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ABSTRACT 
In modern superscalar processors, the complex instruction 

scheduler could form the critical path of the pipeline stages and 
limit the clock cycle time. In addition, complex scheduling logic 
results in the formation of a hot spot on the processor chip. 
Consequently, the latency and power consumption of the dynamic 
scheduler are two of the most crucial design issues when 
developing a high-performance microprocessor. We propose an 
instruction wakeup scheme that remedies the speed and power 
issues faced with conventional designs. This is achieved by a new 
design that separates RAM cells from the match circuits. This 
separated design is such that the advantages of the CAM and bit-
map RAM schemes are retained, while their respective 
disadvantages are eliminated. Specifically, the proposed design 
retains the moderate area advantage of the CAM scheme and the 
low power and low latency advantages of the bit-map RAM 
scheme. 

The experimental results show that the proposed design 
saves power consumption by 80% compared to the traditional 
CAM-based design and 18% to the bit-map RAM design, 
respectively. In speed, the proposed design reduces an average of 
77% in the wakeup latency compared to the conventional CAM-
based design and an average of 33% reduction of the latency of the 
bit-map RAM design. For an 8-issue superscalar processor, the 
proposed design reduces the power consumption of the 
conventional wakeup logic by 80%, while simultaneously 
increasing the Instruction Count per nano-second (IPns) by a 
factor of approximately 2.5 times with a moderate area cost. 

Categories and Subject Descriptors 
C.1 Processor Architectures: Single Data Stream Architectures 
C.5.3 Microcomputers: Microprocessors 

General Terms: Performance, Design, Experimentation. 
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Low Power, High Performance, Issue Window, Wakeup Logic 
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1. INTRODUCTION 
Power consumption and latency of instruction scheduler are 

the key issues in today’s microprocessor design. Nowadays, design 
of high performance processor tends towards the specification of 
wide issue width and large issue window. However, this leads to 
an increasingly complex dynamic instruction scheduler. 

Considering the clock cycle time, although a pipelined 
dynamic scheduler can increase the clock frequency, the 
instruction wakeup and instruction selection operations should be 
an atomic operation to avoid significant performance degradation. 
It has been shown that the latencies associated with the wakeup 
and selection operations form the critical path of the pipeline 
stages [1]. In addition to clock cycle time, power consumption is 
another important issue for processor design. The power 
consumption associated with the complex dynamic scheduler 
constitutes a significant portion of the processor power 
consumption. Table 1 shows the power breakdown of the Compaq 
Alpha 21264 processor [2], and indicates that, second only to the 
global clock, the instruction issue unit is the most power hungry 
component of the processor. Similarly, Figure 1 reveals that the 
out-of-order scheduler of the Intel Pentium 4 processor (NetBurst) 
accounts for approximately 40% of the total power consumption 
[4].  

 

Table 1. Power breakdown of the Alpha 21264 processor 

Component Percentage 

Global clock 32 

Instruction issue unit 18 

Caches 15 

FP execution unit 10 

INT execution unit 10 

MMU 8 

I/O 5 

Miscellaneous logic 2 
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Figure 1. Power breakdown for the Intel Pentium 4 processor. 

As shown in Figure 2, approximately 50% of the wakeup 
operations do not result in any instruction wakeup for the first 
(left) or the second (right) source operand. About 44% of the 
wakeup operations wake up only one instruction. Matching all of 
the tags in the issue window only to wake up a few instructions is 
inefficient in terms of both time and energy. In this paper, we 
propose a wakeup design that remedies the power consumption 
and the latency issues faced with conventional designs. 

The remainder of this paper is organized as follows. Section 
2 reviews dynamic schedulers used in superscalar processors. 
Section 3 details two conventional schedulers followed by the 
proposed one. Section 4 presents the experimental methodology 
and the evaluation results. Section 5 provides a brief review of 
previous related work, and finally, Section 6 presents the 
conclusion. 
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Figure 2. Number of instructions woken up per each broadcast 
result for the left and right source operand in a 16-issue 128-

entry processor. 

2. DYNAMIC SCHEDULER FOR 
SUPERSCALAR PROCESSORS 

In this section, we provide background discussions for the 
operations of dynamic schedulers used in superscalar processors.  

