
An Efficient Wakeup Design for Energy Reduction
in High-Performance Superscalar Processors

Kuo-Su Hsiao and Chung-Ho Chen
Department of Electrical Engineering, National Cheng Kung University

No.1, University Road, Tainan 701, Taiwan

newjimmy@ee.ncku.edu.tw, chchen@mail.ncku.edu.tw

ABSTRACT
In modern superscalar processors, the complex instruction

scheduler could form the critical path of the pipeline stages and
limit the clock cycle time. In addition, complex scheduling logic
results in the formation of a hot spot on the processor chip.
Consequently, the latency and power consumption of the dynamic
scheduler are two of the most crucial design issues when
developing a high-performance microprocessor. We propose an
instruction wakeup scheme that remedies the speed and power
issues faced with conventional designs. This is achieved by a new
design that separates RAM cells from the match circuits. This
separated design is such that the advantages of the CAM and bit-
map RAM schemes are retained, while their respective
disadvantages are eliminated. Specifically, the proposed design
retains the moderate area advantage of the CAM scheme and the
low power and low latency advantages of the bit-map RAM
scheme.

The experimental results show that the proposed design
saves power consumption by 80% compared to the traditional
CAM-based design and 18% to the bit-map RAM design,
respectively. In speed, the proposed design reduces an average of
77% in the wakeup latency compared to the conventional CAM-
based design and an average of 33% reduction of the latency of the
bit-map RAM design. For an 8-issue superscalar processor, the
proposed design reduces the power consumption of the
conventional wakeup logic by 80%, while simultaneously
increasing the Instruction Count per nano-second (IPns) by a
factor of approximately 2.5 times with a moderate area cost.

Categories and Subject Descriptors
C.1 Processor Architectures: Single Data Stream Architectures
C.5.3 Microcomputers: Microprocessors

General Terms: Performance, Design, Experimentation.

Keywords
Low Power, High Performance, Issue Window, Wakeup Logic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005...$5.00.

1. INTRODUCTION
Power consumption and latency of instruction scheduler are

the key issues in today’s microprocessor design. Nowadays, design
of high performance processor tends towards the specification of
wide issue width and large issue window. However, this leads to
an increasingly complex dynamic instruction scheduler.

Considering the clock cycle time, although a pipelined
dynamic scheduler can increase the clock frequency, the
instruction wakeup and instruction selection operations should be
an atomic operation to avoid significant performance degradation.
It has been shown that the latencies associated with the wakeup
and selection operations form the critical path of the pipeline
stages [1]. In addition to clock cycle time, power consumption is
another important issue for processor design. The power
consumption associated with the complex dynamic scheduler
constitutes a significant portion of the processor power
consumption. Table 1 shows the power breakdown of the Compaq
Alpha 21264 processor [2], and indicates that, second only to the
global clock, the instruction issue unit is the most power hungry
component of the processor. Similarly, Figure 1 reveals that the
out-of-order scheduler of the Intel Pentium 4 processor (NetBurst)
accounts for approximately 40% of the total power consumption
[4].

Table 1. Power breakdown of the Alpha 21264 processor

Component Percentage

Global clock 32

Instruction issue unit 18

Caches 15

FP execution unit 10

INT execution unit 10

MMU 8

I/O 5

Miscellaneous logic 2

353

Copyright 2005 ACM 1-59593-019-1/05/0005...$5.00.

15 %
15 %

15 %

40 %

15 %

Out of Order
Scheduler

Instruction
Delivery

Memory
Support

FP
Execution

INT
Execution

Figure 1. Power breakdown for the Intel Pentium 4 processor.

As shown in Figure 2, approximately 50% of the wakeup
operations do not result in any instruction wakeup for the first
(left) or the second (right) source operand. About 44% of the
wakeup operations wake up only one instruction. Matching all of
the tags in the issue window only to wake up a few instructions is
inefficient in terms of both time and energy. In this paper, we
propose a wakeup design that remedies the power consumption
and the latency issues faced with conventional designs.

