
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 17, 445-461 (2001)

A Systematic Approach for Parallel CRC Computations

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN
*

AND HSIN-FU LO

Department of Electronic Engineering
National Yunlin University of Science and Technology

Yunlin, Taiwan 640, R.O.C.
E-mail: shiehm@cad.el.yuntech.edu.tw
*Department of Electrical Engineering

National Cheng-Kung University
Tainan, Taiwan 701, R.O.C.

Cyclic redundancy codes (CRCs) form a powerful class of codes suited especially
for the detection of burst errors in data storage and communication applications. In the
traditional hardware implementation, a simple shift-register-based circuit performs the
computation by handling the data one bit at a time. Parallel implementation can per-
form the necessary logic operations much faster than the serial implementation, therefore,
it is very suitable to be applied in today’s high-speed systems employing CRC checking.
In this paper, we describe the ways toward accomplishing two types of circuit design for
parallel CRC computations. Our approach is to systematically decompose the original
input message into a set of subsequences based on the theory of Galois field. Parallel
CRC computations can then be achieved by inputting those subsequences at the same
time and employing the lookahead technique for those subsequences to speedup compu-
tation. The resulting hardware implementations are very flexible with the characteris-
tics of modular design and scalable structure to fulfill different levels of parallelism in a
single circuit for parallel CRC computation.

Keywords: parallel cyclic redundancy code (CRC) computation, Galois field, linear
feedback shift register (LFSR), VLSI design, error control code

1. INTRODUCTION

Cyclic redundancy codes (CRCs) [1, 2], widely used in data communications and
storage devices, provide some attractive properties to handle errors, especially for the
detection of burst errors. In those applications employing CRC checking, a frame check
sequence (FCS), generated by using CRC, is appended at the end of each message during
transmission and the integrity of the transmitted message with the associated FCS is
checked by the receiver for proper transmission. Generally, CRC implementations can
use either hardware or software methods [3, 4]. Software implementations of CRC en-
coding/decoding do not resort to dedicated hardware requirements; however, their appli-
cability is limited to lower encoding rates. In traditional hardware implementations, a
simple shift register associated with a specific exclusive-OR (XOR) circuit, which is also
known as a linear feedback shift register (LFSR), performs the computations by handling

Received July 26, 1999; revised October 25, 1999; accepted January 4, 2000.
Communicated by Youn-Long Lin.

445

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO446

the data one bit at a time. As the demands of high transmission rate requirement in
various applications, the need of a simple and systematic method to rapidly calculate the
CRC becomes a practical issue from both industrial and academic points of views.

Parallel CRC implementation can perform the necessary logic operations much
faster than conventional serial implementation. In [4-6], the problem of parallel im-
plementations is solved by empirically emulating the state transitions in the shift register
during a fixed length r of incoming serial data. In other words, they investigated how
the content of a particular linear feedback shift register is modified after r clock pulses.
Then, either a lookup ROM table or a XOR tree is constructed for the r input data by
assuming that they are accessed in parallel. Albertengo [7] designed the parallel CRC
encoders based on digital system theory and z-transforms, which allows designers to de-
rive the logic equations of the parallel encoder circuit for any generator polynomial.
Glaise [8] used the theory of Galois Fields GF(2m) and employed a GF multiplier for
parallel CRC calculation. By inspecting the operations of the single-input LFSR, Pei [9]
derived the state transition equation for the parallel CRC circuit by merging a number of
the shift and modulo-2 (XOR) operations together within a single clock cycle. Basi-
cally, the main concept is also to emulate the state transitions in the shift register during a
fixed length of serial data. Based on the presented prototype CRC circuit, the authors
analyzed the potential speedup and hardware overhead for seven polynomial generators
with different r-values. In [10], a 32-bit parallel CRC engine coping with the layout
routing and optimization of the XOR tree is presented assuming that the state transition
equations with 32 parallel inputs are given for the CRC polynomial [11].

In this paper, we present a simple but systematic approach for parallel CRC compu-
tation based on the theory of Galois field and use the lookahead technique to accomplish
circuit design. First, the original input message systematically decomposed into a set of
subsequences based on properties of the finite field. Parallel CRC computations are
then achieved by inputting those subsequences at the same time and employing the loo-
kahead technique to skip the introduced consecutive zeros within those subsequences to
speedup computation. Compared with the previous works, our approach is very flexible
in terms of design methodology and applications, and is suitable for modular design in
VLSI implementation. In particular, the developed architecture and the resulting im-
plementation can be easily extended to fulfill different levels of parallelism in a single
circuit for parallel CRC computation. And, these properties are very useful when ap-
plied in the intellectual property (IP) design paradigm.

The paper is organized as follows. In Section 2, we briefly review the theory of fi-
nite field and CRC computation related to this work. Then, the ways toward accom-
plishing two types of circuit design for parallel CRC computations based on the theory of
Galois field and the lookahead technique are derived in Section 3. Section 4 describes
the corresponding hardware implementation and evaluation of our development. Fi-
nally, we conclude this paper in Section 5.

