
From Application to Technology
OpenCL Application Processors

Chung-Ho Chen

Computer Architecture and System Laboratory (CASLab)
Department of Electrical Engineering and

Institute of Computer and Communication Engineering
National Cheng-Kung University

Tainan, Taiwan

2013/12/26 2

Welcome to this talk

• From Application

–OpenCL Platform Model

• To Technology

–Micro-architecture implications

–An OpenCL runtime on a many-core
system

• Summary

2013/12/26 3

Welcome to this talk

• OpenCL Platform Model

• Micro-architecture implications

• An OpenCL RunTime on a Many-core system

• Summary

Parallel Processing Platform

• Multi-core CPU

• DSPs

• GPU

– Data parallelism

• Portability

– OpenCL is a
framework for
building parallel
applications that
are portable across
heterogeneous
platforms.

In
tro

d
u

c
tio

n
 o

f O
p

e
n

C
L

Khronos Standards Ecosystem

In
tro

d
u

c
tio

n
 o

f

O
p

e
n

C
L

Key Players

NVIDIA

Apple

ARM

IBM

Intel

AMD

BROADCOM

SAMSUNG

…………

2013/12/26 6

Chip
maker

System
OEM

FPGA
vendors

SOC
designer

OpenCL Specification

OpenCL

• Open Computing Language (OpenCL) is a framework for writing
programs that execute across heterogeneous platforms consisting
of central processing unit (CPUs), graphics processing unit (GPUs),
and other processors.

• Language: OpenCL defines an OpenCL C language for
writing kernels (functions that execute on OpenCL devices) also
define many built-in functions.

• OpenCL defines application programming interfaces (APIs

• Platform Layer API: hardware abstraction layer; query, select
and initialize compute devices; create compute contexts and
work queues

• Runtime API: execute kernels, manage thread scheduling and
memory resources

2013/12/26 7

In
tro

d
u

c
tio

n
 o

f O
p

e
n

C
L

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface

Common Hardware Abstraction

8

Processor of

Non-pipelined

Pipelined

Superscalar

OOO, etc

instruction set

software

hardware

Processor of

600MHz,

1GHz,

2GHz, etc

Instruction Set Architecture

• Abstraction makes life easier for those above

• An OpenCL device is viewed by the OpenCL programmer as a
single virtual processor.

OpenCL platform API

GPUs
OSes

Multi

cores

From Sequential to Parallel

2013/12/26 9

Define N-dimensional computation system (N=, 1, 2, 3)

Execute a kernel code for each point in the system

OpenCL Platform Model

2013/12/26 10

• Hierarchical System

• A host with one or
more compute
devices

–A compute
device: one or
more compute
units

–A compute unit:
one or more
processing
elements

1
2

3

OpenCL Execution Model

Application runs on a host

Host submits the work to the compute devices through enqueue
operation

Work item: basic unit of work (the work or data a thread to work on)

Kernel: the code for a work item

• An invocation of the kernel is a thread

Program: Collection of kernels + lib functions

Context: the environment in which work-items execute, including
command queues, memories used, and devices

In
tro

d
u

c
tio

n
 o

f O
p

e
n

C
L

Work-items specified in N-dimension:
N=2

• Work-items are
group into
workgroups, e.g.,
64x64

• Kernels executed
across a global
domain of work-
items

• Synchronization
btw work-items
can be done
within
workgroups:

barrier …

2013/12/26 12

Work group

Whole problem space

S

Cannot synchronize outside a workgroup

OpenCL Memory Model

• Private memory:
per work-item

• Local memory:
shared within a
workgroup

• Global/constant
memory: visible
to all workgroups

• Host memory :
on the host CPU

OpenCL 1.2: move data from host to global to…

OpenCL 2.0: shared virtual memory btw host and device

Work

item

/workgroup
SIMT Engine

Compilation

• Dynamic runtime
compilation model

• Intermediate
Representation (IR)

– Assembly based
on a virtual
machine (done
once)

• IR is compiled into
machine code

– App loads IR and
compiles it.