The remainder of this paper is organized as follows. Section
2 reviews dynamic schedulers used in superscalar processors.
Section 3 details two conventional schedulers followed by the
proposed one. Section 4 presents the experimental methodology
and the evaluation results. Section 5 provides a brief review of
previous related work, and finally, Section 6 presents the
conclusion.

0%

20%

40%

60%

80%

100%

L R L R L R L R L R L R L R L R L R L R L R L R L R L R L R L R

gzip vpr gcc mcf paser vortex bzip2 wupwise swim mgrid applu mesa art equake ammp apsi

P
er

ce
nt

ag
e

of
w

ak
eu

p
in

st
ru

ct
io

ns

0 instruction 1 instruction 2 instructions 3+ instructoins

Figure 2. Number of instructions woken up per each broadcast
result for the left and right source operand in a 16-issue 128-

entry processor.

2. DYNAMIC SCHEDULER FOR
SUPERSCALAR PROCESSORS

In this section, we provide background discussions for the
operations of dynamic schedulers used in superscalar processors.

Figure 3 depicts a baseline model of a superscalar
processor. The fetch unit retrieves multiple instructions from the
instruction cache and uses a branch predictor to assist in fetching
instructions speculatively over basic blocks during a clock cycle.
Subsequently, the instructions are decoded and their register
designators are renamed for resolving WAR (write after read) and

WAW (write after write) dependences. In the issue window,
instructions wait for their source operands to become available for
execution. The wakeup and select logics schedule instructions for
out-of-order execution. Instructions are committed in program
order to ensure correct completion of the executing program.

Rename LogicFetch Unit

Fetch

I Cache
B Predictor

Decoder RAT
Dep Check

Wakeup &
Select
Logics

Issue
Window

Register
File

B
ypass

D
Cache

Decode &
Allocate Rename & Insert Wakeup & Select REG Read EXE &

Bypass
D Cache
Access

Commit &
REG Write

A
llocator

Figure 3. Baseline model of a superscalar processor.

2.1 Instruction Wakeup and Selection
The wakeup logic is responsible for waking up the

instructions in the issue window when their source operands
become available. When an instruction is going to complete
execution, its destination tag is forwarded to the wakeup logic to
wake up the relevant dependent instructions. Once both source
operands are available, the wakeup logic sends a request for
execution to the instruction select logic for this instruction. The
detail of the wakeup design is discussed in Section 3.

The instruction select logic is responsible for selecting the
appropriate instructions for execution from the instructions that
have both their source operands available. Once a functional unit
becomes available, the select logic then directs a ready instruction
to that unit for execution. Many selection policies have been
presented for the case where the number of ready instructions
exceeds the capacity of the available functional units [3], for
instance, the oldest first selection algorithm [1]. When an
instruction is selected for execution, the select logic responds with
a grant signal. If the size of the issue window is n, then the grant
signals are numbered from 0 to n-1, respectively.

3. WAKEUP LOGIC DESIGNS
 We begin first by introducing a conventional CAM-based

design [1] and a bit-map RAM design [10] for the wakeup logic
and then detail our approach.

3.1 CAM-Based Scheme
Conventional wakeup logic implementation is based on

CAM (content-addressable memory) structure [1]. A CAM-based
wakeup logic is shown in Figure 4. Once an instruction has been
renamed, the allocated destination tag is inserted into the
destination tag RAM (upper part of Figure 4a). The renamed left
and right source tags are inserted into the left and right source tag
fields (Tag L and Tag R) of the issue window respectively. The
ready bits (Rdy L and Rdy R) are employed to indicate whether
the corresponding source operands are available or not.

The grant signals from the select logic are used to index the
destination tag RAM to retrieve the corresponding destination
tags. The result tag bits are then driven on the tag bus (Tag 1 to
Tag w) to the CAM array, which matches them with all the left
and right source tags in the issue window.

Figure 4b depicts a single cell of the CAM array. Two
chained inverters represent the memory cell for storing one bit of
the source tag data, while two NMOS transistors form the

354

comparison circuit required to match the source operand bit with
the result tag bit. Note that in this configuration, the memory cell
and comparison circuit are closely integrated together.