2. FINITE FIELD AND CRC BACKGROUND

Let the original message M = (m0, m1, …, mk-1) contain k digits and n represent the
length of a linear block code C = (c0, c1, …, cn-1) ∈ C*. An (n, k) linear code C* is

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 447

called a cyclic code if every cyclic shift of a code vector in C* is also a code vector of
itself [1, 2]. In general, the basic properties of cyclic codes can be derived through ma-
nipulations of the polynomial representations of M and C. Specifically, if M(x) = m0 +
m1x + … + mk-1x

k-1 is the message polynomial associated with M and the code polyno-
mial C(x) = c0 + c1x + c2x

2 + … + cn-1x
n-1, then the properties of a cyclic code are char-

acterized by the associated generator polynomial G(x) of degree n-k, i.e., G(x) = 1 + g1x
+ … + gn-k-1x

n-k-1 + xn-k. It follows that every code polynomial C(x) in an (n, k) cyclic
code can be expressed as C(x) = M(x) G(x).

Cyclic redundancy codes (CRCs), also known as shortened cyclic codes, take ad-
vantage of the considerable burst-error detection capability provided by cyclic codes.
In practical applications, the code word is usually arranged in the systematic form that is
achieved based on the equation C(x) = xn-kM(x) + S(x), where S(x) is the remainder or
syndrome obtained through dividing xn-kM(x) by G(x). In this way, the rightmost k dig-
its of each code vector are the unaltered information digits and the leftmost n-k digits are
parity-check digits. A systematic code thus corresponds to the code vector (s0, s1, …,
sn-k-1, m0, m1, …, mk-1), which can be accomplished with a division circuit. The division
circuit is a linear (n-k)-stage shift register with feedback connections based on G(x).

The general classes of cyclic codes can be implemented using shift-register-based
circuits. The only difference between the CRCs and cyclic codes is that CRCs can have
arbitrary length up to a limit N, the length of the original cyclic code defined by G(x).
Fig. 1 conceptually depicts the encoding of an (n, k) cyclic code or CRC in the system-
atic form, where the storage elements (D flip-flops) are connected in the form of a shift
register and the symbol ⊕ denotes a modulo-2 adder (XOR gate). A feedback connec-
tion exists if the corresponding coefficient gi of G(x) is one. Shifting the message M(x)
into the circuit from the right end is equivalent to premultiplying M(x) by xn-k. As soon
as the complete message has entered the circuit with switches S1 and S3 closed and S2

connected to point a, the n – k digits in the register form the remainder and thus they are
the parity-check digits. The contents in the register are then shifted out with switches
S1 and S3 opened and S2 connected to point b. If the flip-flops are initialized to other
values instead of zeros, the only change required in the system is in the remainder that
the receiver is looking for.

D D D D

g1 g2 gn-k-1

S1

S2Input message m0, m1, ..., mk-1

a

b C(x)S3

Fig. 1. Encoding of an (n, k) cyclic code based on the generator polynomial G(x).

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO448

It is also possible to design a systematic encoder based on the coefficients of the
code’s parity polynomial H(x) = 1 + h1x + … + hk-1x

k-1 + xk, where H(x) is derived based
on the equation G(x)H(x) = xn + 1. As shown in [1], multiplying C(x) by H(x), we ob-
tain

C(x)H(x) = M(x)G(x)H(x) = M(x)(xn + 1) = M(x) + xnM(x). (1)

Because the degree of M(x) is k – 1 or less, the coefficients of xk, xk+1, …, xn-1 in C(x)H(x)
should be equal to zero. As a result, the following n-k equalities can be derived:

0
0

=∑
=

−−

k

i
jini ch , for 1 ≤ j ≤ n-k and h0 = hk = 1. (2)

Since hk =1, the equalities of (2) can be rewritten as

∑
−

=
−−−− =

1

0

k

i
jinijkn chc , for 1 ≤ j ≤ n-k and h0 = 1. (3)

For a systematic code, the high-order codeword coordinates ci are provided by the
message M(x), i.e., ci = mk+i-n for n-k ≤ i ≤ n-1, and the remaining coordinates are then
computed recursively using equation (3). Fig. 2 shows the encoding of an (n, k) cyclic
code in systematic form using the parity polynomial H(x), where the feedback connection
is determined by the coefficient hi of H(x). The operation consists of two major steps.
Step I: The meassage M(x) is shifted into the k storage elements with switches S2 opened
and S1 closed. Step II: The remaining (n-k) coordinates are then generated by using
equation (3) with switches S2 closed and S1 opened.

D D D

h1h2hk-1

S1

S2

Input message
m0, m1,..., mk-1

D

hk-2

Output codeword C(x)

Fig. 2. Encoding of an (n, k) cyclic code based on the parity polynomial H(x).

Comparing the two encoding circuits, it can be concluded that for codes with more
parity-check digits than the message digits, the k-stage encoding circuit (Fig. 2) is more
economical; otherwise the (n-k)-stage encoding circuit (Fig. 1) is preferable. For cur-
rent CRC applications, the (n-k)-stage encoding circuit is commonly applied because that
the number of parity-check digits is much smaller than the number of message digits.
For completeness, we investigate these two types of implementation for parallel CRC
calculation in this paper. And, Figs. 1 and 2, respectively, are referred to as the Type-I
and Type-II implementations in our development.