Figure 3 depicts a baseline model of a superscalar 
processor. The fetch unit retrieves multiple instructions from the 
instruction cache and uses a branch predictor to assist in fetching 
instructions speculatively over basic blocks during a clock cycle. 
Subsequently, the instructions are decoded and their register 
designators are renamed for resolving WAR (write after read) and 

WAW (write after write) dependences. In the issue window, 
instructions wait for their source operands to become available for 
execution. The wakeup and select logics schedule instructions for 
out-of-order execution. Instructions are committed in program 
order to ensure correct completion of the executing program. 
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Figure 3. Baseline model of a superscalar processor. 

2.1 Instruction Wakeup and Selection 
The wakeup logic is responsible for waking up the 

instructions in the issue window when their source operands 
become available. When an instruction is going to complete 
execution, its destination tag is forwarded to the wakeup logic to 
wake up the relevant dependent instructions. Once both source 
operands are available, the wakeup logic sends a request for 
execution to the instruction select logic for this instruction. The 
detail of the wakeup design is discussed in Section 3. 

The instruction select logic is responsible for selecting the 
appropriate instructions for execution from the instructions that 
have both their source operands available. Once a functional unit 
becomes available, the select logic then directs a ready instruction 
to that unit for execution. Many selection policies have been 
presented for the case where the number of ready instructions 
exceeds the capacity of the available functional units [3], for 
instance, the oldest first selection algorithm [1]. When an 
instruction is selected for execution, the select logic responds with 
a grant signal. If the size of the issue window is n, then the grant 
signals are numbered from 0 to n-1, respectively. 

3. WAKEUP LOGIC DESIGNS 
 We begin first by introducing a conventional CAM-based 

design [1] and a bit-map RAM design [10] for the wakeup logic 
and then detail our approach. 

3.1 CAM-Based Scheme 
Conventional wakeup logic implementation is based on 

CAM (content-addressable memory) structure [1]. A CAM-based 
wakeup logic is shown in Figure 4. Once an instruction has been 
renamed, the allocated destination tag is inserted into the 
destination tag RAM (upper part of Figure 4a). The renamed left 
and right source tags are inserted into the left and right source tag 
fields (Tag L and Tag R) of the issue window respectively. The 
ready bits (Rdy L and Rdy R) are employed to indicate whether 
the corresponding source operands are available or not. 

The grant signals from the select logic are used to index the 
destination tag RAM to retrieve the corresponding destination 
tags. The result tag bits are then driven on the tag bus (Tag 1 to 
Tag w) to the CAM array, which matches them with all the left 
and right source tags in the issue window. 

Figure 4b depicts a single cell of the CAM array. Two 
chained inverters represent the memory cell for storing one bit of 
the source tag data, while two NMOS transistors form the 
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comparison circuit required to match the source operand bit with 
the result tag bit. Note that in this configuration, the memory cell 
and comparison circuit are closely integrated together. 

With the match line being pre-charged high, if a match 
between the incoming tag and the source tag occurs, the match line 
remains high. Specifically, if result tag j (1≤ j ≤w, w is the issue 
width) matches with a source operand tag, then match line j 
remains high. If one of the result tags (Tag 1 to Tag w) matches 
with the source tag, the ready bit should be set to indicate that this 
operand is available. In this way, the final ready signal (Rdy) is 
formed by the OR operations of all the match lines. In contrast, if 
the result tag bit is not equal to the corresponding cell bit, one of 
the two comparison circuits will be turned on to pull the match 
line down, that is, a mismatch occurs.  
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Figure 4. (a) Wakeup logic using CAM structure.   (b) CAM 
cell closely integrated with the matching circuit. 

 

3.2 Bit-Map RAM Scheme 
Although only a few instructions are woken up, a CAM-

based design actually matches the result tags with all of the source 
tags in the issue window. Clearly, this operation is both time and 
energy inefficient. The RAM scheme reduces the power 
requirements during the wakeup process [10]. 

