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ABSTRACT 
In this paper, we propose an efficient architecture for the 
adaptive deblocking filter in H.264/AVC video coding 
standard. We use eight forwarding shift register arrays (of 
which each contains 4×4 8-bit shift registers) with two 
transposing operations and two filter units to support 
simultaneous processing of the horizontal and vertical 
filtering. The proposed architecture is called “Pipeline 
Buffer Shift Register (PBSR).” As a result, the 
performance of PBSR is 22.5% faster than the advanced 
architecture of the previous proposal. Moreover, the 
number of total memory references is reduced to 37% and 
75% respectively compared to the basic and advanced 
architectures of the previous proposals. 
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1.  Introduction 
 
The new video coding standard Recommendation H.264 
of ITU-T [1] also known as International Standard 14496-
10 or MPEG-4 Part 10 Advanced Video Coding (AVC) of 
ISO/IEC [2], significantly outperforms the previous ones 
[3] in bit-rate reduction. The functional blocks of 
H.264/AVC, as well as their features, are shown in Figure 
1. Preliminary studies [4] using the software base of this 
new standard, suggest that H.264 offers up to 50% better 
compression than MPEG-2 and up to 30% better than 
H.263+ and MPEG-4 advanced simple profile. 
 
The block-based structure of the H.264/AVC architecture 
produces artifacts known as blocking artifacts. These 
blocking artifacts can be occurred both due to the 
quantization of the transform coefficients and block-based 
motion compensation. To reduce the blocking artifacts, 
the overlapped block motion compensation (OBMC) [5] 
is adopted into the H.263 standard [3]. Unlike the OBMC 
in H.263, H.264/AVC uses an adaptive deblocking filter 
[6] that has been shown to be a more powerful tool in 

reducing artifacts and improving the video quality. 
Adaptive deblocking filter can also be used in inter-
picture prediction to improve the ability to predict other 
picture as well. Since it is within the motion 
compensation prediction loop, the deblocking filter is 
often referred to as an “in-loop filter”. As a result, the 
filter reduces the bit rate typically by 5-10% while 
producing the same objective quality as the non-filtered 
video [7]. A detailed description of the adaptive 
deblocking filter can be found in [6]. 
 
The filter described in the H.264/AVC standard is highly 
adaptive. Several parameters and thresholds, as well as 
the pixel characteristics of the picture itself, control the 
boundary strength of the filtering process. These issues 
are also equally challenging during parallel processing 
under DSP or SIMD computational architectures. Due to 
intensive computations, in [8] and [9] dedicated hardware 
was developed for acceleration. And our proposed 
architecture outperforms the previous proposals through 
significant reduction in memory reference. 
 

 
 

Figure 1: Block Diagram of H.264/AVC 
 
The organization of this paper is as follows: In Section 2, 
the algorithm used in the deblocking filter is explained. 
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 Section 3 illustrates the block diagram of the proposed 
architecture and functionality of each module. Section 4 
shows the simulation results. Finally, conclusion is 
presented in Section 5. 

The dependency of α and β on the quantization parameter, 
link the strength of filtering to general quality of the 
reconstructed picture prior to filtering. For small 
quantization values, the thresholds both become zero, and 
filtering is effectively turned off altogether. 

 
 
2.  The Algorithm of Deblocking Filter  

 

 
For each luminance macroblock, the left-most edge of the 
macroblock (V1, V2, V3, and V4) is filtered first, 
followed by the other three internal vertical edges from 
left to right. Similarly, the top edge of macroblock (H17, 
H18, H19, and H20) is filtered first, followed by the other 
three internal horizontal edges from top to bottom. 
Chrominance filtering follows a similar order in each 
direction for each 8x8 chrominance macroblock as shown 
in Figure 2 (“V” denotes a vertical edge and “1” the first 
block cycles while “H” denotes a horizontal edge and 
“17” the seventeenth block cycle). 
 