2013/12/26 14

LLVM example

• Low Level
Virtual Machine

– Front-end
compiler:
source code to
IR

– Back-end
compiler: IR to
target code

– IR to CPU ISA

– IR (PTX) to
GPU ISA Device Driver

Hardware

Front-End Compiler

Back-End Compiler

Hardware Device Source Scheduler

OpenCL Source Code
(test.cl)

Executable Binary
(test.bin)LLVM

(Back-end)

ARM Assembly

ARM-GCC

ARM Binary

A Simple Example

• Built-in function get_global_id(0) returns the
thread id.

• Each PE executes the same kernel code and uses
its thread id to access its data. Hence, SIMT.

memory objects created using clCreateMemObj

host C code: Run control thread

Get processor ID. This is one dimension example.

Create this number of threads

.CL code

Workgroup size

Host control thread example

Setup Execution Environment

Create Memory/Program Objects

Prepare Parameters and Copy Data for
Execution

Enqueue for Execution and Read Back

2013/12/26 17

Setup Execution Environment:
prepare environment
Get Available Devices

• clGetPlatformIDs

• Return the number of available platforms and the pointers of the
platforms

• clGetDeviceIDs

• Return the list of devices available on a platform

Create Context

• clCreateContext

• Return the pointer of context structure used by runtime for
managing objects such as memory, command-queue, program
and kernels

Create Command Queue

• clCreateCommandQueue

• Return the pointer of command-queue that programmer uses to
queue a set of operations

Create Memory/Program Objects

Create Memory objects

• clCreateBuffer

• Return the pointer of the memory object which
contains the relationship between host memory and
device memory region

Create Program and Kernel Objects

• clCreateProgramWithSource

• Use the CL source code to generate a program object

• clBuildProgram

• Compile the source code of the target program object;
each program has more than one kernel source

• clCreateKernel

• Designate the kernel that is going to run

Prepare Parameters and Copy Data for
Execution

Setup Kernel Parameters

• clSetKernelArg

• Set up the parameters of the kernel function

Copy Data from Main Memory to
Target Device

• clEnqueueWriteBuffer

• Write the data from main memory to target
device

Enqueue for Execution and Read Back

Execute the Kernel in N-dimension

• clEnqueueNDRangeKernel

• Declare a N-dimensional work-space
(global_size) for executing

• Subdivide the work-space into work-group by
means of setting local_size

Read Back Results from Target Device

• clEnqueueReadBuffer

• Read the data from target device to main
memory

Executed in-order or out-of-order

Setup Execution Environment

Create Memory/Program Objects

Prepare Parameters and Copy Data for Execution

Enqueue for Execution

2013/12/26 22

Command Queues

IOQ, OOOQ

Devices

Runtime

support OOOQ?

2013/12/26 23

Welcome to this talk

• OpenCL Platform Model

• Micro-architecture implications

• An OpenCL RunTime on a Many-core system

• Summary

Now Device

• Architecture implication for OpenCL Program
Model

–SIMT ISA

–SIMT instruction scheduling

2013/12/26 24

SIMT Machine

• What architecture features are useful/critical for
OpenCL-based computation?

• SIMT: single instruction multiple threading

• Same instruction stream works on different data

2013/12/26 25

Single Instruction Multiple Threading

• Single Instruction Multi-
Threading

• A thread == a workitem

• Get one instruction and
dispatch to every processor
units.

• Fetch one stream -> N threads
(of the same code) in execution

• Each thread is independent to
each other.

• All cores execute instructions
in lockstep mode.

2013/12/26 26

I5

I4

I3

I2

I1

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

SIMT: Single Instruction Multiple Threading

• Clarify what is what

• What is S?

• What are threads or workitems?
– AN INSTRUCTION STREAM IN EXECUTION

2013/12/26 27

I1

I2

I3

I4

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

Thread 2

Fetching Mechanism for SIMT

• Need an instruction fetcher
to let each core or PE get
their instruction

• Each PE may free run also.