Figure 5 depicts a wakeup logic implemented by using bit-
map RAM structure. Two bit-map RAMs are used to store the 
dependence between instructions (left and right source operands) 
in the form of bit position. Each bit of the RAM structure 
represents dependence between two instructions. For example, the 
bit pointed to by ith column and jth (0≤ i, j ≤n-1) row in the bit-map 
RAM indicates that instruction j requires a source operand from 
the output of instruction i. That is, all of the instructions that 
depend on instruction i form the column vector i. In this way, the 
wakeup operation can be simplified to a RAM-read operation. The 
read signal (grant line) selects a column of the bit vectors for 
output. 

The bit-map RAM is a square memory array of which the 
number of row and column are identical to the size of the issue 
window. The two bit-map RAMs handle the instruction wakeup 
operations for the left and right operands. 
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Figure 5. Bit-map wakeup design. 

After renamed, the data dependence between the producer 
and the consumer instruction is inserted into the bit-map RAMs. 
As shown in Figure 6, the destination entry number (instruction j, 
for instance) is used to index the RAM structure to select the write 
word line. The renamed source tag (the entry number of 
instruction i that produces the result as the source operand for 
instruction j) is decoded to drive the corresponding write bit line. 
Consequently, the bit, which is located at the ith column and the jth 
row in the bit-map RAM, is set to indicate that instruction j 
depends on instruction i. 

In the wakeup operation, the grant signal (grant i, for 
instance) from the select logic drives the corresponding read word 
line to select a column (the ith column) of the RAM cells. If the 
cells in the selected column have been set previously, they pull 
down the read bit lines (only the jth bit line is pulled down, in this 
example). The outputs of the selected column drive the ready bits 
accordingly. Thus, the wakeup operation is accomplished by 
means of a read operation. 
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Figure 6. Bit-map RAM circuit. 

3.3 A Complexity-Efficient Design 
Although the RAM-based wakeup design is more energy 

efficient and faster than the CAM-based scheme, the large area 
cost of the bit-map RAM may prohibit its usage in a processor 
with a large issue window. In addition, using a large bit-map RAM 
structure may lead to excessive wire delay in the process of future 
technology [16]. To overcome this problem, we develop new 
instruction wakeup logic, which is able to reduce the area used 
while achieving low power and high speed requirements. 
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Figure 7 presents the proposed wakeup logic. Two sets of 
the wakeup structure are used to handle instruction wakeup 
operations for the left and right source operand respectively. This 
wakeup logic is designed to match the source tags in the issue 
window directly with the grant lines from the select logic in an 
efficient manner. Each entry of the wakeup design employs the 
proposed 32-bit wakeup circuit as shown in Figure 8 to perform 
wakeup operation. 
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Figure 7. The proposed wakeup logic. 

In Figure 8, the 32-bit wakeup circuit matches 5-bit source 
tag with 32 grant lines. The two chained inverters stand for a RAM 
cell. There are five data cells for storing source tag and  a valid bit 
data cell to indicate whether this tag is valid or not. The 5-bit 
source tag is decoded into 32 decoded output lines that are 
connected to 32 match circuits. The grant input lines are 
represented by the vertical lines (grant0 to grant31), each of which 
runs through the match circuits to match with corresponding 
decoded line. Each match circuit consists of two nMOSFET 
transistors that match the decoded line with the grant line. 
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5-32 decoder
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Figure 8. A 32-bit wakeup circuit. 

We have designed the layout of the wakeup design for an 8-
issue processor. In this layout, the decoder and the RAM cells for 
source tag are placed in the center of the wakeup module. The 
source tag consists of 6 RAM cell bits that has 8 write ports (for 8-
issue processor). Two sets of 16 match circuits are placed at the 
left and right sides of the source tag respectively to match 32 grant 
lines with 32 decoded lines.  

Since the 32-bit wakeup circuit module only has 32 grant 
input lines, for a larger issue window, the wakeup logic can be 
built up by merging multiple lanes of 32-bit wakeup circuit to 
accommodate more grant input lines. For example, wakeup logic 
for a 128-entry issue window can be built up by using four lanes 

of the 32-bit wakeup circuit as shown in Figure 9. The 128 grant 
lines are divided into 4 groups. Each group goes into a lane of the 
wakeup logic. 
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Figure 9. Proposed wakeup logic for 128-entry issue window. 