 

Figure 3: Principle of Deblocking Filter 
 
The basic idea is that if a relatively large absolute 
difference between samples near a block boundary is 
estimated, it is quite likely to be a blocking artifact and 
should therefore be smoothed. However, if the amplitude 
of that difference is so large that it can no longer be 
explained an artifact produced by the quantization and 
motion compensation, the edge is more likely to be the 
actual behavior of the source picture and should not be 
filtered. 
 
  

Figure 2: Processing Order of Standard 3.  Proposed Architecture 
  On the sample processing level, sample value and 
quantization parameter threshold can turn on/off the 
filtering for each individual sample. For example, Figure 
3 illustrates the principle of the deblocking filter using a 
one-dimensional visualization of a block edge in a typical 
situation where the filter would be turned on. Whether the 
samples p0 and q0 as well as p1 and q1 are filtered is 
determined by using the quantization parameter (QP), 
dependent threshold α(QP), and β(QP). Thus filtering of 
p0 and q0 only takes place if each of the following 
condition is satisfied: 

3.1 Edge Filtering Operation 
 
The complexity of H.264/AVC deblocking filter is mainly 
due to two reasons. The first one is the need of highly 
adaptive filtering, which requires several conditional 
processing on each block edges and sample levels. As the 
described in the previous section, the threshold value of α 
and β, the table-derived operations, and edge filtering 
operation are known to be very time consuming. These 
issues are also equally challenging during parallel 
processing under DSP or SIMD computational 
architectures. Therefore, we propose an efficient filtering 
unit that combines these parameters into edge filter to 
accelerate the horizontal and vertical filtering on the 
boundary of two adjacent basic 4x4 blocks as shown in 
Figure 4. The filtering operation is performed when 
previous content activity check is satisfied. The filtering 
operation can be divided into two modes. A special mode 
of filtering that allows for stronger filtering is applied 
when Bs is equal to 4 (Luma4 and Chroma4). The others 
are standard mode of filtering with Bs parameter from 1 

 
1. Bs != 0  
2. |p0 - q0| <α(QP)  
3. |p1 - p0|< β(QP) and |q1 - q0| < β(QP). 
 
Where the β(QP) is considerably smaller than α(QP).  
Hence, filtering of p1 or q1 take place if the 
corresponding condition below is satisfied: 
 
|p2-p0| < β(QP) or |q2-q0 |< β(QP) 
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to 3 (Luma3_1 and Chroma3_1). The chrominance is the 
same as luminance.  
 

 
Figure 4: Edge Filtering Architecture 

 
Another reason for the high complexity is the small block 
size employed for residual coding in the H.264/AVC 
video coding algorithm. With the 4x4 blocks and a typical 
filter length of 2 samples in each direction, each sample in 
a picture must be loaded/stored from/to memory 4 times; 
either to be modified or to determine if the neighboring 
samples will be modified. In order to reduce the numbers 
of memory reference and accelerate the overall system 
performance, we propose another efficient architecture as 
shown in Figure 5, which can perform simultaneous 
processing of horizontal and vertical filtering and reduce 
the number of access time of each block to one. 
 
3.2 Alternative Processing Order 
 
Our architecture utilizes an alternative processing order, 
which allows the simultaneous processing of horizontal 
and vertical filtering as shown in Figure 6. The processing 
order begins from V1 to V2 (“V” denotes a vertical edge 
and “1” the first block cycle). And then at the third block 
cycle, the vertical edge V3 and horizontal edge H3 (“H” 
denotes a horizontal edge and “3” the third block cycle) 
are simultaneously processed. Then V4, H4 follows, so on 
and so forth. This processing order enables concurrent 
horizontal and vertical filtering to reduce memory access 
by reusing data through forwarding in the PBSR arrays. 
 
