
 
 
 

AN EFFICIENT VLSI ARCHITECTURE FOR EDGE FILTERING  
IN H.264/AVC 

 
 

 
Chung-Ming Chen                                                                                 Chung-Ho Chen 

Department of Electrical Engineering &                                                  Department of Electrical Engineering & 
Institute of Computer and Communication Engineering                       Institute of Computer and Communication Engineering 

National Cheng Kung University                                                         National Cheng Kung University 
Taiwan, R.O.C.                                                                                      Taiwan, R.O.C. 

cmchen@casmail.ee.ncku.edu.tw                                                                chchen@mail.ncku.edu.tw 
 
 

ABSTRACT 
In this paper, we study and analyze the computational 
complexity of H.264/AVC baseline profile decoder based 
on SimpleScalar/ARM simulator. The simulation result  
shows that the memory reference, the operations of 
content activity check, and the edge filtering are known to 
be very time consuming in the embedded system. In order 
to reduce the memory reference and improve overall 
system performance, we proposed a new efficient VLSI 
architecture to accelerate the processing of deblocking 
filter. The proposed architecture is called “Adaptive Edge 
Filtering Operation (AEFO),” which could be embedded 
in a platform-based architecture as a co-processor. As a 
result, the performance of the embedded system using 
AEFO is 1.66 times faster than software implementation. 
Moreover, the number of total me mory references for 
loading and storage is reduced by 34% and 36%  
respectively. 
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1.  Introduction 
 
Video compression is the critical component in today’s 
multimedia systems. The limited transmission bandwidth 
or storage capacity for applications such as DVD or 
digital television, and internet video streaming stresses the 
demand for higher video compression rates. To meet this 
demand the new video coding standard Recommendation 
H.264 of ITU-T [1] also known as International Standard 
14496-10 or MPEG-4 Part 10 Advanced Video Coding 
(AVC) of ISO/IEC[2] has been developed. It significantly 
outperforms the previous one (H.263) [3] in bit-rate 
reduction. The functional blocks of H.264/AVC, as well 
as their features, are shown in Figure 1. 
 
As previously studied [4], the most time consuming parts 
of H.264/AVC decoder is deblocking filter. Therefore, 
this paper focuses on adaptive deblocking filter to remove 

coding artefacts around block edges. These blocking 
artifacts can occur from both quantization of the 
transform coefficients and block-based motion 
compensation. In order to reduce the blocking artifacts, 
the overlapped block motion compensation (OBMC) [5] 
is  adopted into H.263 standard. Unlike the OMBC in 
H.263, H.264/AVC adopts an adaptive deblocking filter 
[6] that has shown to be a more powerful tool in reducing 
artifacts and in improving the video quality. Adaptive 
deblocking filter can also be used in inter-picture 
prediction to improve the ability to predict other picture 
as well. Since it is within the motion compensation 
prediction loop, the deblocking filter is often referred to 
as an “in-loop filter.” As a result, the filter reduces the bit 
rate typically by 5-10% while producing the same 
objective quality as the non-filtered video [7]. A detailed 
description of the adaptive deblocking filter can be found 
in [6]. 
 

 
Figure 1: Block Diagram of H.264/AVC 

 
The filter described in the H.264/AVC standard is highly 
adaptive. Several parameters and thresholds, as well as 
the pixel characteristics of the picture itself, control the 
boundary strength of the filtering process. These issues 
are also equally challenging during parallel processing 
under DSP or SIMD architecture. Due to intensive 
computations, dedicated hardware was developed for 
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acceleration in [8] and [9]. But these proposals did not 
mention or embed the computation of boundary strength 
(Bs), the table-derived operations, and the content activity 
check operations in the VLSI architecture of edge filter.  
In order to reduce the number of total conditional 
processing operations and improve overall system 
performance. We proposed a VLSI architecture that 
embedded the computation of boundary strength (Bs), the 
table-derived operations, and several conditional 
processing such as the threshold value of Alpha and Beta 
in the edge filtering unit. As a result, our proposed 
architecture can outperform the software implementation 
of H.264/AVC codec. 
 
The organization of this paper is as follows: In Section 2, 
the algorithm of the deblocking filter is explained. Section 
3 analyzes the computational complexity of H.264/AVC 
baseline decoder. Section 4 illustrates the block diagram 
of the proposed architecture and functionality of each 
module. Section 5 shows the simulation result. Finally, 
conclusion is presented in Section 6. 
 
 
2.  The Algorithm of Deblocking Filter 
 
For each luminance macroblock, the left-most edge of the 
macroblock is filtered first, followed by the other three 
internal vertical edges from left to right. Similarly, the top 
edge of macroblock is filtered first, followed by the other 
three internal horizontal edges from top to bottom. 
Chrominance filtering follows a similar order in each 
direction for each 8x8 chrominance macroblock as shown 
in Figure 2. 
 

