
A Unified Architectural Tradeoff Methodology *

Chung-Ho Chen

Department of Electronic Engineering

National Yunlin Institute of Technology

Touliu, Yunlin

R.O.C. on Taiwan

Abstract
Wepresentaunijiedapp?’each to assess thet7ade-

off of architecture techniques that affect mean memory
access time. The architectural features we consider in-
ciude cache hit Tatio, processo7 stalling featuTes, line

size, memo7y cycle time, the ezternal data bus width
of aprocessor, pipeiined memory sysiem, and read by-
passing write buffers. We demonstrate how each of
these feaiwes can be traded off to achieve the desired
performance. Thepe?’fo?’mance of an a7chitectu7efea-
tureis quantified in terms of cache hit ratio based on
the equivalence of mean memory delay time. This pa-

per investigates the implication of architectural trade-

offs on the pin count, memory system design, and on-
chip cache area for microprocessor systems.

1 Introduction
Architecture techniques that affect mean memory

access time are the major factors that determine the
performance of a computing system. Using a larger
cache memory is usually suggested to improve the
memory performance [1]. Increasing the width of a
processor external data bus improves the performance
but increases as the pin count of a microprocessor. An

on-chip cache memory requires a considerable amount
of area of the microprocessor chip. Read-bypassing

write buffers increase the complexity of the proces-

sor design and so does a pipelined memory system.

Each of these hardware features has a different per-
formance/cost tradeoff. This paper presents a unified
tradeoff methodology to compare the achievable per-
formance of each of these architectural features. We

use cache hit ratio, which is dependent on the cache
architecture and its size, as a common measurement

unit. We evaluate the improvement in performance
from changing an architectural feature. We then iden-

tify the change required in the hit ratio to achieve the
same performance improvement. This is accomplished

by deriving expressions for mean memory access delay

time for the two cases and establishing an equivalence

between the two.

We show that the reduction in performance due to

reducing a hit ratio (hence, a cache size) can be com-

pensated by improving or by providing other architec-

*This research in part was supported by the NSF grant MIP-

9224462. The authors thank the referees, Philip Leung, Ted

Harnlin, and Ing MacDui? for their valuable cornrnents.

Arun K. Somani

Dept. of EE and Dept. of CSE

University of Washington

Seattle, WA 98195

U.S.A.

tural features. For instance, our analysis shows that

the performance loss due to reducing the hit ratio (i.e.,
reducing the cache size) of a blocking cache from HR
to 2HR – 1 to at most 2.5HR – 1.5 can be compen-
sated by doubling the data bus width. For example,
the performance loss due to reducing cache hit ratio
from 0.95 to 0.9(= 2x0.95–1) or from 0.98 to 0.96 can
be compensated by doubling the external data bus of
a processor. Equivalently, increasing the hit ratio HR
of a blocking cache by 0.5(1 – HR) to 0.6(1 – HR)
improves the performance by an amount that is ob-
tainable by doubling the data bus width. When we
refer to a processor data bus, we mean the external
data bus of a processor. Other types of stalling fea-
tures in cache memories trade differently with the data
bus width.

Our model allows us to study the impact of other
architectural features. For instance, we obtained ex-
actly the same results as in Smith’s paper for deter-
mining the optimal lines [2]. The application of our
research extends beyond determining the best line size
for cache memories. We can now rank the performance
of each of the features. Except for the pipelined mem-
ory system, doubling the data bus width is the best
choice. Use of read-bypassing write buffers is the sec-
ond best choice. The use of a cache which allows
cache access when a load miss is in progress is the

third best choice. For pipelined memories, we also de-

termine the cross-over point for memory cycle time
where the use of a pipelined memory system is most
advantageous. Doubling the data bus width or using
the read-bypassing write buffers has a limited perfor-

mance contribution in systems that have a relatively
long memory cycle times. The memory cycle time,
when the performance of a pipelined system surpasses

that of doubling the data bus width, is not large at all,
especially when a large cache line is used. A pipelined
memory system impacts the hit ratio (or correspond-

ingly cache size) considerably, and therefore, should

be seriously considered in the design of microproces-

sor systems.

The rest of this paper is organized as follows. We

discuss the related research in Section 2. In Section

3, we give the notation and the assumptions of the

hardware under study. We develop the tradeoff model
in Section 4. The tradeoff analysis is presented in
Section 5. We summarize our findings in Section 6.

348

1063-6897/94 $03.0001994 IEEE

2 Related Research
The design of a cache memory involves many issues

such as the choice of line fetch algorithm, the replace-
ment policy, the write handling protocol, split vs. uni-
fied cache? coherency, virtual vs. real address tag, and

the blocking characteristics on a miss [3]. Cache line
size is one of the critical parameters that affect cache

performance. Smith and Przybylski used the cache
miss ratio obtained from trace-driven simulations to
study the factors for choosing a cache line size [2, 4, 5].

Their criterion in selecting the best line size is to min-

imize the mean memory delay peT memoTy TefeTence
or the mean read time. Alpert and Flynn pointed out

that using a larger line size reduces the overhead of
storing address tags and other cache control informa-

tion and thus leads to more cost-effective cache design
[6].

Chen and Baer examined the effectiveness of us-
ing non-blocklng caches, prefetching caches, and read
bypassing write buffers in reducing memory latency
[9]. They found that prefetching caches often have

a higher performance than non-blocking caches, and
that read bypassing write buffers can reduce the write

miss penalty significantly. Tullsen and Eggers found
that software-controlled prefetching offer limited ben-

efit in a bus-based multiprocessor system [10]. Since
the design space for cache memories is so diverse, it

is very natural for a computer designer to focus on
only a limited number of parameters to optimize a
particular cache implementation [11]. From the sys-
tem design point of view, optimizing the design space
around hit ratio or memory traffic may not produce
a cost-effective system. In addition to cache mem-
ories, architectural features such as data bus width,
pipelined memories, and how they are used within a

range of memory cycle times are also critical in deter-
mining performance.

