a chosen submodule is responsible for 
doing the corresponding work. At the same time, the current 
counter’s value is captured by a restore register. After the 
submodule has finished its task, the FSM proceeds to the 
RESTORE state to restore the step counter to the previous 
value before the main module calls the submodule. After the 
main module has reached the final step, the FSM goes back to 
the IDLE state which is the end of the top module. 

An additional register bank that comprises 16 32-bit 
registers is used. This register file provides two ports for 
asynchronous reads and one port for synchronous writes. The 
purpose of this design is to minimize the amount of registers 
used if two different submodules can be arranged to occupy 
the same register at different time. 

 

 
Fig. 6.  State transition for the control. 

 

3.3 Configurable CRC Implementation 

With the increasing transmission rate to 1 Gb/s or 10 Gb/s, 
the CRC (cyclic redundancy check) computation becomes 

the performance bottleneck, especially when implemented 
in software. We design a configurable parallel CRC module 
that generates the CRC result by computing either 32-bit or 
8-bit data within one clock period.  

This parallel CRC module can deal with the input data 
of any length in byte. The CRC module can be attached to a 
data bus and generates the checksum for the data sequence at 
each clock period. This feature is referred to as on-the-fly 
CRC computation. The calculation is done when the data are 
in transmission. With this technique, no additional access is 
required when generating the CRC result. Fig. 7 depicts the 
implemented iSCSI CRC architecture. 

X31 X30 X29 X28 X27 X26 

X24 X23 X22 X21 X20 X19 +

X18 X17 X16 X15 X11 

X10 X9 X7 

X3 X2 X1 X0 + Input 
bits

+ + + X25 +

+++

+ X14 X13 + + X12 

++X8 +X6 +X5 

X4 
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Fig. 7. iSCSI CRC architecture for G(x) =  X32 + X28 + 
X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + 
X13 + X11 + X10 + X9 + X8 + X6 + 1. 
 

3.4 Command Management Module (CMM) 

The command management module transforms the SCSI 
command to the iSCSI PDU and maintains the related data 
structures in the descriptor RAM. Fig. 8 shows the procedure 
flow of the CMM.  
 

 
Fig. 8. Procedure flow in the command management 
module. 
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The iSCSI PDU is embedded in the iSCSI command 
data structure, which contains the necessary information to 
create the iSCSI PDU. The CMM module transforms the 
SCSI command to iSCSI command for further transmission 
by the Tx module. 
 
3.5 The Transmit (Tx) Module 
 
The performance of the iSCSI accelerator can be improved 
by means of duplicating the Tx module. Each iSCSI session 
occupies one Tx module that performs all the PDU 
transmissions from the initiator to a target. The Tx module 
can be activated by the CMM or the Rx module. For the first 
case, whenever an iSCSI command is properly filled in by 
the CMM, the Tx module is activated to check the pending 
command table for the newly setup command. If this 
command is a WRITE type command, the submodule 
“Build_Write_Cmnd” is called to fill the proper fields. Then, 
the “Rdy2Xmit” submodule is called to decide the transmit 
size. Finally, the “Do_Tx_send” is called to create a 
negotiation message format for the TCP layer, for this new 
PDU transmission. Fig. 9 illustrates the procedure flow for 
the TX module. 

For the second case, if the Tx module is awoken by the 
Rx module, the “Rdy2Xmit” submodule is called to decide 
the transmit size according to the received “cookie.” Then, 
the submodule “setup_dataoutPDU” is called to prepare the 
data which are solicited by the “cookie.” Finally, the 
“Do_Tx_send” submodule is called. These actions are 
similar to those performed in the Tx_thread procedure. 
 

 
Fig. 9. Procedure in the Tx module. 

 
3.6 The Receive (Rx) Module 
 
The Rx module performs the PDU receptions from a target to 
the initiator. The iSCSI accelerator’s performance can also be 
improved by using more of the Rx modules. When the Rx 

module is notified by the iSCSI driver that an iSCSI PDU is 
received in the TCP buffer, the Rx module is activated to 
receive just the size of a PDU header (by invoking 
recv_pdu_header) and check if the incoming PDU is a legal 
iSCSI PDU. Some checks (CRC, command SN, etc.) are 
done on the iSCSI header. After these routine checks on  the 
PDU’s header have been completed, an appropriate function, 
according to the opcode field in the PDU’s header, is called to 
process the incoming iSCSI PDU. Fig. 10 shows the 
procedure for the Rx module.  
 