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 449

3. DEVELOPED METHODS FOR PARALLEL CRC COMPUTATIONS

In this section, we present two types of design methodologies for parallel CRC
computations based on the theory of Galois field and the lookahead technique. It is
assumed that (1) the length of the input message M is k bits, (2) the generator polynomial
G(x) is of degree (n-k), and (3) r bits of M are to be encoded/decoded simultaneously.
On the communication channel, the first message bit is assumed to be the coefficient of
the highest power of x, and successive bits correspond to decreasing powers of x (the last
bit goes with the zero power of x). In practice, the least significant data bit is transmit-
ted first such that it becomes the most significant bit for CRC computations. Without
loss of generality, it is assumed that the bit with the highest power of x is transmitted first
in this paper, i.e., the k message bits are fed into the encoder in order of decreasing index.

3.1 Parallel CRC Computation Based on the Polynomial Generator G(x)

For parallel CRC computation based on the Type-I implementation, it is further as-
sumed that (1) the length of the original message is divisible by the specified value r, i.e.,
k mod r = 0, and (2) the value r is less than the degree (n-k) of the generator polynomial.
In practical applications, the first assumption is usually satisfied because multiple bits,
e.g. a byte, of the message are received in parallel and encoded/decoded to generate the
CRC at the same time. In general, if k mod r ≠ 0, the final CRC (syndrome) can also be
derived by setting a proper initial state to eliminate the effect of adding extra p zeros
such that (k + p) mod r = 0 when the value p is fixed and known in advance. The same
concept is also applied in different applications like CRC-32 [11], in which the transmit-
ter and the receiver initialize the remainder value to all 1’s before CRC accumulation
starts. The second assumption is to take into account the hardware implementation
discussed in this paper.

Based on the property of linear code, the original input message M(x) can be de-
composed into a linear combination of r subsequences and we use the symbol Mi(x) to
represent the subsequence i. In this way, we can derive the following equation.

M(x) = m0 + m1x + … + mk-1x
k-1 = M0(x) + M1(x) + … + Mr-1(x),

where Mi(x) = ∑
−

=

+×
+×

1)/(

0

rk

j

irj
irj xm = mi xi+ mr+ix

r+i + m2r+ix
2r+i +… + mk-r+ix

k-r+i. (4)

The missing bit mq, q ∉{i, r+i, …, k-r+i}, can be treated as a zero coefficient in Mi(x).
When M(x) is multiplied by xn-k, equation (4) becomes

xn-kM(x) = xn-k(M0(x) + M1(x) + … + Mr-1(x))

= ∑∑
−

=

+×
+×

−

=

−
1)/(

0

1

0

rk

j

irj
irj

r

i

kn xmx

= ∑∑
−

=

−×+
+×

−

=

+−−−
1)/(

0

1)1(
1

0

)1(
rk

j

rj
irj

r

i

irkn xmx

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO450

=)(
1

0

)1(xMx i

r

i

irkn
∑

−

=

+−−−

where ∑
−

=

−×+
+×=

1)/(

0

1)1()(
rk

j

rj
irji xmxM = mi xr-1+ mr+i x

2r-1 + m2r+i x
3r-1 +…+ mk-r+i x

k-1. (5)

In other words, the k bits in the original message M(x) is first uniformly distributed
into r subsequences, Mi(x) for 0 ≤ i ≤ (r-1), each consisting of k/r bits. By properly ma-
nipulating xn-kM(x) based on equation (5), the)(xM subsequences can then be derived.
The salient features of the)(xM subsequences are that (a) they have the same polynomial
representations, i.e. the combination of the power of x for the possible nonzero bits is
the same, and (b) there exists (r-1) consecutive zero coefficients between two adjacent
message bits as shown in equation (5). Table 1 illustrates the relationship among M(x),
Mi(x) and)(xM for k = 16 and r = 4. With the relationship in mind, it is recognized that
if r possible nonzero bits with the same power of x in r subsequences of)(xM are
encoded/decoded in parallel at the same time, then exactly (r-1) consecutive zeros exist
in each)(xM subsequence before the next possible nonzero bit comes in.

Table 1. The relationship among M(x), Mi(x) and)(xMi
for k = 16 and r = 4.

degree x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

M(x) m15 m14 m13 m12 m11 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0

M3(x) m15 0 0 0 m11 0 0 0 m7 0 0 0 m3 0 0 0

M2(x) 0 m14 0 0 0 m10 0 0 0 m6 0 0 0 m2 0 0

M1(x) 0 0 m13 0 0 0 m9 0 0 0 m5 0 0 0 m1 0

M0(x) 0 0 0 m12 0 0 0 m8 0 0 0 m4 0 0 0 m0

)(3 xM m15 0 0 0 m11 0 0 0 m7 0 0 0 m3 0 0 0

)(2 xM m14 0 0 0 m10 0 0 0 m6 0 0 0 m2 0 0 0

)(1 xM m13 0 0 0 m9 0 0 0 m5 0 0 0 m1 0 0 0

)(0 xM m12 0 0 0 m8 0 0 0 m4 0 0 0 m0 0 0 0

Based on the derivation, the syndrome S(x), also referred to as the remainder or par-
ity-check bits, of the CRC can be expressed as

S(x) = xn-kM(x) mod G(x)

=)(
1

0

)1(xMx i

r

i

irkn
∑

−

=

+−−−
mod G(x)

=))(...)()((11
2

0
1 xMxxMxxMx r

knrknrkn
−

−+−−+−− +++ mod G(x). (6)