3 Model of CPU Execution Time
In this section, we establish the relationships be-

tween the architectural features of hardware and the

characteristics of programs. The CPU execution time
is derived by considering various techniques that affect
memory latency.

3.1 Parameters and Assumptions
The notation for the parameters is described in Ta-

ble 1. These parameters specify the characteristics of

an architectural feature, application, and the relation-

ship between the two. An application here can be a
task, a subroutin~, or a phase of computation. The

following sssumpt:ons are used for our study:

1.

2.

3.

We use a RISC processor model with on-chip
instruction and write-back data cache. The pro-
cessor has a separate external address bus and
data bus.

For a cache miss, a whole line is brought into the

cache from the memory.

All memory references are first directed to the
on-chip caches.

4.

5.

In

Table 1: Architectural Parameters

processor’s external data bus width -m bytes.

D can be any number E {4,8, 16, 32].

cache line size in bytes.

memory cycle time for a D-byte

read/write cycle.

number of mstructlons executed

for an application.

number of d ata bytes read m full bus

width by a processor upon read miss
for E instructions executed. R does not
include the portion for instruction fetch.

number of mstructlon bvtes read m full bus.
width by a processor for E instructions
executed.

number of write-around miss mstructlons

that use the external data bus of a processor

for E instructions executed. In particular,

W= Wlb+~+””+””+~+””+~

= xl ~ +-z;{; ~, i =1,2,4, . ..’6.
j=l,2, . . . w/D. w is the maximum. write

operand size which exceeds the bus width D.

tiib (W”D) is the number of data
bytes written using i (D) bytes of the
processor data bus respectively.

cache hne flush ratio for M mstructlons

executed, O < a < 1. The number of bytes
of cache dirty lines which are copied-back

(flushed) for E instructions executed is

represented by crR.

stalhng factor.

A load lstore instruction effectively takes one cv-.
cle when it hits in the cache. Because instruc-
tions are pipelined, the throughput is effectively
one instruction per cycle.

The memory system has the same memory cycle

time for read and write requests.

a cache-based svstem. the number of bvtes of
read R (Rr] and writ; around miss W can be ;elated

to the h]t ;;tio of a cache. An application in a unipro-
cessor system with specific architectural features is
characterized by {E, RI, R, W, a, ~}. For E instruc-
tions executed, let & be the number of load/store
instructions that cause cache misses, and Ah be the
number of load/store instructions that hlt in the data

cache. Then, & is related to R, W and line size L of
the on-chip data cache by the following relation:

(1)

Since every read miss results in loading a full line
into the cache, R is divided by L to represent the num-

349

ber of load instructions that miss in the data cache us-
ing the write-around mode for handling write misses.

For a cache with write-allocate mode R/L becomes the
sum of the load and store instructions that miss in the

cache because a write miss reads in a cache line. For
this case W equal to zero. For both of the write miss

handling modes, Am always represents the number of

load/store instructions that cause cache misses.

3.2 Stalling Features

The execution of a processor may be delayed by
various stalling cycles due to a cache miss. Table 2

lists the processor stalling features that are considered
in this study. For a full blocking cache, a processor
waits for the requested data until the entire cache line

is brought into the cache. This is full-stalling (l’S).

In case of full-stalling, (L/D)~m time contributes to
the execution time for each cache miss. The stalling

factor is L/D as indicated in Table 2.
With a cache-bus-locked feature, for a miss cycle,

the cache first requests the missed data from the mem-
ory. As soon as the data arrive, the processor contin-
ues execution. While the cache fetches the rest of the
line: the cache is locked up. If any load/store occurs
during this period, that load/store is stalled until the
line is completely fetched. We call this scenario as

bus-locked (BL) stalling feature. The minimum value
of ~ due to BL stalling is one.

To reduce the stalling delay, an alternative is to al-
low the processor to access other cache lines without

locking up the cache bus. This stalling feature is bus-
not-locked (BiVL). In BNL case, the processor may
be stalled when the current line being fetched is ac-
cessed a second time. The period of this stall varies

depending on the implementation. We consider three
possible scenarios for BNL and assume that a line is
filled using multiple bus cycles. In scenario BZVLI, the
processor is stalled by the second access until the line
is completely fetched. In scenario BiVL2, the proces-
sor is stalled only if the second access happens to be

on the part of the line which has not yet been fetched.
If stalling occurs, the processor is delayed until the

entire line is fetched completely. In scenario l? JVL3,
a stall occurs only if the data have not been fetched.

Otherwise, an access can be satisfied by a partially
filled line. The minimum # for the BNL feature for

eah scenario is indicated in Table 2.
A cache may be designed with the non-blocking

(iV13) feature. The execution of a processor may also
be stalled by a non-blocking cache as well [9]. The
minimum possible stalling factor for this NB feature
is zero. The IVl?, or the BL, or the BNL~ is partially-

stalling (PS) in contrast to the full-stalling feature.

3.3 Execution Time
The CPU execution time consists of two factors.

First, the time includes the instruction fetching cycles
from the memory due to instruction cache misses. In-
struction caches with a full blocking feature can be
found in most of the current processors. However,
since most of the instructions are resident in the in-

struction cache and the execution is pipelined, the
time consumed for the instruction fetching is relatively

small, especially for processors that have two sepa-
rate buses to access instruction and data caches re-

Table 2: Processor Stalling Feature

features stalhng factor

FS full stalling ~=~

BL bus-locked I< (p<+

BNL bus-not-locked l< fp<+

NB non-blocking o<~<g

spectively [13]. The second element which dominates
the execution time is the time to execute the instruc-

tions. We use X to represent this part of the CPU
execution time. For a RISC processor, the execution

time X is represented by the following expressions as-

suming that all non load/store instructions as well as

load/store instructions with a hit in cache memory

take one clock cycle.

x = (E – Am) + :(#pm)+y(;)pm+Wpm.