With the match line being pre-charged high, if a match
between the incoming tag and the source tag occurs, the match line
remains high. Specifically, if result tag j (1≤ j ≤w, w is the issue
width) matches with a source operand tag, then match line j
remains high. If one of the result tags (Tag 1 to Tag w) matches
with the source tag, the ready bit should be set to indicate that this
operand is available. In this way, the final ready signal (Rdy) is
formed by the OR operations of all the match lines. In contrast, if
the result tag bit is not equal to the corresponding cell bit, one of
the two comparison circuits will be turned on to pull the match
line down, that is, a mismatch occurs.

Data[0]

Data[0]

Match 1

Match w

Tag 1[0]

Tag 1[0]

Tag w[0]

Tag w[0]

... Rdy

......

Pre chg

(b)(a)

=

Tag L

=

Rdy L

OR =

Tag R

=

Rdy R

OR

T
ag

 w

=

Tag R

=

Rdy R

OR

...

T
ag

 1

Req 0

Req n-1

...

...=

Tag L

=

Rdy L

OR

Dest tag
RAM

Dest tag
Dest tag

...

Dest tag

Grant 0

...

Grant 1

Grant n-1

From
select
logic

To
select
logic

Figure 4. (a) Wakeup logic using CAM structure. (b) CAM
cell closely integrated with the matching circuit.

3.2 Bit-Map RAM Scheme
Although only a few instructions are woken up, a CAM-

based design actually matches the result tags with all of the source
tags in the issue window. Clearly, this operation is both time and
energy inefficient. The RAM scheme reduces the power
requirements during the wakeup process [10].

Figure 5 depicts a wakeup logic implemented by using bit-
map RAM structure. Two bit-map RAMs are used to store the
dependence between instructions (left and right source operands)
in the form of bit position. Each bit of the RAM structure
represents dependence between two instructions. For example, the
bit pointed to by ith column and jth (0≤ i, j ≤n-1) row in the bit-map
RAM indicates that instruction j requires a source operand from
the output of instruction i. That is, all of the instructions that
depend on instruction i form the column vector i. In this way, the
wakeup operation can be simplified to a RAM-read operation. The
read signal (grant line) selects a column of the bit vectors for
output.

The bit-map RAM is a square memory array of which the
number of row and column are identical to the size of the issue
window. The two bit-map RAMs handle the instruction wakeup
operations for the left and right operands.

Req 0

Req n-1

...

...

To
select
logic

Rdy R

Rdy L

From
select
logic

...

... ...

Grant 0

Grant 1

Grant n-1
...

Read vector (Grant)

O
utput data

Rdy L 0

n-1 Rdy R

...

0...

...

...

...

...

...

0 n-1

R
ead w

ord

i
Read vector (Grant)

O
utput data

n-1

...

...

...
...

...

...

0 n-1

R
ead w

ord

i

Figure 5. Bit-map wakeup design.

After renamed, the data dependence between the producer
and the consumer instruction is inserted into the bit-map RAMs.
As shown in Figure 6, the destination entry number (instruction j,
for instance) is used to index the RAM structure to select the write
word line. The renamed source tag (the entry number of
instruction i that produces the result as the source operand for
instruction j) is decoded to drive the corresponding write bit line.
Consequently, the bit, which is located at the ith column and the jth
row in the bit-map RAM, is set to indicate that instruction j
depends on instruction i.

In the wakeup operation, the grant signal (grant i, for
instance) from the select logic drives the corresponding read word
line to select a column (the ith column) of the RAM cells. If the
cells in the selected column have been set previously, they pull
down the read bit lines (only the jth bit line is pulled down, in this
example). The outputs of the selected column drive the ready bits
accordingly. Thus, the wakeup operation is accomplished by
means of a read operation.

Bit Map RAM Cell

write wordline

w
rit

e
bi

tli
ne

read bitline

read w
ordline

From
Decoder

Pre
Chg

Fr
om

D

ec
od

er

From
Driver

To Sense
Amplifier

...
...

...

...