As shown in [1], premultiplying)(xM ι by xn-k-(r-1)+i can be accomplished by shifting
)(xM ι into the (r-1-i)th position of the circuit counting from the right end. Fig. 3

shows a possible implementation of the parallel CRC calculation. For clarity, the con-
trolling switches are not shown in the Fig. and they are operated in the same manner as

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 451

those of the single-input case in Fig. 1. However, the implementation of Fig. 3 does not
achieve speed advantage over the one depicted in Fig. 1. In the following, we show
how to take advantage of (r-1) consecutive zeros in)(xM ι and apply the lookahead tech-
nique to speedup the parallel CRC computation. The basic concept of the lookahead
technique can be stated as follows. When r possible nonzero bits with the same power
of x in r subsequences of)(xM ι are to be processed in parallel, effects of the aligned (r-1)
consecutive zeros in each)(xM ι subsequence in the following (r-1) time steps can be
taken into considerations at the same time. As a result, we can look ahead (r-1) time
steps, merge the operations of r consecutive time steps in a single clock cycle and then
proceed to the next r possible nonzero bits. Theoretically, a potential speedup ratio of r
can be achieved by employing the lookahead techniques on the r subsequences of

)(xM ι .

D D

g1 gn-k-1

m0, ..., mk-2r, 0...0, mk-r

D

M0 M1 Mr-2
Mr-1

gn-k-(r-2)gn-k-(r-1)

mr-1, ..., mk-r-1, 0...0, mk-1

(r-1) zeros (r-1) zeros

0 n-k-1n-k-r+1

Fig. 3. A possible implementation for parallel CRC computation (Type I).

Let the D flip-flops (in Fig. 3) be labeled from 0 to n-k-1 starting from the left end
and si(t) represent the current stored value (state) in the D flip-flop i at time step t. For
all zero inputs from)(xMi at the present time, the LFSR becomes autonomous, i.e., it is
equivalent to have no inputs except for clocks, and the next states of the flip-flops can be
expressed in matrix form as

S(t+1) =

()
()
()

()
()

()
()
()

()
()

×

=

+
+

+
+
+

−−

−−

−−

−−

−−

−−

ts

ts

ts

ts

ts

g

g

g

g

ts

ts

ts

ts

ts

kn

kn

kn

kn

kn

kn

1

2

2

1

0

1

2

2

1

1

2

2

1

0

1000

0000

0010

0001

10000

1

1

1

1

1

M

L

L

MMLMMM

L

L

L

M
= Tg×S(t). (7)

The transformation matrix Tg is characterized by the selected generator polynomial G(x)
and can be treated as a one-order lookahead matrix for a set of zero inputs coming in at
time step t. When considering the r possible nonzero inputs from)(xM ι at the present
time step and applying the lookahead technique for the following (r-1) time steps, the

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO452

internal states are updated based on the following equation.

))()(()))()((()1(1 tItSTtItSTTtS r
gg

r
g ⊕=⊕=+ −

where T
knrrtkrtkrtk mmmtI)(11)1(1)1()1(],,,|0[)(−×−++−++−+−= L and 0 ≤ t ≤ k/r – 1. (8)

In equation (8), the next state S(t+1) denotes the updated internal states in a single
clock cycle because the r message bits with the same weight, i.e. the power of x, taking
from each)(xMi and the following (r-1) consecutive zero vectors are actually proc-
essed in a single time step. Throughout this paper, we will use the notation S(t+1) to
represent the next state after triggering the clock signal once. The operation Tg(S(t) ⊕
I(t)) is to take into account the r message bits, while the operation Tg

r-1 is to deal with the
foreseen (r-1) consecutive zero vectors. It can be seen that starting from time step t = 0,
the final remainder is derived after k/r clock cycles. A potential speedup factor r can
then be achieved in parallel implementation compared with the serial-input counterpart.
Based on equation (8), we know exactly the changes of internal states of the flip-flops in
the course of parallel CRC computation. Note that similar results can also be found in
[9, 10] because the final value of CRC computation should be the same. But, in the
paper we show the detailed procedures of parallel CRC computation from a different
point of view. The procedure is simpler and extendable for a variety of applications as
shown in the following section. Fig. 4 shows the conceptual implementation of parallel
CRC computation with the applied lookahead technique. The detailed implementation
of the lookahead function block will be described in next section.

D DD

0 n-k-1n-k-2

D

n-k-r

mk-(t+1)r mk-(t+1)r+r-2 mk-(t+1)r+r-1

Tg
r (Lookahead Function Block)

Input Block

Fig. 4. Implementation of parallel CRC computation (Type I).

3.2 Parallel CRC Computation Based on the Parity Generator H(x)

This subsection presents the parallel CRC computation based on the Type-II im-
plementation. Fig. 5 depicts the simplified block diagram of encoding cyclic code
based on the parity polynomial H(x), in which the storage elements are labeled from 0 to
k-1 starting from the left end and the parameters si, 0 ≤ i ≤ k-1, represent the internal
states of the storage elements. The functional block Th is characterized by the parity
polynomial as described below. For accessing multiple message bits and generating
parity-check bits in parallel, the operations of the encoding circuit must accomplish the

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 453

two major steps as described in the serial-input counterpart. For simplicity of explana-
tion, it is also assumed that the conditions, k mod r = 0 and (n-k) mod r = 0, are satisfied
for parallel CRC computation.