= (E - am)+ ;(#3m)+y% +~/%n. (2)

The (E – Am) term accounts for the time the pro-

[
gram spent in executing the non-load store instruc-
tions and the load/store instructions t at are hits in

the data cache. Load instructions that miss in caches
stall the execution of the processor by $ (g5&) cy-

cles. For instance, when loading R bytes of data, a

full-blocking cache stalls the execution of the CPU by

~~m cycles with # = ~. When no write buffers are

provided, the flushes stall the CPU by (~)@m cycles.

7The last term W@m represents the cyc e times due

to write-around misses. We assume that the size of
data being written is smaller or equals to bus width

D. When a cache uses write-allocate to handle write

misses, the missing data are first read into the cache
before the write is performed. In this case, R includes
the data read for the write misses! and W is zero.

As technology advances, techmques such as cache
line prefetching, or register preloading can be used to
hide or reduce the penalty of some read misses [8]. In
these cases, R will represent the memory references

whose miss penalty cannot be hidden. Alternatively,
pm can be scaled down to represent the average miss

penalty.

3.4 Effect of Instruction Cache Misses

The instruction cache misses contributing to the

CPU execution time can be represented by f#~&

where # has a minimum of one. Due to the instruction
pipelining, the instruction hit cycles are overlapped
with the execution time X in Eq. (2). From trace-
driven simulations, we and other researchers [15] have
observed that without process switching, instruction
cache hit ratio is usually very high. Then, the CPU
execution time will be dominated by the X. In a multi-

programming case, a higher instruction miss ratio is
expected. In this case, the miss portion cannot be ne-

glected in the CPU execution time, and ~ ~~m should

350

be added to Eq. (2). In either case, the CPU execu-
tion time is always represented in the same form as in

Eq. (2).

4 Derivation of Architectural Trade-off
When comparing the architectural tradeoffs for two

systems, we improve one system by includlng adding

an architectural feature which has a higher perfor-
mance. The result is that the mean memory delay

time is reduced by the use of that feature. This per-
formance enhancement can be achieved, for instance,
by doubling the data bus width, by changing from a

full stalling cache to a partially stalling one, by pro-
viding the read-bypassing write buffers, or by using a
pipelined memory system. To maintain the same per-
formance on a given application, the original system

without that feature must have a higher hit ratio (im-
plying larger cache) than the new system. In other

words, for the same performance, the original system

must use a larger cache than the new system which
uses a more powerful architectural feature. Hence,
there is a relationship between the difference in the

hit ratio for the two systems and of the performance-
improving feature used.

4.1 Data Bus Width versus Hit Ratio

We now consider the tradeoff between cache hit ra-
tio and data bus width. The following two expressions

denote the execution time of using data bus widths D
and 2D, respectively.

X(D) = E– (: +W) + ;(&)+ $@m + W&

and

a’ R’
X(2D) = E–(:+W’)+:(&?J+ &+W’&.

Here {R’, W’, a’, #’} and {R, W, a, #} are parameters
for the system using data bus width 2D and D, re-

spectively. The maximum value of # is L/2D and
L ~ 2D. To determine data bus width and cache hit

&

ratio trading, we let X[D) = X(2D so that the two
cases using data bus width D or 2 have the same

execution time. In the two systems, the number of
instructions (E) executed, and the cache line size, the

memory cycle time? and the stalling feature are all
the same. For a write-around cache, W = W’. If the

cache uses write allocation mode, then W = W’ = O
since the data read due to write misses are included in

R or R’, respectively. Solving X(D) = X(2 D), yields

(RI= (~+ (:)~)pm -1

)(’$’ + (*W)% -1 ‘“

(3)

Let Ah = s~~. The miss ratio MRI of the data
cache for the case of D width is given by

MRI =
Am 1

=— .
~~ + Ah

(4)
S+l

We use the hit (miss) ratio in the D width system
as a base. To achieve the same performance, the 2D

width system could afford a lower Klt ratio than the
hit ratio in the D width system. Equivalently, the

2D width system can use a smaller cache to have the
same performance. Since the program characteristics

remain unchanged, therefore Ah+ & = Ai +.AA. Only

some load/store instructions that hit in the cache of
the D width system become misses in the cache of the

2D width system so that they have the same perfor-
mance.

Let MR2 be the miss ratio for the 2D width system

and AL = r~~ where AL = ~ + W’ then

Let HR2 be the hit ratio for the 2D widt’h system,

and HR1 be the hit ratio for the D widtlh system.
Notice that between the two systems, the difference of

hit ratios equals to the difference of miss ratios. Then
cache hit ratio that trades a D width is

HRl – HR2 = MRZ – MRI

= AHR

= AMR

r—l
= (6)

s-l-l

where s = ~~~~1 (from Ah = s~m) and r = ~

(from AL = r~~). Eq. (6) is only valid for the physical
system where HR2 >0.

Two limits in Eq. (6) are of interests. First, with

L=2D, &=2, anda=a’ =0.5, we find R’=
2.5R. Using Eq. (6), we obtain HR2 = 2.5HRI – 1.5.