D
ecoder

write wordline

Bit Map
RAM Cell

Word line driver

w
rite bitline

read w
ordline

read bitline

Decoder

Sense A
m

plifier

Dest entry # from
rename logic

Source tag # from
rename logic

Grant from
select logic

To drive
ready bit

...

...
...

...

Figure 6. Bit-map RAM circuit.

3.3 A Complexity-Efficient Design
Although the RAM-based wakeup design is more energy

efficient and faster than the CAM-based scheme, the large area
cost of the bit-map RAM may prohibit its usage in a processor
with a large issue window. In addition, using a large bit-map RAM
structure may lead to excessive wire delay in the process of future
technology [16]. To overcome this problem, we develop new
instruction wakeup logic, which is able to reduce the area used
while achieving low power and high speed requirements.

355

Figure 7 presents the proposed wakeup logic. Two sets of
the wakeup structure are used to handle instruction wakeup
operations for the left and right source operand respectively. This
wakeup logic is designed to match the source tags in the issue
window directly with the grant lines from the select logic in an
efficient manner. Each entry of the wakeup design employs the
proposed 32-bit wakeup circuit as shown in Figure 8 to perform
wakeup operation.

Tag L

=

Rdy L Rdy R
Req 0

...

...

= ==

Req n-1

Decoder
Tag R
Decoder

Tag L

=

Rdy L Rdy R

= ==

Decoder
Tag R
Decoder

Select

Logic

Grant n-1

...

Grant 0

... ...

......

...

Figure 7. The proposed wakeup logic.

In Figure 8, the 32-bit wakeup circuit matches 5-bit source
tag with 32 grant lines. The two chained inverters stand for a RAM
cell. There are five data cells for storing source tag and a valid bit
data cell to indicate whether this tag is valid or not. The 5-bit
source tag is decoded into 32 decoded output lines that are
connected to 32 match circuits. The grant input lines are
represented by the vertical lines (grant0 to grant31), each of which
runs through the match circuits to match with corresponding
decoded line. Each match circuit consists of two nMOSFET
transistors that match the decoded line with the grant line.

Tag cells

GndGnd

Match line

Gnd Gnd

Valid bit

5-32 decoder

... ...

... ...

Grant 0 Grant 15 Grant 16 Grant 31

Vdd Pre chg

To Rdy bit

Figure 8. A 32-bit wakeup circuit.

We have designed the layout of the wakeup design for an 8-
issue processor. In this layout, the decoder and the RAM cells for
source tag are placed in the center of the wakeup module. The
source tag consists of 6 RAM cell bits that has 8 write ports (for 8-
issue processor). Two sets of 16 match circuits are placed at the
left and right sides of the source tag respectively to match 32 grant
lines with 32 decoded lines.

Since the 32-bit wakeup circuit module only has 32 grant
input lines, for a larger issue window, the wakeup logic can be
built up by merging multiple lanes of 32-bit wakeup circuit to
accommodate more grant input lines. For example, wakeup logic
for a 128-entry issue window can be built up by using four lanes

of the 32-bit wakeup circuit as shown in Figure 9. The 128 grant
lines are divided into 4 groups. Each group goes into a lane of the
wakeup logic.

Lane 3Lane 2Lane 1

Rdy
bit 0

=

G
rant 0

...

Tag
Decoder

=

G
rant 31

=

G
rant 32

... =

G
rant 63

=
G

rant 64
... =

G
rant 95

=

G
rant 96

... =

G
rant 127

Tag
Decoder

Tag
Decoder

Tag
Decoder

Rdy
bit 127

=
G

rant 0
...

Tag
Decoder

=

G
rant 31

=

G
rant 32

... =

G
rant 63

=

G
rant 64

... =

G
rant 95

=

G
rant 96

... =

G
rant 127

Tag
Decoder

Tag
Decoder

Tag
Decoder

. . .

...

...

...

Lane 0
Figure 9. Proposed wakeup logic for 128-entry issue window.