S1

S2

Input message
m0, m1,..., mk-1

Output codeword C(x)

k-bit shift register

Th function block

Internal states.s0 s1 s2 sk-1sk-2

Fig. 5. The simplified block diagram of Type II encoding circuit.

From hardware implementation points of view, if the length of the original message
is divisible by r, i.e., k mod r = 0, the serial-input shift register of length k can be recon-
structed as r single-input shift registers of length k/r for inputting r message bits at the
same time. Let the input message M(x) be divided into r subsequences Ii for 0 ≤ i ≤ r-1.
The resulting subsequence Ii is similar to)(xMi defined in equation (5) except that we
ignore the (r-1) consecutive zeros between two adjacent message bits. In other words,
the subsequence Ii is represented as (mi, mr+i, m2r+i, …, mk-r+i) and the r bits are taken
from r subsequences, one bit at a time from the higher-order to lower-order bits of each
subsequence Ii.

After the registers are fully loaded with the k message bits, the controlling switches
change states and the parity-check bits are then generated based on the parity polynomial
H(x) of the autonomous LFSR, i.e., it has no inputs except for clocks. If the par-
ity-check bits are generated one at a time, then the next states of the flip-flops can be
updated based on the following equation

S(t+1) =

()
()
()

()
()

()
()
()

()
()

×

=

+
+

+
+
+

−

−

−−−

−

−

ts

ts

ts

ts

tshhhh

ts

ts

ts

ts

ts

k

k

kkk

k

k

1

2

2

1

01321

1

2

2

1

0

01000

00000

00010

00001

1

1

1

1

1

1

M

L

L

MMLMMM

L

L

L

M
= Th×S(t). (9)

Similar to the Type I implementation for parallel CRC computation, if r parity-check bits
are to be computed at each time step, then the lookahead technique is applied to update
the internal states of the flip-flops, and the lookahead equation can be expressed as

S(t+1) =))((1 tSTT h
r

h ×− = Th
r×S(t). (10)

Fig. 6(a) shows the implementation of the Type II encoding circuit, which has the

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO454

properties of modular design and easily applied for a variety of applications, e.g., the
lookahead stages can be arranged in a similar manner as the Type-I encoding circuit
shown in the next section. The T_MUX module depicted in Fig. 6(b) is designed to
take into accounts both the access of input message and the autonomous behavior of the
LFSR. Initially, the CM is set to select the input Ii(t) such that the circuit will receive r
input message bits at the same time until the whole input message bits are stored in the
register. After that, the value of CM is changed and r bits of the parity-check bits are
generated at each time step, thus completing the process of parallel CRC generation. It
should be noted that if k mod r ≠ 0 or (n-k) mod r ≠ 0, a similar circuit could be derived
in the same way at the expense of adding extra control signals for data multiplexing and
selection.

C(t)

T_MUX

I(t)

k-bit
Register

S(t)

k bits

k bits

CM

M
U
X

k bitsk bits
T_MUX

r bits

Lookahead
Function Block

Th
r

I0(t)
r bits
(LSB)

r bits

(r-2) stages

Ir-1(t)

(a)

T_MUX

Th

M
U
X

s'k-1(t)

s'0(t)

s'1(t)

s'k-2(t)

s'k-3(t)

s'k-1(t+1)

s'0(t+1)

s'1(t+1)

s'k-2(t+1)

s'3(t+1)

Ii(t) CM

(b)
Fig. 6. Parallel CRC computation for Type II encoding circuit; (a) modular design of the circuit,

and (b) implementation of the T_MUX module.

4. HARDWARE IMPLEMENTATION AND
PERFORMANCE EVALUATION

Because the two types of parallel CRC computations have similar behavior and the
Type-I encoding/decoding circuit is commonly used in practical applications, without loss
of generality we focus on the Type-I implementation and its evaluation in this section.

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 455

4.1 Hardware Implementation Based on the Polynomial Generator G(x)

As an example, assume that the circuit is to be designed with the following charac-
teristics: k = 8, r = 2, G(x) = 1 + x + x3 + x4 and M(x) = 1 + x + x5 + x6 + x7. Fig. 7(a)
depicts the resulting implementation of parallel CRC computation. The design of the
lookahead function block and input block is described as follows. First, the one-order
lookahead function Tg is derived by assuming all zero inputs such that si(t) = si’(t) and the
corresponding next-state equations can be expressed as

×

=×=

+
+
+
+

)(

)(

)(

)(

1100

0010

1001

1000

)(

)1(

)1(

)1(

)1(

3

2

1

0

3

2

1

0

ts

ts

ts

ts

tsT

ts

ts

ts

ts

g
(11)

D DD

0 32

D

1

1 0 0 1 1 0 1 1

Tg
2 (Lookahead Function Block)

Input Block

s'0(t) s'1(t) s'2(t) s'3(t)so(t+1) s1(t+1) s2(t+1) s3(t+1)

s0(t) s1(t) s2(t) s3(t)

(a)

s'3(t)

s0(t+1)

s1(t+1)

s2(t+1)

s3(t+1)

s'0(t)

s'1(t)

s'2(t)

Tg
1

s0(t+1)

s1(t+1)

s2(t+1)

s3(t+1)

Tg
2

s'3(t)

s'0(t)

s'1(t)

s'2(t)

(b)
Fig. 7. Example I (a) circuit implementation, and (b) implementations of the one-order and

two-order lookahead functions.