 
 

Figure 2: Edge Filtering Order 
 
On the sample processing level, content of samples and 
quantization parameter threshold can turn on/off the 
filtering for each individual boundary. For example, 
Figure 3 illustrates the principle of the deblocking filter 
using a one-dimensional visualization of a block edge in a 
typical situation where the filter would be turn on. 
Whether the samples p0 and q0 as well as p1 and q1 are 
filtered is determined by using quantization parameter 
(QP), dependent threshold Alpha(QP) and Beta(QP), and 
content of a set of sample . Thus filtering of p0 and q0 

only takes place if each of the following condition is 
satisfied: 
 
Bs != 0 (1) 
|p0 - q0| < Alpha(QP)  (2) 
|p1 - p0| < Beta(QP) and |q1 - q0| < Beta(QP) (3) 
 
Where the Beta(QP) is considerably smaller than 
Alpha(QP).  Accordingly, filtering of p1 or q1 will take 
place if the corresponding condition below is satisfied: 
 
|p2-p0| < Beta(QP) or |q2-q0| < Beta(QP) (4) 
 
The dependency of Alpha and Beta on the quantizer, links 
the strength of filtering to general quality of the 
reconstructed picture prior to filtering. For s mall quantizer 
values the thresholds both become zero, and filtering is 
effectively turned off altogether. 
 

 
Figure 3: Principle of Deblocking Filter 

 
The basic idea is that if a relatively large absolute 
difference between samples near a block edge is measured, 
it is quite likely to be a blocking artifact and should 
therefore be reduced. However, if the magnitude of that 
difference is so large that it can no longer be explained by 
the coarseness of the quantization used in the encoding, 
the edge is more likely to reflect the actual behavior of the 
source picture and should not be smoothed over. 
 
 
3.  Computation Complexity 
 
One of the most important issues in computational 
complexity of H.264/AVC decoder is the distribution of 
time complexity among its major sub-function. In our 
simulation result, as shown in Table 1, deblocking 
filtering (36%) is the largest component, followed by 
interpolation (22%), and bitstream parsing and entropy 
decoding (13%), and inverse transfers and reconstruction 
(13%). 
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Figure 4: The Filtering Operations 
 

Table 1: The Computational Complexity of Decoder 
Item Function Complexity 

1. Deblocking Filtering  36% 
2. Interpolation 22% 
3. Entropy Coding 13% 
4. Inverse Transfers and 

Reconstruction 
13% 

 
As our experiment result  indicates, the operation of the 
deblocking filter, which is the most time consuming parts 
of H.264/AVC decoder, can be separated into two major 
sub-functions. The first sub-function is the computation of 
the “Boundary Strength” (Bs) parameter for each edge 
filter operation. The purpose of this computation is to 

determine whether a block artifact may have been 
produced across the boundary, and thus determine the 
strength (Bs) of the filter to be used on the edge. A 
Boundary Strength (Bs) is assigned an integer value from 
0 to 4. A strongest filter (Bs=4) is used if one or both 
sides of edges are intra coded and the boundary is a 
macroblock boundary, whereas a value of 0 means no 
filtering is applied on this specific edge. In the standard 
mode of filtering which is applied for edges with Bs from 
1 to 3, the value of Bs affects the maximum modification 
of the sample values that can be caused by filtering. Table 
2 shows how the value of Bs depends on the modes and 
coding conditions of the two adjacent blocks. In the table, 
conditions are evaluated from top to bottom, until one of 
the conditions holds true, and the corresponding value is 
assigned to Bs . 
 

Table 2: The Filter Strength Bs 
Bs Block Modes and Conditions 
4 One of the blocks is Intra and the edge is a 

macroblock edge 
3 One of the blocks is Intra 
2 One of the blocks have coded residuals  
1 1. Difference of block motion >= 1luma 

sample distance 
2. Motion compensation from different 

reference frames 
0 Otherwise 

 
The second important sub-function is  the content activity 
check and filtering operations as shown in Figure 3 and 
Figure 4 respectively. In order to separate the true edge 
and blocking artifact, the sample values across every edge 
to be filtered are analyzed. As stated in Section 2, filtering 
does  not take place for edges with Bs equal to zero. For 
edges with nonzero Bs values, a pair of quantization-
dependent parameters, referred to as Alpha and Beta, are 
used in the content activity check that determines whether 
each set of samples is filtered. Both table-derived 
threshold Alpha and Beta are dependent on the average 
quantization parameter (QP) employed over the edge, as 
well as encoder selected offset values that can be used to 
control the properties of the deblocking filter on the slice 
level. 
 
The filtering operations and the content activity checks 
which require  conditional processing on the block edge 
and sample level, are known to be very time consuming 
and are also equally challenging for parallel processing in 
DSP or SIMD computing architecture. In order to reduce 
the number of conditional operations and improve the 
overall system performance, we submit herewith (see next 
sections) a proposed VLSI architecture that includes 
computation of boundary strength, table-derived 
operations (threshold Alpha and Beta), and content 
activity check in the edge filtering unit. 
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4.  Proposed Architecture  
 
In order to reduce the number of memory reference and 
branch operations, and then improve overall system 
performance, we proposed an efficient VLSI architecture 
that embeds the computation of boundary strength, the 
table-derived operations, content activity check, and 
filtering operations in the edge filtering unit which is 
called “Adaptive Edge Filtering Operation (AEFO)” as 
shown in Figure 5. There are five major sub-functions in 
our proposed VLSI architecture as described below. 
 