After renamed, the source tag is inserted into the
appropriate location of the wakeup logic in the following way. The
destination tag is used to select one of the 128 entries of the
wakeup logic. Besides, the most significant two bits of the
renamed source tag are used to select one group out of the four to
which the least significant five bits of the source tag are written. In
other words, in each entry only the tag data in the selected lane is
valid while the tag data in the rest of the lanes are invalid. The
written 5-bit tag is decoded to drive the corresponding decoded
line that is connected to one of the 32 match circuits. In each entry,
only one decoded line is driven to wait for the corresponding grant
line while the remainders are set low to turn off the other match
circuits.

As stated previously, the select logic sends a grant signal to
trigger wakeup operations for the left and right source operand.
The grant signal is delayed for the appropriate cycles of this
execution and then is sent to the left and right wakeup structure to
wake up instructions that depend on this result. The grant lines go
through all the entries of the wakeup structure. In each entry, each
grant line connects to its match circuit that matches this grant line
with the corresponding decoded line. When both the grant line and
the corresponding decoded line become active, the match circuit
pulls the match line low to indicate that this operand is available.
If both the left and the right ready bits of an instruction are set, this
instruction sends a request for execution to the select logic as
described previously.

Compared to the CAM-based design, the proposed wakeup
logic does not need to read the destination tags and hence the
wakeup operation is faster. Additionally, the inputs of our design
are grant lines, not destination tags. At most, only w grant lines are
driven rather than x tag bits are driven. Where

w = issue width,
x = issue width × tag length.
Furthermore, only the match line that depends on the

execution result is active to drive the ready bit. Therefore, the
proposed wakeup design is not only faster than the CAM-based
design, but also more energy efficient.

356

Compared to the bit-map RAM scheme, our design
separates the RAM cells from the match circuits in order to use
only a small area for the match circuits. Although the area of the
match circuits in this design grows proportionally with the square
of the size of the issue window, the area of the separated RAM
cells grows only linearly with the increasing of the issue window.
Hence, the proposed design drastically reduces the area
requirement unlike the case of bit-map RAM that all grows
proportionally with the square of the issue window size.

4. EXPERIMENTAL EVALUATION
In this section, we present the evaluation methodology and

the results of power consumption, timing analysis, and area cost
for the three designs.

4.1 Experimental Methodology
 We used the Wattch simulator [6] to simulate the power

consumptions of the three wakeup designs. The Wattch simulator
is a tool based on SimpleScalar [7] for extracting the relative
power consumptions of individual components in a superscalar
processor. In Wattch, the data cell of source tag in the proposed
design was modeled as conventional RAM cell and the match
circuit of the proposed design was modeled as the match circuit in
CAM structure. In addition, the RAM cell of bit-map structure was
extended from the conventional RAM cell. Other parameters for
the Wattch simulator include 1GHz clock frequency, 1.8V Vdd,
and 0.18µm technology process.

Table 2 presents the architectural parameters for three
different issue-width processors evaluated in this study.
Architectural simulation was conducted using 7 integer and 9
floating point benchmark programs as specified by the SPEC2000
[8]. The test input set was used for all the selected SPEC2000
benchmark programs. Additionally, five Media-bench programs
[11] were employed to obtain an even more comprehensive
evaluation of the three designs. All the ported benchmark
programs were compiled with full optimization (-O4) and were run
to completion.

 The Avant! Hspice tool was used to extract timing data for the
circuit level designs. The Hspice circuit model was based on the
one proposed by Ernst and Austin [5]. Finally, the parameters of
CMOS transistors and wires in three designs all conformed to the
design rules of TSMC 0.18µm process. The area sizes of the cells
in three designs were based on the model in [9].

4.2 Power Consumption Statistics
Figure 10 presents the comparisons of power consumptions

for the three wakeup logics in an 8-issue processor that has 64
entries issue window. The results indicate that the proposed design
consumes the least amount of energy. Specifically, its power
consumption is only 20% that of the CAM-based design and 80%
that of the bit-map RAM design.