After renamed, the source tag is inserted into the 
appropriate location of the wakeup logic in the following way. The 
destination tag is used to select one of the 128 entries of the 
wakeup logic. Besides, the most significant two bits of the 
renamed source tag are used to select one group out of the four to 
which the least significant five bits of the source tag are written. In 
other words, in each entry only the tag data in the selected lane is 
valid while the tag data in the rest of the lanes are invalid. The 
written 5-bit tag is decoded to drive the corresponding decoded 
line that is connected to one of the 32 match circuits. In each entry, 
only one decoded line is driven to wait for the corresponding grant 
line while the remainders are set low to turn off the other match 
circuits. 

As stated previously, the select logic sends a grant signal to 
trigger wakeup operations for the left and right source operand. 
The grant signal is delayed for the appropriate cycles of this 
execution and then is sent to the left and right wakeup structure to 
wake up instructions that depend on this result. The grant lines go 
through all the entries of the wakeup structure. In each entry, each 
grant line connects to its match circuit that matches this grant line 
with the corresponding decoded line. When both the grant line and 
the corresponding decoded line become active, the match circuit 
pulls the match line low to indicate that this operand is available. 
If both the left and the right ready bits of an instruction are set, this 
instruction sends a request for execution to the select logic as 
described previously. 

Compared to the CAM-based design, the proposed wakeup 
logic does not need to read the destination tags and hence the 
wakeup operation is faster. Additionally, the inputs of our design 
are grant lines, not destination tags. At most, only w grant lines are 
driven rather than x tag bits are driven. Where 

w = issue width, 
x = issue width × tag length. 
Furthermore, only the match line that depends on the 

execution result is active to drive the ready bit. Therefore, the 
proposed wakeup design is not only faster than the CAM-based 
design, but also more energy efficient.  
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Compared to the bit-map RAM scheme, our design 
separates the RAM cells from the match circuits in order to use 
only a small area for the match circuits. Although the area of the 
match circuits in this design grows proportionally with the square 
of the size of the issue window, the area of the separated RAM 
cells grows only linearly with the increasing of the issue window. 
Hence, the proposed design drastically reduces the area 
requirement unlike the case of bit-map RAM that all grows 
proportionally with the square of the issue window size. 

4. EXPERIMENTAL EVALUATION 
In this section, we present the evaluation methodology and 

the results of power consumption, timing analysis, and area cost 
for the three designs. 

4.1 Experimental Methodology 
 We used the Wattch simulator [6] to simulate the power 

consumptions of the three wakeup designs. The Wattch simulator 
is a tool based on SimpleScalar [7] for extracting the relative 
power consumptions of individual components in a superscalar 
processor. In Wattch, the data cell of source tag in the proposed 
design was modeled as conventional RAM cell and the match 
circuit of the proposed design was modeled as the match circuit in 
CAM structure. In addition, the RAM cell of bit-map structure was 
extended from the conventional RAM cell. Other parameters for 
the Wattch simulator include 1GHz clock frequency, 1.8V Vdd, 
and 0.18µm technology process. 

Table 2 presents the architectural parameters for three 
different issue-width processors evaluated in this study. 
Architectural simulation was conducted using 7 integer and 9 
floating point benchmark programs as specified by the SPEC2000 
[8]. The test input set was used for all the selected SPEC2000 
benchmark programs. Additionally, five Media-bench programs 
[11] were employed to obtain an even more comprehensive 
evaluation of the three designs. All the ported benchmark 
programs were compiled with full optimization (-O4) and were run 
to completion.  

 The Avant! Hspice tool was used to extract timing data for the 
circuit level designs. The Hspice circuit model was based on the 
one proposed by Ernst and Austin [5]. Finally, the parameters of 
CMOS transistors and wires in three designs all conformed to the 
design rules of TSMC 0.18µm process. The area sizes of the cells 
in three designs were based on the model in [9]. 

4.2 Power Consumption Statistics 
Figure 10 presents the comparisons of power consumptions 

for the three wakeup logics in an 8-issue processor that has 64 
entries issue window. The results indicate that the proposed design 
consumes the least amount of energy. Specifically, its power 
consumption is only 20% that of the CAM-based design and 80% 
that of the bit-map RAM design. 