 
Fig. 10. Procedure in the Rx module. 

 
3.7 Lookup Tables 
 
There are four types of tables used for the communications 
among tasks. They are session table, pending command table, 
pending cookie table, and Iovector table. 

The session table is used for looking up sessions when 
the CMM receives a target ID from the iSCSI driver.  

The pending command table is used for holding the 
pointers of outstanding command tasks. The pending 
command table is added by the command management 
module, and removed by the Tx module or the Rx module. 

The pending cookie table is used for queuing the 
information received from the R2T PDU, and the Tx module 
can send the next “DataOut” PDU, according to the received 
cookie entry. The Iovector table is used for collecting the 
pairs of header and length of the data to be sent out from the 
iSCSI initiator system. 
 

4. Verification and Performance Evaluation 

To verify the functionality of our design, we compare the 
output results of the software version with that of the 
hardware version given the same inputs. We have 
synthesized our design using the UMC 0.18u technology. 
The design is able to operate at the speed of 100MHz in the 
system clock. The gate count of the respective module is as 
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follows:   
top_Qcmnd module  = 12’816. 
top_TX module  = 35’095. 
top_RX module  = 37’338. 
The total area is 85’249. 
 

The software iSCSI runs on a system illustrated in 
Table 1. We estimate the performance of each function call in 
the software implementation based on the performance 
profiling tool presented above. From this, the average time 
consumed when calling a certain function can be measured. 
 
Table 1. Measurement Environment for Software iSCSI. 
Initiator/Target  CPU: Pentium III 1GHz, 

512MB memory, Linux 
Kernel 2.4.20-8. 

Network  Ethernet 100Mbps 
SCSI adapter/disk TekramDC-390U3W/ 

Hitachi10000RPM/8MB/Ultra 
320. 

 
For the hardware accelerator, since the required clock 

cycles to finish a specific task module is a fixed value (e.g., 
the AtchPndCmnd module needs 15 clock cycles, HR2TC 
module needs 5 clock cycles, etc.), it is straightforward to 
obtain the cycle counts of the measured operation. The 
results of the three modules are shown in the Fig. 11 to Fig. 
13 respectively. Due to the effectiveness of the translation, 
the hardware implementation even with a very low clock rate 
still performs much better than that of the software version.   
 

 
Fig. 11. Execution time for the CMM modules. 

 

Fig. 12. Execution time for the modules in Tx. 

 
Fig. 13. Execution time for the modules in Rx. 

 
Note that the graph also shows which function requires 

the longest execution latency. For instance, in the Tx module, 
the execution time of the Build_write_Cmnd operation is the 
largest while in the Rx module, it is the Recv_data_in_data 
operation that takes the longest execution time.  

To compare read/write performance without the impact 
of the network, Fig. 14 shows the required time spent in 
read/write operations assuming zero network latency. The 
read operation is the command issued by the initiator to read 
data from the target while the write operation is issued by the 
initiator which writes the data to the target. 

The time evaluated for each bar is acquired from the 
summation of multiplying the iterations with the time 
consumed by every function (module) for the operation. 
Note that the hardware implementation has drastically 
reduced the execution time in comparison with the software 
version. For a one-Gbps network, sending the shortest PDU 
(52-byte header only) needs 416 ns. The current 100 MHz 
design with dual-port descriptor RAMs requires 1000 ns to 
prepare the PDU. For an IP storage system, the length of the 
transmitted PDUs is expected to be much larger than that of 
the minimum PDU. Thus, this design is able to meet the 
one-Gbps requirement when the average PDU length is 
greater than 125 bytes, including the header. 
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Fig. 14. Execution time in read/write operations. 

 

5. Conclusion 

This paper presents the design and analysis of an iSCSI 
initiator accelerator. We have described a C-to-HDL 
translation methodology to realize the design. First, a profile 
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analyzer is used to extract the execution time and frequency 
of the major procedure calls in the iSCSI C code. The most 
time consuming modules are identified and implemented in 
the hardware. For the hardware module, the datapath design 
maximizes the parallelism achievable within a clock cycle 
in using the descriptor dual-port memory. The iSCSI 
hardware accelerator achieves 100 MHz speed and costs 
about 85K gate counts in the UMC 0.18 technology.  This 
design meets the requirement of one Gigabps when the 
average PDU length is greater than 125 bytes. 
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