Instruction
Fetching

• Need an efficient way to get
per-PE’s data from global
memory (DRAM).

Data
Fetching

2013/12/26 28

ISA issues for SIMT PE

• Branch problem in
SIMT

– Can not use “regular
branches” in SIMT
because

– If some PE gets I3 etc
and some PE get I5,

– then there is no single
instruction stream
anymore.

2013/12/26 29

I1

I2

.

.

BEQ xx

I3

I4

xx I5

Single stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

Conditional Execution for SIMT

30

f0: cmp r1, #0

f4: beq 0x100

f8: sub r2, r7,r4

fc: bne 0x104

100: add r2, r3, r4

104: mov r5, r2

If-conversion uses predicates to transform a conditional branch into a
single control stream code.

code using br If-converted code

if(r1 == 0)

add r2, r3,r4

else

sub r2, r7,r4

mov r5, r2

cmp r1 , #0

addeq r2, r3,r4

subne r2, r7,r4

mov r5, r2

ISA issues for SIMT

• No branch in SIMT.

• Each PE simply executes
the same instruction stream

• If the condition is met,
commit the result otherwise
nop.

• Problem:

– Low Utilization of PE

– Poor performance for
branch rich App.

– Poor performance in SISD:
clEnqueueTask: the kernel is
executed using a single work-
item.

2013/12/26 31

Single instruction stream on N Cores

Core Core Core Core

Data 1 Data 2 Data N

cmp r1 , #0

addeq r2, r3,r4

subne r2, r7,r4

mov r5, r2

Now Device

• Architecture implication of OpenCL Program
Model

–SIMT ISA

–SIMT instruction scheduling

2013/12/26 32

SIMT: SIMD Streaming Machine

• Pipelined PE/Core

• How to tolerate long
latency instructions?

–Cache miss

–Complex integer
instructions

–Expensive floating
point operations

2013/12/26 33

SIMD streaming unit

Core Core Core Core

Data 1 Data 2 Data N

cmp r1 , #0

addeq r2, r3,r4

subne r2, r7,r4

mov r5, r2

ldr r4, r2, 32#

2013/12/26 34

Multithreaded Categories

Simultaneous

Multithreading

T
im

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Warp

2013/12/26 35

Terminology: Barrel threading

• Interleaved multi-threading

• Cycle i+1: an instruction from instruction stream
(warp) A is issued

• Cycle i+2: an instruction from instruction stream
(warp) B is issued

• The purpose of this type of multithreading is to
remove all data dependency stalls from the
execution pipeline. Since one warp is independent
from other warps.

• Terminology

• This type of multithreading was first called Barrel
processing, in which the staves of a barrel represent
the pipeline stages and their executing
threads. Interleaved or Pre-emptive or Fine-
grained or time-sliced multithreading are more
modern terminology.

2013/12/26 36

http://en.wikipedia.org/wiki/Data_dependency
http://en.wikipedia.org/wiki/Pipeline_(computing)

2013/12/26
37

Warp scheduler

• SIMT machine fetcher
fetches warps of
instructions and store
them into a warp
queue.

• Warp scheduler issues
(broadcasts) one
instruction from a
ready warp to the PEs
in the SIMT machine.

N stages in a FU

I1

See a core in the system

I1J1

warp1: I1 I2 I3 I4 I5…

warp2: J1 J2 J3 J4 J5..

warpN: z1 z2 z3….

z1 I1J1

After N cycles,

I1 completes

Warp back to

Issue I2 of warp1, and etc.