Secondly, with a = a’ = 0.5, we apply the L’Hospital’s
rule in Eq. (3) for a relatively large &. We find R’ =
2R and HR2 = 2HRI – 1. This result states that

the performance loss due to reducing the hit ratio of
a blocking cache from HR to a value in the range
from 2HR – 1 to 2.5HR – 1.5 can be compensated by

doubling the data bus width.
We also can use the hit (miss) ratio in the 2D width

system as a base. The D width system must have a

higher hit ratio than that of the 2D width system for

both of them to have the same performance. The hit
ratio difference is given by

AHR=~. (7)

where s = ~~&a and r == ~.

Similarly, we find R = O~R’ and AHR = 0.6(1 –

HR2) with L = 2D, & = 2, and a = a’ = 0.5.

With a = a’ = 0.5 and a relatively large &, we

find R = 0.5R’ and AHR = 0.5(1 – HRs). This

result states that given L ~ 2D and a = CY’ = 0.5,
the performance improvement obtained by increasing
the cache hit ratio at HR by a value in the range
from 0.5(1 – HR) to 0.6(1 – lilt) is the same as that
obtained by doubling the data bus width.

351

Table 3: Ratio of Cache Misses f~l and Stalline Fac-
tors (write allocate)

.,

lfetnc

Doubling

bus

Partially

stalling

(BL, l?NL)

Write

buffers

Pipelined

memory

4.2 Stalling Feature versus Hit Ratio

Similarly, we obtain how much hit ratio can be
traded by switching from using a full-stalling cache
to a partially-stalling cache to achieve the same per-

formance. The exec;tion time X and the ratio ; for
a PS st ailing feature are shown in Table 3. The com-

parison is based on using a full-stalling cache with hit
ratio HR1. Let HR2 be the hit ratio for not using
the full-blocking feature, or equivalently for having the

partially-stalling feature. For the same performance,
HR1 must be greater than HR2. The cache hit ratio
difference traded for using the partially-stalling fea-

ture is the same as in Eq. (6).

We obtain the stalling factor @ from trace-driven
simulations. We assume that each instruction is exe-
cuted in one cycle except for the load/store misses and
access stalling. This implies that an infinite instruc-
tion cache or an instruction cache with a very high
hit ratio is used. The latter can be achieved relatively
easily and is usually the assumption in cache related
studies [10].

With the BNL1 stalling feature, stalling occurs in
two situations. First, if a load/store accesses the line

which is being fetched, that load/store is stalled until

the entire line is brought into the cache. Second, if

another cache miss occurs while a previous load miss

is in progress, then the new miss is stalled until the

previous missed line is brought into the cache. Let
ACj be the difference of the instruction numbers of the

two load/store misses. Then, the second load/store
access is stalled by

{
Max (: –l)& – ACZ, O

}

cycles. The stalling factor # for the BN.L1 model is

computed as follows.

())d= ~ ((;- 1)%-A(Z (+)+1 (8)
i=l

where .lm is the number of the load/store instructions

L
that are misses write-allocate cache is assumed). One

is added for the asic read miss time in the representa-
tion of X for the BNL1 stalling feature. The stalling

factors for the BNL2, BNL3, and BL features can
be obtained in a similar way and we will not discuss

them here.
In Figure 1, we show the average stalling factors

obtained from the SPEC92 programs nasa7, swm256,
wave5, era, doduc, and hydro2d. The stalling factor
is illustrated in the percentages of L/D. A partially-
stalling behaves like a full-stalling feature when its

st ailing factor reaches 100~0. As expected, a longer

memory latency has more stalling occurrences. We ob-
serve that the stalling factors are very high for the BL,
BNL1, and BNL2 features. If subsequent load/store

accesses are only stalled by the latency for the re-
quested data to arrive, i.e., the BNLs feature, about

20-30’% reduction in the read miss latency of a full
blocking cache can be achieved for a memory cycle
time smaller than 15 processor clock cycles.

4.3 Read-Bypassing Write Buffers versus

Hit Rat io

With an appropriate memory cycle time, the read-

bypq.ssing write buffers can completely hide the la-
tency of cache flushes. Execution time described in
Table 3 represents the best possible performance of us-
ing the read-bypassing write buffers. Let HR2 be the
hit ratio with the read-bypassing write buffers, and

HR1 be the hit ratio with no read-bypassing write

buffers. The cache hit ratio difference traded for the
performance of using the read- bypassing write buffers

is determined by Eq. (6) with s = ~~~~1 , and the ra-

tio of cache misses (r) is shown in Table 3 for the write
allocate cache.

4.4 Pipelined Memory System versus Hit

Rat io

Instead of waiting for a complete memory cycle, the
next memory cycle can be started as soon as possible
through pipelining. Let q be the clock cycles for the
memory system to be ready for receiving a new address

request and beginning the next pipelined cycle. The
pipelined memory cycle time &lP per L-byte request is

352

given by

&= Pm+d; -l). (9)

With the pipelined system, the execution of a pro-
cessor pipeline is stalled by the duration & for a cache

miss in a full blocking cache. The assumption for &
is that the processor can issue the consecutive mem-
ory requests that it needs for an L-byte line, and

the pipelined system can accommodate each request
within q clock cycles. For instance, if q = 2, we
may deem ~P as the best possible implementation of

a pipelined system. The pipelined operation is initi-

ated for the requests withirr the entire cache line. Be-
cause of the full blocking feature, if the data bus width
and the line size are the same, then the pipelined stall
cycles for the entire line is the same with the non-
pipelined stall cycles as indicated in Eq. (9) by setting
L = D. Within the scope of using full blocking write-

allocate caches, we can relate the non-pipelined mem-
ory cycle time & with the pipelined memory cycle

time PP.