 
 

Figure 5: Adaptive Edge Filtering Architecture 
 
The Computation of Boundary Strength: The purpose of 
this computation is to determine whether a block artifact 
may have been produced across the boundary, and thus 
determine the appropriate strength (Bs) of the filter to be 
used on the edge. A detailed description of the 
computation of boundary strength can be found in Section 
3 or [6]. 
 
The Filtering Operation: The most important function of 
deblocking filter is the filtering operation, which is 
divided into two modes. A special mode of filtering that 
allows for stronger filtering is applied when Bs is equal to 
4. The others are standard mode of filtering with a Bs 
parameter of 1 to 3 as shown in Figure 4. 
 
Clipping Operation: The filtering operation would result 
in too much low-pass filtering (blurring). A significant 
part of the adaptive filter is obtained by limiting these 
values. This process is called clipping. There are eight 
clipping operations in our proposed architecture as shown 
in Figure 4. A detailed description of the clipping 
operation can be found in [1]. 
 

Content Activity Check Operation: Conditional branches 
which are described below almost inevitably appear in the 
inner most loops of the algorithm. The major content 
activity checks (conditional branches) are listed below 
and described in Section 2 
 

Content Activity Check for p0 and q0  
1. Bs != 0  
2. |p0 - q0|  < Alpha(QP)  
3. |p1 - p0| < Beta(QP) and |q1 - q0| < Beta(QP). 
Content Activity Check for p1 and q1  
4. |p2-p0| < Beta(QP) or |q2-q0| < Beta(QP) 

 
Table-derived Operations: In order to simultaneously 
access Alpha, Beta, and Clip tables, and because most 
values of these tables are zero,  we used combinational 
logic to implement Alpha, Beta and Clip tables instead of 
using memory buffer. It can save most of the space of 
memory buffer and improve overall system performance. 
 
 
5.  Result 
 
The simulators used in this study are derived from the 
SimpleScalar/ARM tool set [10], a suite of functional and 
timing simulation tools for ARM ISA. The timing 
simulator executes only user-level instructions, 
performing a detailed timing simulation of an aggressive 
4-way dynamically scheduled microprocessor with two 
levels of instruction and data cache memory. Our baseline 
simulation configuration models the Intel’s StrongARM 
SA-110 processor. The hardware parameter is described 
in Table 3 below. 
 

Table 3: Simulator Parameter 
Parameter Value 

Fetch Queue size 4 
Fetch Speed 1 
Decode Width 1 
Issue Width 1 
Commit Width 1 
D-Cache 32-way, 32-byte lines, LRU, 

1-cycle hit, total 16KB 
I-Cache 32-way, 32-byte lines, LRU, 

1-cycle hit, total 8KB 
Memory Latency 12 
Memory Width 4 bytes  
 

Table 4: The Performance Comparison 
Item Software 

based 
AEFO Embedded 

Platform 
Reduce 

by 
Inst. 128640967 75123050 42% 
Load 30443106 20180448 34% 
Store 16098837 10295823 36% 
Branch 14324486 7901023 49% 
Cycles 220929397 132532824 40% 
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The simulation results are shown in Table 4. The 
performance of embedding AEFO as a co-processor is 
1.66 times faster than the software implementation. 
Moreover, the number of total memory references for 
load and store is reduced by 34% and 36% respectively. 
 
We implemented the proposed architecture by Verilog 
HDL and synthesized the design using TSMC 0.18um 
Artisan CMOS cell library using Synopsys Design 
Compiler with critical path constraint set to 5 ns 
(200MHz). The synthesized gate count is  shown in Table 
5. 
 

Table 5: The Area of Adaptive Edge Filter 
Item Function Gate count 

1. Alpha Table derived  137 
2. Beta Table derived 87 
3. CLIP Table 66 
4. Luma4 1372 
5. Chroma4 247 
6. Luma and Chroma 811 
7. Conditional Circuit  1104 
8. Computation of  

Boundary Strength 
1752 

Total Edge Filter 5576 
 
 
6.  Conclusion 
 
In this paper, we proposed an efficient VLSI architecture 
to accelerate the deblocking filter of H.264/AVC video 
coding and use Verilog HDL to implement it . The major 
idea is to reduce the number of conditional operations 
through embedded the computation of boundary strength, 
the table-derived operations, content activity check, and 
filtering operations in edge filter unit. Simulation results 
show that the processing capability of the proposed 
architecture AEFO is very appropriate for real-t ime 
deblocking of high-definition television (HDTV, 
720x1280 pixels/frame, 60 frames/s video signals) video 
operating at 150MHz. According to the simulation results, 
our design is a good choice of deblocking filter for the 
platform-based design under H.264/AVC coding systems. 
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