Additionally, the power consumptions of the three designs
were also evaluated for 4-issue and 16-issue processors; the results
are shown in Table 3. For the 16-issue 128-entry issue window
processor, the proposed design only consumes approximately 14%
of the power taken by the CAM-based design and approximately
46% of the power consumed by the bit-map RAM design.
Regarding the 4-issue 32-entry issue window processor, the
proposed scheme consumes about 26% of the power of the
conventional CAM-based design. Because of the small load
capacitances of the word line and bit line, the bit-map RAM
scheme has the best power consumption of the three wakeup
designs in a 32-entry 4-issue processor.

0

200

400

600

800

1000

gz
ip vp

r

gc
c

m
cf

pa
se

r

vo
rte

x

bz
ip

2

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a ar
t

eq
ua

ke

am
m

p

ap
si

ad
pc

m

ep
ic

g7
21

m
pe

g2

pe
gw

it

P
ow

er
 c

on
su

m
pt

io
n

(m
w

)

CAM Bit map RAM Proposed design

Figure 10. Power consumptions for the three designs.

Table 2. Architectural parameters
Dispatch, issue, commit width 4 8 16

Issue window size/ LSQ size 32/ 8 64/ 16 128/ 32

Functional units 4 IALU, 1 IMUL, 2 FALU,

1 FMUL, 2 LSU

8 IALU, 2 IMUL, 4 FALU,

2 FMUL, 4 LSU

16 IALU, 4 IMUL, 8 FALU,

4 FMUL, 8 LSU

L1 I-cache/ L1 D-cache 4-way, 64KB, 32-byte line, 1-cycle latency/ 4-way, 64KB, 32-byte line, 1-cycle latency

L2 cache/ TLB 4-way, 256KB, 64-byte line, 10-cycle latency/ 4-way, 128-entry, 4KB page size

Memory width and latency 64-bit wide, 75 cycle latency, 4-cycle burst

Branch predictor Combination of bimodal and 2-level global predictor/ 2048-entry bimodal 8-bit history, 2048-entry level 2
1024-entry chooser/ 4-way, 1024-entry BTB/ 16-entry RAS(return address stack)/ 8-cycle penalty

357

0

300

600

900

1200

1500

1800

32-entry 64-entry 128-entry 32-entry 64-entry 128-entry 32-entry 64-entry 128-entry

4-issue 8-issue 16-issue

W
ak

eu
p

lo
gi

c
 d

el
ay

 (p
s)

CAM Bit map RAM Proposed design

Figure 11. Latency of three different wakeup logics (ps)

4.3 Circuit Timing Result
Figure 11 shows that the latency of the proposed wakeup

logic is 20% to 50% less than that of the bit-map RAM design and
60% to 90% less than that of the CAM-based design for the
various configurations of processor. That is, the speed of the
proposed wakeup design is the fastest among the three designs.
Figure 12 presents the IPns (instructions per nano-second) for
processors with three different wakeup schemes. The results reveal
that the IPns of the processor with the proposed wakeup design is
about 2.5 times greater than that with the CAM-based design and
1.2 times greater than that with the bit-map RAM design.

0

3

6

9

12

gz
ip vp
r

gc
c

m
cf

pa
se

r

vo
rte

x

bz
ip

2

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a ar
t

eq
ua

ke

am
m

p

ap
si

ad
pc

m

ep
ic

g7
21

m
pe

g2

pe
gw

it

IP
ns

CAM
Bit map RAM
Proposed design

Figure 12. IPns for 8-issue 64-entry issue window processor.

4.4 Area Size Tradeoff

Figure 13 shows the area sizes of the three designs. The area of the
CAM-based design is the smallest of the three for the 4-issue and
8-issue processors. For the 16-issue processor, the size of the
CAM structure increases because it needs 16 ports for destination
tags and 16 write ports for source tags for each CAM cell. In this
case, the area of the CAM-based design is larger than that of the
proposed design.

The area of the bit-map RAM wakeup logic becomes
unacceptably large as the window size increases since it is
proportional to the square of the issue window size. The area of
the 128-entry bit-map RAM design is approximately 5 to 6 times
of the CAM-based design.