In trading the performance of a pipelined system

with hit ratio, we say that HR2 is the hit ratio for
using the pipelined system, and HR1 is the hit ratio
for not having the pipelined system. The cache hit

ratio difference traded for using the pipelined system
is the same as in Eq. (6), and the ratio r is shown in
Table 3 for the write allocate cache.

4.5 Equivalence of Mean Memory Delay

Time

In this section, we show that the tradeoff model
is based on the equivalence of the mean memory de-

lay time and independent of the non-memory refer-

ence instructions such as some multiple cycle floating

point operations. To explain this, we use the trade-
off between doubling the data bus width and the hit

ratio of a full blocking cache as an example. Using

Ah+ Am = AL+ AA (the total number of data memory

references) and X(D) = X(2 D), we obtain

~Pm+(E-@’V-NLs)
=

Ah + Am

where NL5 is the number of the non-load/store in-
st ruct ions.

Since~h=B–~–W–N&Sand~~ =E–~–

W’ – NLS, then

-P. + a, ?xQ#3m + ~;

Ah+Am = Ak + AL

Both sides of the above expression are the mean mem-

ory delay time per (data) memory reference. Since the
mean memory delay time of an instruction cache, or
a unified cache can also be represented in the same
form as a data cache. Therefor~, the tradeoff model
can also be applied to an instruction cache or a unified
cache.

5 Results of Architectural !t’ra(deoffs
We examine the results obtained from the tradeoff

model, first, the tradeoff bet ween data bus width and

hit ratio for full-blocking caches. Then, we compare all
of the cases based on a full blocking and non-pipelined
memory system.

5.1 Data Bus Width and Hit Ratio

Figure 2 illustrates the performance tradeoff be-
tween a 32-bit width and the hit ratio of a full-blocking

cache with base hit ratio of 98?’o and 9070, respectively.

We assume that the cache memory employs the write

allocate mode for handling write misses so that W = O.
The base hit ratio is associated with the X(D) where
D is 32 bits. When the data bus and memory width

are increased from 32 bits to 64 bits, the hit ratio in
the 64-bit case must be smaller than the base hit rs-
tio so that the performance is the same in both cases.
The amount of the hit ratio traded is shown in the y
axis. The design limit is reached when the memory
cycle time & is two. We assume that the flush ratio

a is 50$’0 of R although the other value of CYcan also
be used. In [2, 12], Smith also used 50% in describing

the copy back traffic.
In the upper part of Figure 2, given L = 32 bytes

and a relatively long memory cycle time, a 32-bit bus
system using a cache with a hit ratio of 98% has the
same performance as a 64-bit bus system using a cache
with a hit ratio of about 96?Z0 (98 - 2). In other words,

by increasing the hit ratio from 96% to 98% (that is by
increasing the cache size so that the hit ratio increases
by 2%), we can reduce the bus width (processor data
bus and memory bus) from 64 bits to 32 bits while
maintaining the same performance. When L = 8 bytes

and & = 2, increasing the hit ratio by 3% (from 9570
to 98%), we can trade a 64 bit bus with a 32-bit bus

width. The lower part of Figure 2 depicts the cases

where a different base hit ratio is used.

This illustration agrees with the previous limit anal-

ysis in Eq. (7). That is, given L > 2D and a = a’ =
0.5, increasing the hit ratio at HR~o of a full-blocking
cache by 0.5(100 – HR)Yo to 0.6(100 – HR)Yo has the
same performance as that obtained by doubling the

data bus width. As the memory cycle time increases,
the traded hit ratio is reduced as indicated in the fig-

ure. This is because when the memory cycle time
increases, hit ratio becomes more precious and thus

bears more weight in affecting the mean memory de-

lay time. With the same base hit ratio, the hit ratio
traded for a large line size is smaller than that of a

smaller line size. This indicates that hit ratio is more

important in affecting the mean memory delay time
when a large line size is used.

5.2 Implication of Data Bus Width and

Hit Rat io Tradeoff

We use the following example to address the impli-
cation of bus width and cache memory tradeoff.

Example 1 Case 1: Increasing the hit ratio of a full

blocking cache from 91% to 95.570 requires increasing
cache size from 8K to about 32K for a trace driven

1!
simulation reported by Short and Levy in 14]. The
same performance improvement can be ac ieved by

increasing the bus width from 32 bits to 64 bits in the

353

same processor while keeping the cache size at 8K.

Thus, a processor with a64-bit busandan8K cache

and a processor with a 32-bit bus and a 32K cache have
the same execution time in a uniprocessor system.

Case 2: To consider a larger cache size, we again

use the hit ratio and cache size from [14]. Using our

results, a processor with a 64-bit bus and a 32K cache
and a processor with a 32-bit bus and a 128K cache
have the same performance in a uniprocessor system.
•1

From the above example, we observed that by dou-
bling or quadrupling a small cache such as 8 Kbytes,

the performance can in general be increased to the

level as that obtained by doubling the data bus width.
In this context, we can increaae a relatively smaller

amount of chip area in the cache memory to trade for
the processor pin counts and memory data bus width.
On the other hand, increasing the bus width is more
advantageous for trading the chip area when the cache
is large (i.e., has high hlt ratio) because bus width
trades a larger cache size (chip area) for a large cache.

5.3 Unified Comparisons
Figure 3-5 illustrate the tradeoffs among hit ra-

tio, pipelined system, bus width, processor stalling

feature, and read-bypassing write buffers. The com-
parisons for these architecture features are based on

the same grounds, i.e., a full-blocking cache and non-

pipelined memory system. The non-pipelined memory

cycle & is plotted on the horizontal axis. The curves
serve two purposes. First, they show how each indi-
vidual architecture feature is traded with the hit ratio.
Second, the curves show the comparisons among the
features themselves. The solid line shows the amount
of hit ratio difference which is required to trade the

performance of using the pipelined bus and memory
system. If the memory cycle & is two, pipelining or

not does not make the difference because q = 2. This
is shown in Figure 3–5 where the solid lines meet with

the z axis.
In Figure 3, a fast pipelined system is used with

q = 2, and the line size is eight bytes. The flush ratio
is assumed to be 0.5 considering the average situation.