3.3 Components of the Proposed Architecture 
 
There are three major functions in our proposed 
architecture PBSR. The first component is the Shift 
Operation Array. There are eight forwarding shift register 
arrays in our proposed architecture (for example, Array1, 
2, 4, 5, 6, 7, 8, and 9). Each array has four entries which 
contain 4 processed samples. The shift direction is as 
shown in Figure 5. The second function of our proposed 
architecture is the transposing operation as shown in 

Figure 5. The Array3 and Array10 latched the 4x4 block 
sample values that are transposed from Array 2 and 
Array9 respectively. And the final important functions are 
the horizontal and vertical filter units. The operation of 
these components is described in details below. 
 

 
 

Figure 5: Proposed Architecture PBSR 
 

 
 

Figure 6:  Alternative Processing Order 
 
Horizontal Filter Unit: The function of horizontal filter 
is to filter the vertical edge across the boundary of the two 
adjacent blocks. The detailed design of the edge filter is 
based on [6]. The input parameters to this function are as 
follows. 
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Parameter Interface: Parameters used in adaptive 
deblocking filtering are transmitted from memory to the 
horizontal and vertical filter respectively. These 
parameters include boundary strength (Bs) and average 
quantization parameter (QP) for edge level adaptive, 
OffsetA and OffsetB for slice level adaptive. 

z A set of samples which denoted q0, q1, q2, and q3 
are transferred from the memory bus. 

z Another set of samples which denoted p0, p1, p2, 
and p3 are shifted from the fourth entry of Array1 
which has just completed the first horizontal 
filtering. 

 
z Other input values are filtering parameter, such as 

boundary strength (Bs), quantization parameter 
(QP), α, and β offset (Offset A and Offset B). 

Control Unit: The control unit has two major functions. 
The first is that it exactly controls the data flow. The other 
provides correct parameters to the horizontal and vertical 
filter. With horizontal filtering, each basic 4x4 block needs to be 

filtered two times across the vertical edge of the left and 
right boundary of the current basic 4x4-block. Similarly, 
the first reference denoted q samples (which are 
transmitted from the memory bus) and the second 
reference denoted p samples (which are shifted from the 
fourth entry of Array1) as shown in Figure 5. 

 
3.4 Data Flow 
 
The data flow of the proposed architecture is shown in 
Table 1. Initially, assume that the blocks of E1, E2, E3, 
E4, and E5 are processed in Array6, Array5, Array4, 
Array3, and Array1 respectively. In the first block-
filtering cycle (1 block-filtering cycle = 4 clock cycles), 
the sample values of current 4x4-block B1 are transmitted 
from memory to PBSR and filtered with block E5 by the 
horizontal filter. In next block-filtering cycle, the current 
block B1 is filtered with B2 by the horizontal filter. In the 
third block-filtering cycle, the proposed architecture 
PBSR can simultaneously process horizontal filtering of 
vertical edge V3 (the boundary of block B1 and B2) and 
vertical filtering of horizontal edge H3 (the boundary of 
block E1 and B1). In the eighth block-filtering cycle, the 
vertical filtering of horizontal edges (boundary of bock 
B1 and B5) are performed as shown in Figure 8. Finally, 
PBSR writes the block B1 to memory at the ninth block-
filtering cycle. 

 
Vertical Filter Unit: The function of vertical filter is to 
filter the horizontal edge across the boundary of two 
adjacent blocks. The input parameters of vertical filter 
unit are the same as horizontal filter unit, except for the q 
samples which are shifted from Array3 and the p samples 
which are shifted from Array8. 
 
The Transposed Unit: Those filtered samples of Array2 
are transposed and latched into Array3 at the fourth cycle 
of the block cycles as shown in Figure 7. The function of 
Array10 is the same as Array3 except it latches the 
filtered samples from Arrar9. 
 