So, if I2 depends on I1,

It has a room of N cycles

for execution latency.

time

C1

C2

CN

IF

2013/12/26 38

Example: Fermi GPU Architecture

SMEM: shared memory in Fermi term, but this is actually a private local scratchpad memory

for a thread block communication (workgroup)

Data memory hierarchy: register, L1, L2, global memory

L1 + Local Scratchpad = 64KB configurable

F
e

rm
i A

rc
h

ite
c

tu
re

2013/12/26 39

Example: Fermi Floor Plan

Thread Block

Distributor:

Workgroup

distributor

SM

64-bits

32

Cores

+16

L/S +

4SFU

scheduler

L1/SMEM

40-bit address space

40 nm TSMC

3 x 109 T

> Nehalem-Ex(2.3)

1.x GHz

up to 8

thread

blocks

16 multithreaded

SIMD processors

PCI/E

This GPU is a

multiprocessor

composed of

multithreaded

SIMD processors

F
e

rm
i A

rc
h

ite
c

tu
re

A Streaming Multiprocessor
ie., a Multithreaded SIMD
Processor

• An SM consists of 32 CUDA
cores + some 16 Load/Store
unit + 4 special functional units

• Registers: 32K x words

• L1 data cache private to each
SM

• L1 Instruction cache

• L2 unified for data and texture,
instruction(?), shared globally,
coherent for all SMs.

• Instruction dispatch

(A, B) fs

(A+B) fd

(A, C)

(B, C)

(A, D)

(B, D), (C, D), etc

2013/12/26 40L2

A B C D

F
e

rm
i A

rc
h

ite
c

tu
re

Warp Scheduler in Fermi

• A warp is simply an
instruction stream of
SIMD instructions.

2013/12/26 41

Queue for

warps

Pick instruction from ready warps A cycle for issuing an instruction from warp 8

t1

t1 + xx cycles

F
e

rm
i A

rc
h

ite
c

tu
re

A workgroup = several warps

2013/12/26 42

Welcome to this talk

• OpenCL Platform Model

• Micro-architecture implications

• An OpenCL RunTime on a Many-core system

• Summary

Runtime Implementation Example

• On an 1-to-32 ARM-core system,

• Build an OpenCL runtime system

–Resource management + On-the-fly
compiling

• To evaluate

–Work-item execution methods

–Memory management for OpenCL
memory models

2013/12/26 43

Target Platform –
ARM multi-core virtual platform

• Homogeneous many-core with shared main
memory

SystemC Simulation Platform

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

Transaction-Level Model Bus

IRQ

Signals

DRAM

Controllers

On-Chip

...

Interrupt Handler

Compute Unit

Scheduler
IPC

Channel

Handler

N DRAM

Channels

OpenCL Runtime System –
Software Stack

• A unified programming
interface for various
platforms

OpenCL
Application

Programming
Interface

• Resource manager

• Device, memory, execution
kernel … etc.

• CL source code compiling
for target device

OpenCL
Runtime
System

• Provide driver API to
runtime

OpenCL
Device Driver

OpenCL Application Programming Interface Layer

OpenCL Runtime Layer

OpenCL Device Driver Layer

Platform Resource

Manager

OpenCL Source Code

Compiler

For Programmer

To Platform

OpenCL Source Code Compilation

• LLVM compiler framework

• Front-end compiler: Intermediate
representation

• Back-end compiler: Assembly
code of target device

• ARM Cross Compiler

• Target Binary

Translate the
kernel code

to binary
code

CL kernel

source code

LLVM Compiler

OpenCL Front-end

Compiler

OpenCL

Intermediate

Representation

(IR)

OpenCL Back-end

Compiler

Assembly Code of

Target Device

Cross Compiler

(GNU C/C++)

Target

Binary Code

Runtime: Program & Kernel
Management
• More than one kernel in a program

– clCreateProgramWithSource/clBuildProgram

» Use LLVM compiler and ARM cross compiler to build the object
code by the program source code

– clEnqueueNDRangeKernel

» This API decides the kernel which is going to run.

• Object code linking

Kernel Source Code

Kernel Source Code

Kernel Source Code

Kernel Source Code

..

.

Program Source Code

Kernel Binary

Kernel Binary

Kernel Binary

Kernel Binary

Program Object Code

.

..