Table 3. Power consumption statistics (mw)
 4-issue 32-entry processor 8-issue 64-entry processor 16-issue 128-entry processor

 CAM Bit-map RAM Proposed design CAM Bit-map RAM Proposed design CAM Bit-map RAM Proposed design
gzip 204 43 52 870 216 173 4623 1388 634

vpr 205 45 53 873 209 171 4604 1406 637
gcc 194 41 52 813 209 171 4259 1358 631
mcf 191 41 52 814 210 172 4319 1373 632
paser 196 42 52 822 212 172 4335 1367 632
vortex 200 43 52 831 218 173 4312 1399 636
bzip2 203 45 53 848 227 175 4450 1424 639
Int. avg. 199 43 52 839 214 172 4457 1392 635
wupwise 202 43 52 860 217 173 4511 1401 636
swim 193 40 51 819 206 171 4353 1360 631
mgrid 196 42 52 836 211 172 4399 1368 632
applu 205 43 52 878 218 173 4681 1403 636
mesa 207 44 53 886 212 174 4717 1417 638
art 181 37 51 782 198 169 4207 1326 627
equake 195 41 52 839 209 171 4440 1365 631
ammp 181 38 51 756 197 169 3950 1307 624
apsi 205 43 52 839 218 146 4695 1406 637
F.P. avg. 196 41 52 833 210 169 4439 1373 632
adpcm 196 39 51 832 202 170 4384 1321 626
epic 205 43 53 868 217 174 4583 1399 636
g721 205 43 52 873 220 174 4599 1389 635
mpeg2 205 45 53 868 222 174 4622 1430 640
pegwit 208 45 53 884 221 175 4661 1426 636
Med. avg. 204 43 52 865 216 173 4570 1393 635
Total avg. 199 42 52 842 213 171 4474 1385 634

358

0

20,000

40,000

60,000

80,000

32-entry 64-enry 96-entry 128-entry

4-issue

Ar
ea

 (u
m

2)

0

100,000

200,000

300,000

32-entry 64-entry 96-entry 128-entry
0

300,000

600,000

900,000

32-entry 64-entry 96-entry 128-entry

CAM

Bit map
RAM

Proposed
design

8-issue 16-issue

Figure 13. Areas of three wakeup logics (µµµµm2).

On the other hand, the proposed wakeup logic uses much
less area than the bit-map RAM design. In the 16-issue processor,
the area of the proposed wakeup logic is the smallest among the
three designs.

5. RELATED WORK
Many previous researches have attempted to reduce the

complexity of the dynamic scheduler. Folegnani and González
presented a scheduler that dynamically manages the size of issue
window and gates off needless (e.g. empty entries and those
entries that are ready for execution) wakeup activities [12]. Ernst
and Austin proposed a scheduler that employs less tag
comparators to reduce the complexity of the scheduler. This
scheduler also has a last tag speculator to reduce the frequency of
tag matching [5]. Huang and et al. proposed an index-based
scheduler [14], which employs producer instruction pointer and
consumer instruction pointer to index the instructions that should
be woken up, to improve the energy efficiency of the scheduler.
However, this scheduler must work together with a conventional
CAM structure.

Kim and Lipasti proposed a sequential wakeup mechanism
to reduce the complexity of scheduler [15]. In this mechanism, the
last-arrival operand is placed into the fast wakeup entry and two
(left and right) source operands of an instruction are woken up in
two sequential steps. The sequential wakeup logic enables a higher
clock frequency by reducing the load capacitance of tag driver in
the wakeup logic. Henry and et al. presented a cyclic segmented
prefix (CSP) circuit to improve the performance of wakeup logic
[17]. Ernst and et al. also proposed a Cyclone scheduler that
predicts the operand arrival time and schedules instructions in a
countdown cyclic queue. This scheduler reduces the area cost of
scheduler and boosts the clock frequency with a small IPC
degradation [13]. Other works [18][19][20] reduced the
complexity of scheduler by scheduling dependent instructions into
data-flow based issue window.

6. CONCLUSIONS
This paper presents an energy-efficient wakeup design for

the dynamic scheduler of high-performance superscalar
processors. The proposed wakeup scheme reduces the wakeup
latency and power consumption by matching source tags directly
with the grant lines. This design eliminates the read operation of
destination tag and reduces the number of tag lines to be driven in
wakeup operation. In addition, this scheme is more efficient for tag
matching since only one match circuit is turned on for each match.
Furthermore, the proposed design separates the RAM cells from
the match circuits to reduce the area cost.