Additionally, the power consumptions of the three designs 
were also evaluated for 4-issue and 16-issue processors; the results 
are shown in Table 3.  For the 16-issue 128-entry issue window 
processor, the proposed design only consumes approximately 14% 
of the power taken by the CAM-based design and approximately 
46% of the power consumed by the bit-map RAM design. 
Regarding the 4-issue 32-entry issue window processor, the 
proposed scheme consumes about 26% of the power of the 
conventional CAM-based design. Because of the small load 
capacitances of the word line and bit line, the bit-map RAM 
scheme has the best power consumption of the three wakeup 
designs in a 32-entry 4-issue processor. 

0

200

400

600

800

1000

gz
ip vp

r

gc
c

m
cf

pa
se

r

vo
rte

x

bz
ip

2

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a ar
t

eq
ua

ke

am
m

p

ap
si

ad
pc

m

ep
ic

g7
21

m
pe

g2

pe
gw

it

P
ow

er
 c

on
su

m
pt

io
n 

(m
w

)

CAM Bit map RAM Proposed design

 
Figure 10. Power consumptions for the three designs. 

Table 2. Architectural parameters 
Dispatch, issue, commit width 4 8 16 

Issue window size/ LSQ size 32/ 8 64/ 16 128/ 32 

Functional units 4 IALU, 1 IMUL, 2 FALU, 

1 FMUL, 2 LSU 

8 IALU, 2 IMUL, 4 FALU, 

2 FMUL, 4 LSU 

16 IALU, 4 IMUL, 8 FALU, 

4 FMUL, 8 LSU 

L1 I-cache/ L1 D-cache 4-way, 64KB, 32-byte line, 1-cycle latency/  4-way, 64KB, 32-byte line, 1-cycle latency 

L2 cache/ TLB 4-way, 256KB, 64-byte line, 10-cycle latency/ 4-way, 128-entry, 4KB page size 

Memory width and latency 64-bit wide, 75 cycle latency, 4-cycle burst 

Branch predictor Combination of bimodal and 2-level global predictor/ 2048-entry bimodal 8-bit history, 2048-entry level 2 
1024-entry chooser/ 4-way, 1024-entry BTB/ 16-entry RAS(return address stack)/ 8-cycle penalty 
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Figure 11. Latency of three different wakeup logics (ps) 

 

4.3 Circuit Timing Result 
Figure 11 shows that the latency of the proposed wakeup 

logic is 20% to 50% less than that of the bit-map RAM design and 
60% to 90% less than that of the CAM-based design for the 
various configurations of processor. That is, the speed of the 
proposed wakeup design is the fastest among the three designs. 
Figure 12 presents the IPns (instructions per nano-second) for 
processors with three different wakeup schemes. The results reveal 
that the IPns of the processor with the proposed wakeup design is 
about 2.5 times greater than that with the CAM-based design and 
1.2 times greater than that with the bit-map RAM design. 
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Figure 12. IPns for 8-issue 64-entry issue window processor. 

4.4 Area Size Tradeoff 
 

Figure 13 shows the area sizes of the three designs. The area of the 
CAM-based design is the smallest of the three for the 4-issue and 
8-issue processors. For the 16-issue processor, the size of the 
CAM structure increases because it needs 16 ports for destination 
tags and 16 write ports for source tags for each CAM cell. In this 
case, the area of the CAM-based design is larger than that of the 
proposed design. 

The area of the bit-map RAM wakeup logic becomes 
unacceptably large as the window size increases since it is 
proportional to the square of the issue window size.  The area of 
the 128-entry bit-map RAM design is approximately 5 to 6 times 
of the CAM-based design. 

Table 3. Power consumption statistics (mw) 
  4-issue 32-entry processor 8-issue 64-entry processor 16-issue 128-entry processor 