Kernel Binary

Execution Code

main()

{

 // Setting parameters

 // Branch to the kernel

}

OpenCL

APIs

Compilers

clCreateProgramWithSource()

clBuildProgram()

clSetKernelArg()

clEnqueueNDRangeKernel()

LLVM Compiler

ARM GCC

ARM GCC

ARM LD

Runtime: Memory Mapping

• Mapping OpenCL Progam Memory to Physical Memories

– Created by clCreateBuffer (Global, constant, local)
» Runtime system creates a memory object through

memory allocation function provided by device driver.
(Map physical to OpenCL memories)

» This API returns a pointer of the buffer descriptor for
the mapping table. RunTime keeps this table.

– Local memory can be also declared by kernel
source

» LLVM compiler uses .bss section for variables
declared with __local key word.

» Memory mapping in MMU set by work-item
management thread per CPU core.

– Kernel’s private memory
» Use stack memory

» Stack set by work-item management thread

OpenCL Application Programming Interface Layer

OpenCL Runtime Layer

OpenCL Device Driver Layer

Mem
PTR

(Host)

Mem
PTR

(Device)

MemObject

Mem
PTR

(Host)

Mem
PTR

(Device)

MemObject

Mem
PTR

(Host)

Mem
PTR

(Device)

MemObject

Mem
PTR

(Host)

Mem
PTR

(Device)

MemObject

...

clEnqueueWriteBuffer() /

clEnqueueReadBuffer()

Device Memory

Runtime: Data transfer

• Data transfer between
host and target
device by:

– clEnqueueWriteBuffer

– clEnqueueReadBuffer

– For these API calls,
the runtime system
copies the data
between host memory
and target device
memory through the
mapping table kept in
runtime.

Memory Mapping Table

Buffer descriptor

Runtime: Compute Unit Management

• Each ARM core is mapped to a compute unit
(CU).

• A CU executes a work-group at a time.

‧
‧
‧

Command Queues
(From Application)

Ready Queue

CU

CU

CU

CU

CU

‧
‧
‧

Work Groups

. . .

. . .

. . .

. . .

. . .

. . .

CU Status
Registers

Issue Assign

Runtime Scheduler Device Driver Device

Device and Memory Mapping

OpenCL Progam Model Map onto CASLAB multi-core Platform

Host Processor Host CPU (INTEL i7)

Host Memory Host main memory

Compute Device SystemC ARM Multicore (1 to 32 core)

Compute Unit SystemC ARMv7a ISS

Process Element
Work-item coalescing to a thread running on

an ARMv7a core

Global/Constant Memory Mulit-core Shared Memory

Local Memory Per ARM’s memory (in shared memory)

Private Memory Each Work-item’s Stack Memory

Simulation Platform for OpenCL
runtime development

2013/12/26 52

SystemC Simulation Platform

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

ARMv7a

ISS

L2 Unified Cache

L1

I$

L1

D$

MM

U

Compute Unit

Transaction-Level Model Bus

IRQ

Signals

DRAM

Controllers

On-Chip

...

Interrupt Handler

Compute Unit

Scheduler
IPC

Channel

Handler

N DRAM

Channels

Host program

(C/C++ source code)

CL Program

OpenCL Application Layer

OpenCL Application Programming Interface Layer

OpenCL Runtime Layer

OpenCL Device Driver Layer

Platform Resource

Manager

OpenCL Source Code On-the-

Fly Compiler

Kernel Kernel Kernel
...

Host Application

IPC Channel

(Share Memory)

Work-item coalescing

• Work-items in a workgroup are emulated in a
CPU core.

• Context switching overheads occur when
switching work-item for execution.

–Combine the work-items in a
workgroup in to a single execution
thread.

–Need to translate the original CL code.

2013/12/26 53

New Features in OpenCL 2.0

• OpenCL 1.0

• OpenCL 1.1

• OpenCL 1.2

• OpenCL 2.0 (July, 2013)

–Extended image support (2D/3D, depth,
read/write on the same image, OpenGL)

–Shared virtual memory

–Pipes (transfer data btw multiple
invocation of kernels, enable data flow
operations)

–Android Driver

2013/12/26 54

Summary

• From Application

–OpenCL

• To Technology

–Architectural support

–Runtime implementation

2013/12/26 55