The BNL1 stalling-feature is evaluated with the aver-
age stalling factor obtained from the simulations. The
dashed curve represents the best performance of us-
ing the read-bypassing write buffers because there are

some reads that can not bypass the on going writes.
This situation is similar to the request stalling in us-

ing a partially-stalling cache. From the simulations,

we found that a processor has very frequent consecu-

tive requests made on the same missing line, When
a load miss is in progress, the occurrences of another
miss for the other cache lines are much fewer than the
load/store accesses on the line which is being filled. It
is much essier to hide the cache flush cycles success-
fully by using the write buffers because (1) the flushed
cache line is posted after the missing line is filled, and
(2) the processor will spend some time using the data
on the line just retrieved.

We notice that for L/D = 2 in Figure 3, using
a high speed pipelined system does not display any

performance advantage over doubling the bus width
even for a large memory cycle time. When the line size

to bus width ratio is increased, the advantage of using

a pipelined system materializes as shown in Figure

4. The performance improvement due to the BNL1
feature is quite limited (ref. Figure 3 and 4). The
BNL3 feature has a higher performance improvement
when the memory cycle time is small (ref. Figure 5).

From Figure 3–5, we rank the performance of each
of the features except the pipelined memory as follows.

In general, doubling the bus width is the best choice.
The second best choice is providing the read-bypassing

write buffers. Finally, using a cache with a bus-not-
locked feature is the third best choice. This observa-

tion is generally good for a wide range of memory cycle

time and is not sensitive to the line sizes. The stalling

factor for the non-blocking cache was not evaluated

from the simulation. However, because many subse-

quent load/store accesses are directed to the missing
line, even a load miss does not stall the execution

of a processor, subsequent load/store accesses will be
stalled unless the mechanism for supporting multiple
load/store miss is provided.

The use of a pipelined system is most advantageous
after the memory cycle time reaches the cross over
points in the curves. Doubling the bus width, using

the read-bypassing write buffers, and a cache with a
bus-not-locked feature (BNL1 or BNL3) has constant

performance improvement over a relatively large mem-
ory cycle times range. The memory cycle time is less

than about five or six clock cycles for q = 2 (L > 2D)
when the performance of the pipelined system sur-

passes that of doubling the bus width. Notice that a
large hit ratio (cache size) is traded with the usage of

the pipelined system.

5.4 Validation of the Line Size and Hit

Ratio Tradeoff
It is widely believed that given a cache size, using

a larger cache line size (up to a certain range) haa a
higher hit ratio than using a smaller line size for the

same application [4, 2]. Smith determined the best line
size by finding the line size which minimizes the mean
memory (cache miss) delay per memory reference [2].
Our goal here is to quantify the relationship among

the line size, the cache hit ratio, and the memory cycle
times and also validate the tradeoff methodology. To
do this? we use c + f?(L/D) for the time in filling a
cache hne as used in [2]. The constant c accounts for

the memory access latency, and @ is the transfer time
of the bus when D bytes are transmitted per bus cycle.

We pose the question as how much of a hit (miss) ratio

difference between using a larger line and a smaller line

is necessary to justify the advantage of using a large
line size in terms of mean memory access delay? We

find the tradeoff by solving XFS = X~~ where

XFS = (E-:-w)+ ~(:~)(c+ (#)@)+

W(c + @ (11)

and

x;~ = (~_: _~*)+ ~*y”*)

(c+ (;)/3) +~”(c+fl) (12)

354

and obtain

()~.=(l+~)(c+(+?)@-1 L*

(1 +~”) (c+ (*)p) -1 (#” (13)

To serve the context of trading line size with hit

ratio, let EHR be the hit ratio for using a larger line

size L* , and HR be the hit ratio for using a smaller

line size Lo. Then, the difference of cache hit ratio for
the same execution time is

AEHRL. = EHR – HR

= MR – EMR

I–T
= (14]

s-i-l

R“ +W”
where s = ~andr=~

~+w “

In Eq. (14), r is smaller than one so that AEHRL. is

greater than zero.

5.4.1 When to Use a Larger Line Size

kIn Eq. 14), we have found the minimum hit (miss)
ratio di erence AEHRL. required for using a larger
line size L* to have the same performance as using a
smaller lines size Lo. Let the actual hit ratio differ-
ence between using L* and Lo for a given application

be denoted by AHRL.. Given the same cache size,

AHRL. is a constant. Using a larger line size which

has a higher hit ratio does not improve performance
if AHRL. < AEHRL.. Generally, our study shows

that larger line sizes are better to be used in larger
caches. This result conforms with those in [15]. Inter-

ested readers can refer to the work in [16] for further
details.

5.4.2 Design Space of Bus Speed and Model
Validation

Next, we determine the range of bus speeds or memory

access time for which using a larger line size is benefi-

cial. We use the hit ratio and line size tradeoff model
combined with Smith’s approach in determining the

optimal line [2].
An optimal line size can be determined by finding

the least average memory delay per memory reference.
Suppose that we want to determine the optimal line
size from the set of y line sizes represented by {L; [1<
i < y}. For 1 < i <. y, the optimal line size is

determined by the following equation.

{
Min (1 – HRLi)(C+~~) + HRLi

}

(15)

The hit cycle time is assumed to be one here. Latency

c and bus speed /3 are normalized with the hit cycle

time. Smith multiplied (c’ + ~~) by the corresponding

miss ratio to find the optimal line size. He uses the
following equation to determine the optimal line size.