  CAM Bit-map RAM Proposed design CAM Bit-map RAM Proposed design CAM Bit-map RAM Proposed design 
gzip 204 43 52 870 216 173 4623 1388 634

vpr 205 45 53 873 209 171 4604 1406 637 
gcc 194 41 52 813 209 171 4259 1358 631
mcf 191 41 52 814 210 172 4319 1373 632
paser 196 42 52 822 212 172 4335 1367 632
vortex 200 43 52 831 218 173 4312 1399 636
bzip2 203 45 53 848 227 175 4450 1424 639
Int. avg. 199 43 52 839 214 172 4457 1392 635 
wupwise 202 43 52 860 217 173 4511 1401 636
swim 193 40 51 819 206 171 4353 1360 631
mgrid 196 42 52 836 211 172 4399 1368 632
applu 205 43 52 878 218 173 4681 1403 636
mesa 207 44 53 886 212 174 4717 1417 638
art 181 37 51 782 198 169 4207 1326 627
equake 195 41 52 839 209 171 4440 1365 631
ammp 181 38 51 756 197 169 3950 1307 624
apsi 205 43 52 839 218 146 4695 1406 637
F.P. avg. 196 41 52 833 210 169 4439 1373 632 
adpcm 196 39 51 832 202 170 4384 1321 626
epic 205 43 53 868 217 174 4583 1399 636
g721 205 43 52 873 220 174 4599 1389 635
mpeg2 205 45 53 868 222 174 4622 1430 640
pegwit 208 45 53 884 221 175 4661 1426 636
Med. avg. 204 43 52 865 216 173 4570 1393 635 
Total avg. 199 42 52 842 213 171 4474 1385 634 
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Figure 13. Areas of three wakeup logics (µµµµm2). 

On the other hand, the proposed wakeup logic uses much 
less area than the bit-map RAM design. In the 16-issue processor, 
the area of the proposed wakeup logic is the smallest among the 
three designs. 

5. RELATED WORK 
Many previous researches have attempted to reduce the 

complexity of the dynamic scheduler. Folegnani and González 
presented a scheduler that dynamically manages the size of issue 
window and gates off needless (e.g. empty entries and those 
entries that are ready for execution) wakeup activities [12]. Ernst 
and Austin proposed a scheduler that employs less tag 
comparators to reduce the complexity of the scheduler. This 
scheduler also has a last tag speculator to reduce the frequency of 
tag matching [5]. Huang and et al. proposed an index-based 
scheduler [14], which employs producer instruction pointer and 
consumer instruction pointer to index the instructions that should 
be woken up, to improve the energy efficiency of the scheduler. 
However, this scheduler must work together with a conventional 
CAM structure. 

Kim and Lipasti proposed a sequential wakeup mechanism 
to reduce the complexity of scheduler [15]. In this mechanism, the 
last-arrival operand is placed into the fast wakeup entry and two 
(left and right) source operands of an instruction are woken up in 
two sequential steps. The sequential wakeup logic enables a higher 
clock frequency by reducing the load capacitance of tag driver in 
the wakeup logic. Henry and et al. presented a cyclic segmented 
prefix (CSP) circuit to improve the performance of wakeup logic 
[17]. Ernst and et al. also proposed a Cyclone scheduler that 
predicts the operand arrival time and schedules instructions in a 
countdown cyclic queue. This scheduler reduces the area cost of 
scheduler and boosts the clock frequency with a small IPC 
degradation [13]. Other works [18][19][20] reduced the 
complexity of scheduler by scheduling dependent instructions into 
data-flow based issue window. 

6. CONCLUSIONS 
This paper presents an energy-efficient wakeup design for 

the dynamic scheduler of high-performance superscalar 
processors. The proposed wakeup scheme reduces the wakeup 
latency and power consumption by matching source tags directly 
with the grant lines. This design eliminates the read operation of 
destination tag and reduces the number of tag lines to be driven in 
wakeup operation. In addition, this scheme is more efficient for tag 
matching since only one match circuit is turned on for each match. 
Furthermore, the proposed design separates the RAM cells from 
the match circuits to reduce the area cost. 

The simulation results show that on average for three 
different issue-width processors, the proposed design saves power 
consumption by 80% and 18% respectively compared to the 
conventional CAM-based wakeup logic and the bit-map RAM 
design. The proposed design enables an average saving of 77% in 
the wakeup latency compared to the conventional CAM-based 
design and an average latency saving of 33% compared to the bit-
map RAM design. For area cost, the proposed design is only 29% 
of the bit-map RAM design and approximately 1.7 times of the 
CAM-based design for a 128-entry issue window processor.  

In conclusion, the results have confirmed that the proposed 
wakeup scheme greatly improves the power consumption and 
reduces the latency of conventional wakeup schemes with a 
moderate area cost. 
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