For the circuit implementation based on Tg, the following equations can be derived:
s0(t+1) = s3’(t), s1(t+1) = s0’(t) + s3’(t), s2(t+1) = s1’(t), and s3(t+1) = s2’(t) + s3’(t). In
finite field, the addition operation is performed in modulo-2 addition, therefore it can be
implemented in XOR gates. Since the target implementation is for r = 2, the next-state
functions based on the two-order lookahead function Tg

2 are expressed as s0(t+1) = s2’(t)
+ s3’(t), s1(t+1) = s2’(t), s2(t+1) = s0’(t) + s3’(t), and s3(t+1) = s1’(t) + s2’(t) + s3’(t).

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO456

Those logic equations can be either designed independently or constructed by two cas-
caded one-order lookahead implementations as shown in Fig. 7(b). The input block is
to consider the operation of S(t) ⊕ I(t). Based on the equation (8), we have I(0) =
[00m6m7]

T, I(1) = [00m4m5]
T, I(2) = [00m2m3]

T and , I(3) = [00m0m1]
T. Therefore, the

two input subsequences (m0 m2 m4 m6) = (1001) and (m1 m3 m5 m7) = (1011) should be
added to the internal states s2 and s3, respectively, as shown in Fig. 7(a). After four
clock cycles, the final state of the storage elements is (s0 s1 s2 s3) = (0001) assuming the
initial state is (0000). It implies that the output code word C(x) is x3 + x4M(x) = x3 + x4

+ x5 + x9 + x10 + x11.
In general, the r-order lookahead function Tg

r can be implemented as r cascaded
one-order lookahead function Tg

1. From implementation points of view, we can have
two choices based on the dedicated applications. Choice I: The r-order lookahead func-
tion is optimized to minimize the timing requirement for achieving maximum operation
rate. In this case, the r-order lookahead function can be flattened and optimized to re-
duce the critical path delay including the routing consideration. And, a careful design
of XOR gate like the one in [12] can be applied to minimize the propagation delay.
Choice II: We can first optimize the r/p-order lookahead function Tg

r/p as long as r is di-
visible by p, where p is an integer. Then, the r-order lookahead function is imple-
mented as p cascaded r/p-order lookahead function blocks. In such a situation, it be-
comes the modular design of a lookahead function and can be flexible for designing a
circuit that the value r is changeable, i.e., for different values of r as long as r is a factor
of the order of the generator polynomial. The flexibility can be easily achieved by mul-
tiplexing the intermediate values as shown in Fig. 8. In Fig. 8, the same circuit can be
applied for four different numbers of parallel-input bits that are going to be processed at
the same time by setting the values of controlling signals cs0 and cs1. Note that extra
inputs should be set to zero in such an application and, for simplicity, the length of M(x)
is assumed to be divisible by the selected number of input bits.

Input
Block

M
U
X

Tg
r

Tg
r/4

cs0 cs1

I(t)
Tg

r/4 Tg
r/4 Tg

r/4

S(t) S(t+1)

Fig. 8. A flexible design of the lookahead function block.

Example II: The CRC-32 [11] uses the polynomial generator G(x) = 1 + x + x2 + x4 + x5 +
x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32. For the application using the Media
Independent Interface (MII) associated with the data link layer, a nibble-based input bits
(r = 4) is used to generate the CRC code. Based on our development, the 4-order loo-
kahead function is listed in Table 2. Fig. 9 shows the conceptual block diagram for the
implementation of the CRC-32.

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 457

Table 2. The 4-order lookahead function for CRC-32.

si(t+1) Σsj(t) si(t+1) Σsj(t) si(t+1) Σsj(t) si(t+1) Σsj(t)

i = 31 j = 27 23 19, 28, 29 15 11, 31 7 3, 28, 30, 31

30 26 22 18, 28 14 10, 30, 31 6 2, 29, 30

29 25, 31 21 17 13 9, 29, 30, 31 5 1, 28, 29, 31

28 24, 30* 20 16 12 8, 28, 29, 30 4 0, 28, 30, 31

27 23, 29 19 15, 31 11 7, 28, 29, 31 3 29, 30, 31

26 22, 28, 31 18 14, 30 10 6, 28, 30, 31 2 28, 29, 30

25 21, 30, 31 17 13, 29 9 5, 29, 30 1 28, 29

24 20, 29, 30 16 12, 28 8 4, 28, 29, 31 0 28

* The j values (24, 30) represent the operation s24(t) + s30(t).

4-order
lookahead
function

Tg
4

I(t)
32-bit

registers

S(t)

32 bits

28 bits

4 bits

32 bits

4 bits

4 bits

I/P Block Clock

(LSB)

(MSB)

Fig. 9. Implementation of CRC-32 for r = 4.