The simulation results show that on average for three
different issue-width processors, the proposed design saves power
consumption by 80% and 18% respectively compared to the
conventional CAM-based wakeup logic and the bit-map RAM
design. The proposed design enables an average saving of 77% in
the wakeup latency compared to the conventional CAM-based
design and an average latency saving of 33% compared to the bit-
map RAM design. For area cost, the proposed design is only 29%
of the bit-map RAM design and approximately 1.7 times of the
CAM-based design for a 128-entry issue window processor.

In conclusion, the results have confirmed that the proposed
wakeup scheme greatly improves the power consumption and
reduces the latency of conventional wakeup schemes with a
moderate area cost.

ACKNOWLEDGEMENT
The work in this paper is in part supported by the research

grant under NSC 93-2220-E-006-004, Taiwan, ROC.

7. REFERENCES
[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying

the Complexity of Superscalar Processors,” Tech.Rep. CS-
1328, University of Wisconsin-Madison, May 1997.

[2] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power
considerations in the design of the alpha 21264
microprocessor,” Proceedings of the Design Automation
Conference (DAC), June 1998.

[3] M. Butler and Y. N. Patt, “An Investigation of the
Performance of Various Dynamic Scheduling Techniques,”
25th Annual International Symposium on
Microarchitecture, December 1992.

[4] S.H. Gunther, “personal communication,” Intel
Corporation, May 2003.

[5] D. Ernst and T. M. Austin, “Efficient dynamic scheduling
through tag elimination,” 29th Annual International
Symposium on Computer Architecture, May 2002.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” 27th Annual International Symposium on
Computer Architecture, June 2000.

[7] D. Burger and T. M. Austin, “The SimpleScalar tool set,
version 2.0,” Tech. Rep. CS-1342, University of Wisconsin-
Madison, June 1997.

[8] SPEC System Performance Evaluation Committee,
www.spec.org.

[9] G. Reinman and N. P. Jouppi, “CACTI 2.0: An Integrated
Cache Timing and Power Model,” Tech. Rep. Compaq
Western Research Lab, February 2000.

[10] M. Goshima et al., “A High-Speed Dynamic Instruction
Scheduling Scheme for Superscalar Processors,” 34th
Annual International Symposium on Microarchitecture,
December 2001.

[11] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating Multimedia and

359

Communications Systems,” 30th Annual International
Symposium on Microarchitecture, December 1997.

[12] D. Folegnani and A. Gonzalez, “Energy-Effective Issue
Logic,” 28th Annual International Symposium on
Computer Architecture, July 2001.

[13] D. Ernst, A. Hamel, and T. Austin, “Cyclone: A Broadcast-
Free Dynamic Instruction Scheduler with Selective
Replay,” 30th Annual International Symposium on
Computer Architecture, June 2003.

[14] M. Huang, J. Renau, and J. Torrellas, “Energy-Efficient
Hybrid Wakeup Logic,” International Symposium on Low
Power Electronics and Design, August 2002.

[15] I. Kim and M. H. Lipasti, “Half-Price Architecture,” 30th
Annual International Symposium on Computer
Architecture, June 2003.

[16] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of
Wires,” Proceedings of the IEEE, 89(4):490-504, April
2001.

[17] D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami,
“Circuits for Wide-Window Superscalar Processors,” 27th
Annual International Symposium on Computer
Architecture, June 2000.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-
effective superscalar processors,” 24th Annual
International Symposium on Computer Architecture, June
1997.

[19] P. Michaud and A. Seznec, “Data-flow prescheduling for
large instruction windows in out-of-order processors,” 7th
IEEE International Symposium on High Performance
Computer Architecture, January 2001.

[20] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A
Scalable Instruction Queue Design Using Dependence
Chains,” 29th Annual International Symposium on
Computer Architecture, May 2002.

360