{
Min (1 – HRL,)(c’ +~~)

}
(16)

where c’ = c – 1 in relation to Eq. (15). What he
minimized is actually the minimum mean cache miss
delay time per memory reference. Since hit cycle times
are the same for the comparison, the minimum of the

cache miss delay can also determine the optimal line
size.

We use the line size Lo as a base for the compari-

son of mean memory delay with the set of y line sizes

represented by {Li I 1 < i < y} where Li > .Lo. In this
setting, we can examifie whether a larger line size of-

fers a performance advantage or not due to its higher
hit ratio. The hit ratio of line Li is denoted as HRL,
and HRLO for Lo. We consider the range of line sizes

where HRLi ~ HRLO. Based on the minimum mean

memory delay approach, the best line is determined
by the following equivalent maximum operations.

Max{((l – HRLO) – (1 – HRL,)) (IC +~~)

i-HRLO – HRL,}

{
= Max (AHRL,)(c– 1 +~~) 1 (17)

It becomes maximum operation because we choose
the largest difference of the mean memory delay be-

tween line size Lo and each of the other line sizes re-
spectively. The largest difference means the smallest

mean memory delay of the corresponding line size Li.
The following maximum operation determines the op-

timal line size and indicates the beneficial range of bus

speed or memory access time for using that line size.

{
Max (AHRL, – AEHRL,)(c – 1 +~~~)

}
(18)

where AEHRLi is specified by Eq. (14) replacing L*

with Li for 1 < i < y respectively. The above opera-
tion can also be represented as

{
Max (AMRL, – AEMRL,)(c – 1 + ~~~)

}
(19)

Since the difference of hit ratio equals to the dif-

ference of miss ratio. Line size Li is justified by its
sufficient lower miss ratio being a large size when the

above maximum has a value rester than zero. The

7value represented by Eq. (19 is the reduced (from
the memory delay of using size Lo) memor,y delay per
memory reference.

We compare the optimal line size determined by

Eq. (19) with the results of Smith’s work. Our com-

parison results are presented in Figure 6. The optimal
line sizes determined by Eq. (19) exactly match with

those of Smith’s work. This result validates our trade-

off methodology. In addition, our analysis shows the

range of the bus speeds to be used when using a larger
line size is beneficial. These bus speeds must have a

positive reduced memory delay. The bus speeds where
the negative reduced memory delay occurs are too slow
to be useful for a larger line size to take the advantage
of its larger hit ratio.

355

6 Summary
We investigated the performance tradeoffs among

the external data bus width, cache hit ratio, proces-
sor stalling features, read-bypassing write buffers, and
pipelined memory systems. In addition, we also stud-
ied the inter-relationship among the line size, the hit
ratio, and the memory cycle timesj and thereby vali-
dated our tradeoff approach. The Impact of these ar-
chitectural features on performance was evaluated by

developing a CPU execution time model. Our tradeoff
model is based on the equivalence of the mean memory

delay time in two systems using different architectural
features and thus is independent of the non-load/store

instructions. Using this model, we obtained the fol-
lowing specific results:

●

●

●

●

By increasing the size of a small on-chip cache
or by doubling the data bus width, identical per-
formance improvements can be achieved. For
example, for L ~ 2D and a = a’ = 0.5, the

performance improvement achieved by increas-
ing the cache hit ratio at HR by a value in the

range 0.5(1 —HR) to 0.6(1 — HR) is the same as
that obtained by doubling the data bus width.

In non-pipelined memory system, the three best

architectural features in order of priority to im-
prove performance are doubling the bus width,

providing the read-bypassing write buffers, and
the use of a cache with a bus-not-locked.

A cache that allows other cache lines to be ac-
cessed while a line is being filled has a very lim-
ited performance advantage. If, however, subse-

quent load/store accesses are only stalled by the
latency of the requested data, then the read miss

latency of a full blocking cache can be reduced
by 20-30% for a memory cycle time of less than

15 clock cycles.

The pipelined memory system helps to improve
performance most when the memory cycle- time
is larger than about five clock cycles (for L/D >
2 and q = 2). The performance improvement
by doubling the bus width, using read-bypassing
write buffers, and using caches with a bus-not-

locked feature is limited when the memory cycle
time is relatively large. We have shown that the
availability of a pipelined memory and bus sys-

tem has significant impact on the performance.

Currently, we are studying the effects of multiple
instruction issues on the results presented here. Our

approach to this future research is similar to the one
we developed above. We will develop a CPU execution
time model for systems where the throughput could be
more than one instruction per clock cycle.

References

[1]

[2]

J. R. Goodman, “Using Cache Memory to Reduce

Processor-memory Traffics,” Proceeding of the IOth
Intl. Symp. on Comput. Arch., pp. 124-131, 1983,

A. J. Smith, “Line (Block) Size Choice for CPU

Cache Memories,” IEEE Transactions on Comput-
ers, Vol. C-36, No. 9, pp. 1063-1075, September

1987.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. J. Smith, “Cache Memories,” Computing Sur-
veys, Vol. 14, No. 3, pp. 473-530, September 1982

S. Przybylski, M. Horowitz, and J. Hennessy, “Per-
formance Tradeoffs in Cache Design,” Proceeding

of the 15th International Symposium on Computer
Architecture, pp. 290-298, May 1988.

S. Przybylski, “Performance Impact of Block Sizes
and Fetch Strategies,” Proceeding of the 17th In-
ternational Symposium on Computer Architecture,

pp. 160-169, May 1990.

D. B. Alpert, and M. J. Flynn, “Performance

Trade-offs for Microprocessor Cache Memories,”
IEEE Micro, pp. 45-54, August 1988.