 

 
Table 1: Data Flow in the PBSR 

State Block-Filtering Cycle 
 0 1 2 3 4 5 6 7 
Array1 E5 B1 B2 B3 B4 E5 B5 B6 
Array2 E4 E5 B1 B2 B3 B4 E5 B5 
Array3 E4 E5 B1 B2 B3 B4 E5 B5 
Array4 E3 E4 E5 B1 B2 B3 B4 E5 
Array5 E2 E3 E4 E5 B1 B2 B3 B4 
Array6 E1 E2 E3 E4 E5 B1 B2 B3 
Array7  E1 E2 E3 E4 E5 B1 B2 
Array8   E1 E2 E3 E4 E5 B1 
Array9    E1 E2 E3 E4 E5 
Array10    E1 E2 E3 E4 E5 
MEM     E1 E2 E3 E4 
  
 Figure 7: Transposing     Figure 8: Current Block B1   
4.  Result Operation                        Processing Order 
  
4.1 Memory Reference Memory Interface: There are two 32-bit memory data 

buses for the proposed architecture. One data bus is used 
to input unfiltered samples from memory to PBSR. The 
other is used to output filtered samples from PBSR to 
memory. 

 
As ITU-T recommendation [1], an adaptive filtering shall 
be applied to all 4x4 block edges of a picture, except for 
the edges at the boundary of the picture. Therefore, most 
of 4x4 blocks need to be filtered 4 times with the adjacent 
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blocks (left, right, top, and bottom as shown in Figure 8). 
As a result, the number of total memory reference for a 
luminance macroblock, including read and write, is 
4x4x2x16=512. For a picture in QCIF format, the number 
of total memory accesses is 49408 (Assuming the 
memory bus width is 32 bits).  
 
As described in the previous section, the key feature of 
our proposed architecture is the utilization of the Pipeline 
Buffer Shift Register (PBSR) to reduce memory 
references and simultaneously process the horizontal and 
vertical filtering. As a result, the number of total memory 
reference for a luminance macroblock is reduced to 192. 
It is clear that the number of memory references is 
reduced to 37% of the software version. In other words, 
the memory performance of our scheme increases 3 times 
when compared to software implementation. Table 2 
shows the comparisons of memories (Luminance only) 
with the previous proposals in [8]. Our architecture can 
save more than 63% of the memory bandwidth compared 
to the basic of the previous schemes. Hence, our 
architecture is able to significantly reduce power 
consumption. 
 

Table 2: Memory Reference per Macroblock 
Author Architecture MEM Ref 

[8] Basic+Single-port SRAM 512 
[8] Advance+Dual-port SRAM 256 
[8] Basic+Two-port SRAM 512 
[8] Dual Arrays+Two-port SRAM 256 

PBSR Dual-port SRAM or  
Two Single port SRAM 

192 

 
4.2 Performance 
 
The first set of samples for luma/chroma macroblock is 
completed in 32/24 clock cycles and written into the 
memory at the next cycle. The next set of samples will 
complete filtering and be written into the memory one 
cycle at a time. Therefore, the total number of cycles for 
filtering one luma and two chroma macroblocks takes 
32+96 = 128 and (24+32)x2 = 112 cycles respectively. As 
a result, the total filtering takes 240 cycles for a luma and 
two chroma macroblocks. Our filtering scheme takes less 
number of cycles when compared to 294 cycles of the 
architecture described in [8]. Table 3 illustrates the cycle 
count required for each different implementation.  
 

Table 3: Memory Cycles per MB 
Author Architecture Cycles/MB 

[8] Basic+Single-port SRAM 558 
[8] Advance+Dual-port SRAM 494 
[8] Basic+Two-port SRAM 462 
[8] Dual Arrays+Two-port SRAM 294 

PBSR Dual-port SRAM or 
Two Single port SRAM 

240 

 

5.  Conclusion 
 
In this paper, we propose an efficient architecture to 
accelerate the operations of deblocking filter for 
H.264/AVC video coding and implement it in Verilog 
HDL. The major idea is to reduce the number of memory 
references through the PBSR approach and 
simultaneously perform horizontal and vertical filtering. 
Simulation results show that the processing capability of 
the proposed architecture is very appropriate for real-time 
deblocking of 1280x720 30Hz video operating at 50-
100MHz. According to the simulation results, our design 
is a good choice of deblocking filter for the platform-
based design under H.264/AVC coding systems. 
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