The presented methodologies for parallel CRC computation have been successfully
verified through both software simulation and hardware implementation. The software
simulation is performed based on the automatic generation of synthesizable Verilog
hardware description language [13] and the Cadence and Synopsys CAD tools. Be-
cause the presented methodologies have the characteristics of systematic derivation and
modular design, it becomes very easy to develop the automatic synthesis environment,
for which users can specify both the generator polynomial and the number of paral-
lel-input bits. For the hardware implementation, a VLSI test chip shown in Fig. 10 is
designed for the CRC-32 [11], which can be applied for r = 1, 2, 4 or 8, and is fabricated
by the TSMC 0.6 um single-polysilicon-triple-metal process. The core size is 1072 ×
1070um2. When operating at 25 MHz with r = 8, the average power dissipation of the
chip is 4.35 mW and the thoughput rate corresponds to 200Mbps. Note that because the
test chip is targeted for 100 Mbps with r = 4, the goal can be easily achieved by using our
approach; therefore we did not optimize the operating speed as well as the hardware
requirement. Simulation result shows that the clock rate can operate at about 100 MHz
with r = 8.

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO458

Fig. 10. The corresponding VLSI test chip for r = 1, 2, 4 or 8.

4.2 Performance Evaluation

The evaluation of hardware requirements and speed comparisons for a variety of
parallel-input combinations for Type-I implementation based the CRC-32 generator
polynomial [11] is shown in Table 3, in which the area of controlling switches is ignored
in the comparison. The total gate counts (GC) are calculated based on the COMPASS
cell library [14] in terms of the 2-input NAND gates and the hardware overhead (HO) is
normalized with respect to the serial-input implementation. The critical path delay
(CPD) is estimated in terms of the number of 2-input XOR gates in the path. And, we
use the Synopsys software to derive the corresponding values in the Table 3.

Two types of implementation are distinguished in our comparison: the cascaded
lookahead function block and the flattened lookahead function block. In the cascaded
implementation, it is assumes that the one-order lookahead function block Tg

1 is used as
the basic building cell to implement r-order lookahead function block Tg

r. Specifically,
the Tg

r block is constructed from r cascaded Tg
1 blocks only. In such a case, the number

of required 2-input XOR gates is the summation of those in the lookahead function and
the input block and can be simply expressed as (Nz – 2) × r + r, where Nz represents the
number of nonzero coefficients of the generator polynomial. For a flexible design, e.g,
the circuit can be applied for both r = 4 and 8, they are all constructed from the one-order
lookahead function block; therefore the only difference between a fixed r-value and the
flexible designs is the required multiplexiers. On the contrary, in the flattened imple-
mentation the Tg

r block is flattened and then optimized by choosing both the area and
timing constraints simultaneously in Synopsys options. In terms of a flexible design for
r = 4 and 8, the 8-order lookahead function block is derived by cascading two flattened
4-order blocks. It implies that the flattened block of the smallest r-value function is
used to construct the other r-value functions in the flexible design.

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 459

Table 3. Performance evaluation for a variety of parallel-input combinations.

Cascaded Lookahead
Function Block

Flattened Lookahead
Function Block

Inputs

D-FF MUX
XOR GC* HO CPD XOR GC HO CPD

1 32 0 14 298 1 1 14 298 1 1

2 32 0 28 340 1.14 2 25 331 1.11 2

4 32 0 56 424 1.42 3 48 400 1.34 2

8 32 0 112 592 1.99 6 89 523 1.76 3

16 32 0 224 928 3.11 8 177 787 2.64 4

32 32 0 448 1600 5.37 15 408 1480 4.97 7

1, 2 32 32 (2 to 1) 28 436 1.46 1, 2 28 436 1.46 1, 2

4, 8 ** 32 32 (2 to 1) 112 688 2.31 3, 6*** 96 640 2.15 2, 4

1, 2, 4, 8 32 32 (4 to 1) 112 816 2.74 1, 2, 3, 6 112 816 2.74 1, 2, 3, 6

16, 32 32 32 (2 to 1) 448 1696 5.69 8, 15 354 1414 4.74 4, 8

4, 8, 16, 32 32 32 (4 to 1) 448 1824 6.12 3, 6, 8, 15 384 1632 5.48 2, 4, 7, 13

* The relative gate count in terms of 2-input NAND gate is NAND : XOR : D-FF : MUX2-to-1 :
MUX4-to-1 = 1 : 3 : 8 : 3 : 7.

** It means that the circuit can be applied for either r = 4 or r = 8.
*** The number of 2-input XOR gates in the critical path is dependent of the selected r-value.

It might be criticized that when r = 32 in the cascaded case, only a speedup ratio of
2 is achieved at the expense of 5.37 times the hardware requirement of the serial-input
implementation. This conclusion is valid only when we assume that the applied clock
cycle time is approaching the critical path delay of the implementation in two distinct
cases, respectively. In practice, the clock rate might be dominated by another blocks in
many applications such that the critical path delay of the lookahead function block might
be neglected without sacrificing the overall operating speed. For example, for r = 32 in
the cascaded case, the total delay time of the 15 cascaded 2-input XOR gates is 12.03 ns.
Therefore, if the clock is operated less than 83 MHz, then a potential speedup ratio of 32
can be achieved at the expense of 5.37 times the hardware requirement of the serial-input
implementation assuming that the same clock rate is applied for both cases. Note that
the interconnection overhead and delay in the lookahead function should be taken into
considerations in the final VLSI implementation. Nevertheless, the data listed in Table
3 provide an useful information for the designers to choose the best structures for a dedi-
cated application. The best structure might be based on trade-offs among area, speed,
regularity, and flexibility. It is evident that speed advantage can be achieved by using
parallel CRC computation and a versatile design to deal with a different number of par-
allel-input bits can also be derived in the same circuit with small amounts of extra hard-
ware requirement.