N. P. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,” Proceed-

ing of the 17th International Symposium on Com-
puter Architecture, ” pp. 364-373, 1990.

W. Y. Chen, S. A. Mahlke, and W. W. Hwu,
“Tolerating First Level Memory Access Latency in

High-Performance Systems,” Proceeding of the In-
ternational Conference on Parallel Processing, pp.
136-143, August 1992.

T. F. Chen and J. L. Baer, “Reducing Memory La-

tency via Non-blocking and Prefetching Caches,”
Technical Report 92-06-03, Dept. of Computer Sci-
ence and Engineering, University of Washington,
June 1992.

[10] D. M, Tullsen and S. J. Eggers, “Limitations of

Cache Prefetching on a Bus-Based Multiproces-
sor,” Proceeding of the 20th International Sympo-
sium on Computer Architecture, 1993

[11] A. J. Smith, “Second bibliography on cache mem-
ories,” Comput. Architecture News, Vol. 19, No. 4,

pp. 154-182, June 1991.

[12] A. J. Smith, “Cache Evaluation and Impact of
Workload Choice,” Proceeding of the 12th Interna-
tional Symposium on Computer Architecture, pp.

64-73, June 1985.

[13] KSR1 Technical Summary, Kendall Square Re-

search, 1992.

[14]o~Tll~hormv~dc~c&I Levy, “A Simulation Study

“ Proceeding of the 15th
International Symposi;m on Computer Architec-
tures, pp. 81-88, 1988.

[15] J. L. Hennessy and D. A. Patterson} Computer
Architecture, A Quantitative Approach, Morgan
Kaufmann Publishers, Inc. 1990.

[16] C. H. Chen, “High-Performance High-Integrity
System Design: Architectural Tradeoff Method-
ologies and A Cache Error Recovery Protocol,”
Ph.D. dissertation? Department of Electrical En-

gineering, University of Washington, 1993.

356

Bus w~h -4 bytes, line size -32 bjtes.

=
&

* Mm
g60 -w
v
~

t

,E’60E BNLI:ooo
.
BNL2+++

40= BNU”””

BL :XXX

s

‘o 10 20 30 40 60
hfemofycycktimeper4~Yles

Figure 1: Stalling Factor (average from six SPEC92

programs with 50 M instructions executed each, write-
allocate, 8 Kbytes, tw~way set associative.)

Full-stalling feature, a- a’= 0.5, D -4 bytes,atbasahlratio_98%.
3,. 1

(c
681012141618 20

Memory cycle time per 4 byies
Full-stalling feature, a- a’- 0.5, D -4 bytes, at base hi ratio -9 O%.

[

~ 14 ‘., .901ti line: L-32

~13 “...
dashed lina L-16
dotted line: L-6

u “..,
=12 c .
8 ‘-‘\
$11 ---- “.-

102 ; ; ~ ,0 ,2 ,4 ,6 ,6 ---*

Memorycycletime per 4 bytes

Figure2: Effect of Memory Latency on the Hit Ratio

and Bus Width Trading (Use D = 4 bytes as the base

system. a = a’ = 0.5)

50% fiushes, L-6, D. 4, q. 2, base HR. 95%.

‘~

7E.
........

6 - “-. .
datkding bus“’”’ ----,.,.,,,.

fs -

:4 -
ppelined mem

%
*3 .’.---- Wlite buffers

2 -..
‘.,

1 - SNL1
-’ ----- -------- ------- -------- -------- .- .-,-.

10 12 14 16 16 20
nwnmry cy-se tie per 4 bytes

Figure 3: Architectural Tradeoff for L = 8 Bytes

50 %flush86, L-32, D m4, q = 2, k HR - 95%.
20, I

18 -

16

g 10 -

5
#e -

6 -

4 -
write tuffem

2 -
SNL1

N&&&d n&wy C& time14W 4 #es
16 2U

Figure 4: Architectural Tradeoff for L ❑ : 32 Bytes

SO% fiushes, L -32, D -4, q -2, base HR = 95%.
20, I

16 -

16

j:: -

Ulo -
x
3
$6 - /1

pip+hed mem

6t4-:~i

:~d
24 6610121416 162U

f40n-#pelin6d memory cycle time per 4 bytes

Figure 5: Architectural Tradeoff for BNLs

(s) 16K Ml blocking &ta cacb+,

D
:4-U-X;+*

K++xx

-20 w +
++

~oL=12s *** ~
L== +++ iu
L=32xxx

’60 L=16 000
!4

Oclay =36ons + 15n9/byte x ~
v -80 D+ -e + 1

SmitbZ32b satk =2
!-loo. ~ 4 6 8 10

(C) 16K full blacking dam C.IWkC

uJxxx
“~egig?js

o --------Q:-=y--
+M

+
-50 Delay = 600 QS+ 4 W%ytC +

D=8, c=16.75 + 1
-100 SmiON 64 or 128 kS at bcta=l

0246810
Normalized b. -d (b@

LJ
#q

o ---+ -p+--e-e-w
+Xxxx

M

.20 x +++
Ml ,+

40
X

%

-w Rlay=160m+ 151wbytc X ~
D=8, c4+1
Smitk 16 b @sat bcm=3

-300246810

(d) SK full bkking data tack

50 ~~

LJ
o -!-:-X-;-.U+-$-:

xl ++
.30 ill +++

x
-1oo M

lW=360ns+15m&M
‘lW D=8, c=6+1

Smith 32 bytes beta=2
%.

.X4
0246810

Nomulizz.d bus speed(beta)

Figure 6: Validation with Smith’s Design Target Hit
Ratio for Data Caches

357