MING-DER SHIEH, MING-HWA SHEU, CHUNG-HO CHEN AND HSIN-FU LO460

5. CONCLUSIONS

This paper shows a systematic method to calculate CRC in parallel. We take ad-
vantage of both Galois Field property and the lookahead technique to derive equations of
two types of encoding/decoding schemes and their associated hardware implementations.
Compared to [9], the derivation of state updating equations is easier based on our meth-
odology. The method can be easily expanded to all feasible r parallel-input bits for fast
CRC calculation without added complexity in the developing process or practical limita-
tion like the size of look-up tables needed in other approaches. With little hardware
overheads to control the number of lookahead stages, the same circuit can then be used
for other applications using the same polynomial generator but processing a different
number of input bits at a time. Therefore, from hardware implementation points of
view, our design is more flexible than the result shown in [10]. Our development is
valuable from both industrial and academic points of view and all the results have been
verified through both software simulation and hardware implementation.

REFERENCES

1. S. Lin and D. J. Costello, Jr, Error Control Coding: Fundamentals and Applications,
Prentice-Hall, Inc., 1983.

2. S. B. Wicker, Error Control Systems for Digital Communication and Storage, Pren-
tice-Hall, Inc., 1995.

3. T. V. Ramabadran and S. S. Gaitonde, “A tutorial on CRC computations,” IEEE
Micro, Vol. 8, No. 4, 1988, pp. 62-75.

4. R. Lee, “Cyclic code redundancy,” Digital Design, Vol. 11, No. 7, 1977, pp. 77-85.
5. A. Perez, “Byte-wise CRC calculation,” IEEE Micro, Vol. 3, No. 3, 1983, pp. 40-50.
6. A. K. Pandeya and T. J. Cassa, “Parallel CRC lets many lines use one circuit,” Com-

puter Design, Vol. 14, No. 9, 1975, pp. 87-91.
7. G. Albertengo and R. Sisto, “Parallel CRC generation,” IEEE Micro, 1990, pp.

63-71.
8. R. J. Glaise and X. Jacquart, “Fast CRC calculation,” in Proceedings of IEEE Inter-

national Conference on Computer Design, 1993, pp. 602-605.
9. T. B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI,” IEEE

Transactions on Communications, Vol. 40, No. 4, 1992, pp. 653-657.
10. R. F. Hobson and K. L. Cheung, “A high-performance CMOS 32-bit parallel CRC

engine,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 2, 1999, pp. 233-235.
11. ANSI/IEEE std 802.3, Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications, fourth edition 1993.
12. J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and

XNOR functions on the transistor level,” IEEE Journal of Solid-State Circuits, Vol.
29, No. 7, 1994, pp. 780-786.

13. H. F. Lo, “Automatic generation of synthesizable Verliog codes for parallel CRC
computations,” Technical Report, NYUST-EE-88-1, Institute of Electronic and In-
formation Engineering, National Yunlin University of Science & Technology, 1999.

14. COMPASS, 0.6 um, 5-V High-Performance Standard Cell Library, June 1994.

A SYSTEMATIC APPROACH FOR PARALLEL CRC COMPUTATIONS 461

Ming-Der Shieh (���) received the B.S. degree in elec-
trical engineering from National Cheng Kung University, Taiwan,
in 1984, the M.S. degree in electronic engineering from National
Chiao Tung University, Taiwan, in 1986, and the Ph.D. degree in
electrical engineering from Michigan State University, East
Lansing, in 1993. From 1988 to 1989, he was an engineer at
United Microelectronic Corporation, Taiwan. He is currently an
associate professor at National Yunlin University of Science &
Technology, Taiwan. His research interests include com-
puter-aided design, VLSI design and testing, VLSI for signal
processing and digital communication.

Ming-Hwa Sheu (���) graduated from National Taiwan
Institute of Technology, Taiwan, in 1986 and received the M.S.
and Ph.D. degrees in electrical engineering from National Cheng
Kung University, Tainan, Taiwan, in 1989 and 1993 respectively.
He is presently an associate professor in Department of Electronic
Engineering, National Yunlin University of Science & Technol-
ogy, Taiwan. His research interests include CAD/VLSI, digital
signal processing, algorithm analysis, and data communication.

Chung-Ho Chen (���) received his MSEE degree from
the University of Missouri-Rolla in 1989 and the Ph.D. degree in
electrical engineering from the University of Washington, Seattle,
in 1993. Since 1993, he was the faculty member of the Depart-
ment of Electronic Engineering, National Yunlin University of
Science & Technology. In 1999, he joined the Department of
Electrical Engineering, National Cheng Kung University as an
associate professor. His research interests include computer ar-
chitecture, VLSI systems, and network processors. Dr. Chen is a
member of the IEEE Computer Society.

Hsin-Fu Lo (
�) received the B.S. degree in electronic
engineering from National Yunlin University of Science &
Technology in 1998. He is currently a master student in Institute
of Electronic and Information Engineering at National Yunlin
University of Science & Technology, Taiwan. His research inter-
ests include VLSI design and VLSI architecture in digital signal
processing.

