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Course Focus 
   Understanding the design techniques, machine 

structures, technology factors, evaluation 
methods that will determine the form of 
computers in the 21st Century 

Technology Programming 
Languages 

Operating 
Systems History 

Applications Interface Design 
(ISA) 

Measurement & 
Evaluation 

Parallelism 

Computer Architecture: 
• Organization 
• Hardware/Software Boundary 

Compilers 
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Your Goals 
• Computer architecture 

– Power, dependability, multi CPU vs. 1 CPU performance. 

• Mix of lecture vs. discussion 
– Depends on how well reading is done before class 

• Goal is to learn how to do good system research 
– Learn a lot from looking at good work in the past. 
– At commit point, you may choose to pursue your own new 

idea instead. 
– Learn the strategies in writing a good paper, paragraph by 

paragraph, sentence by sentence. 
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Research Paper Reading 

• As graduate students, you are now researchers 
• Most information of importance to you will be in 

research papers 
• Ability to rapidly scan and understand research papers 

is key to your success 
 

• So: you will read a few papers in this course 
– Quick 1-2 paragraphs summary and questions 

» Send Report PDF to TA. 
– Will discuss papers in class using PDFs.  

• Papers will be announced. 
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Grading 

• 15% Homeworks (work in three) for reading writeups 
• 45% Examinations (3 Quizzes) 
• 20% Class Participation, Presentation 

– Paper discussions 

• 20% Full system simulation project 
– Learn how to design an ASIC or hardware of your choice 
– Learn how to hook up your hardware into a Linux system which 

runs on a ARM-based platform. 
» Learn how to write a device driver and perform hardware-

software co-simulation and functional verification  
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Performance Wall Ahead 
• Power wall 

– Power expensive, transistor  free  
(Can put more on chip than can afford to turn it on) 

• ILP wall 
– Instruction level parallelism diminishes on more HW for ILP  

• Memory wall 
–  Memory, the legacy problem 

• Previously uniprocessor performance 2X / 1.5 yrs 
• Now: Power Wall + ILP Wall + Memory Wall 

– Uniprocessor performance now 2X / 5(?) yrs 

• Big change in direction: multiple cores  
 (2X processors per chip / ~ 2 years) 
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Power Formula 
• Dynamic power = ½ x Capacitive load x voltage2 x 

frequency switched  (V2/R) 
 
• Dynamic energy = Capacitive load x voltage2  

– Capacitances come from transistors and wires. 

 
• Static power = Static current x voltage 

– More than 25 percent of the total power consumption resulting 
from leakage current  
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Computer Architecture is  
Design and Analysis 

Design

Analysis

Architecture is an iterative process: 
• Searching the space  of possible designs 
• At all levels of computer systems 

Cost/performance 

Creativity 

Good Ideas 
Mediocre Ideas Naive Ideas 
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What Computer Architecture Brings to You  

• Other fields often borrow ideas from architecture 
• Quantitative Principles of Design 

1. Take Advantage of Parallelism 
2. Principle of Locality 
3. Focus on the Common Case 
4. Amdahl’s Law 
5. The Processor Performance Equation 

• Careful, quantitative comparisons 
– Define, quantify, and summarize relative performance 
– Define and quantify relative cost 
– Define and quantify dependability 
– Define and quantify power 

• Culture of anticipating and exploiting advances in 
technology 

• Culture of well-defined interfaces that are carefully 
implemented and thoroughly checked 



New things 
• From CUDA to OpenCL  
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Terminology from Wiki 
• CUDA  

– Compute Unified Device Architecture (CUDA) is a parallel 
computing architecture developed by Nvidia . 

• OpenCL 
– Open Computing Language (OpenCL) is a framework for writing 

programs that execute across heterogeneous platforms consisting 
of central processing unit (CPUs), graphics processing 
unit (GPUs), and other processors.  

– OpenCL includes a language for writing kernels (functions that 
execute on OpenCL devices), plus application programming 
interfaces (APIs) that are used to define and then control the 
platforms.  

– OpenCL provides parallel computing using task-based and data-
based parallelism. OpenCL is an open standard maintained by 
the non-profit technology consortium Khronos Group. It has been 
adopted by Intel, Advanced Micro Devices, Nvidia, and ARM 
Holdings. 
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http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Non-profit_organization
http://en.wikipedia.org/wiki/Khronos_Group
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/ARM_Holdings
http://en.wikipedia.org/wiki/ARM_Holdings


Terminology from Wiki-cont. 

• PTX 
– Parallel Thread Execution (PTX) is a pseudo-assembly 

language used in Nvidia's CUDA programming environment. 
The nvcc compiler translates code written in CUDA, a C-like 
language, into PTX, and the graphics driver contains a compiler 
which translates the PTX into a binary code which can be run on 
the processing cores. 

• LLVM 
– LLVM (formerly Low Level Virtual Machine) 

is compiler infrastructure written in C++; it is designed for compile-
time, link-time, run-time, and "idle-time" optimization of programs 
written in arbitrary programming languages. 

– Compile the source code to the intermediate 
representation(LLVM-IR). 
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http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/w/index.php?title=NVIDIA_CUDA_Compiler&action=edit&redlink=1
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Link-time
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Programming_language


Tracking Technology Performance Trends 

•  Drill down into 4 technologies for a 20-year+ 
span: 

– Disks,  
– Memory,  
– Network,  
– Processors 

•  Compare ~1980 vs. ~2000+ Modern 
– Performance Milestones in each technology 

• Compare for Bandwidth vs. Latency 
improvements in performance over time 

• Bandwidth: number of events per unit time 
– E.g., M bits / second over network, M bytes / second from disk 

• Latency: elapsed time for a single event 
–  E.g., one-way network delay in microseconds,  

average disk access time in milliseconds 
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Latency Lags Bandwidth (last ~20+ 
years) 
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• Performance Milestones 
• Processor: ‘286, ‘386, 

‘486, Pentium, Pentium 
Pro, Pentium 4 (21x,2250x), Core 
i7 

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s 
(16x,1000x) 

• Memory Module: 16bit 
plain DRAM, Page Mode 
DRAM, 32b, 64b, SDRAM,  
DDR SDRAM (4x,120x)   DDR3 

• Disk : 3600, 5400, 7200, 
10000, 15000 RPM (8x, 143x) 

 

1

10

100

1000

10000

1 10 100

Relative Latency Improvement   

Relative 
BW 

Improve
ment   

Processor

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

CPU high,  
Memory low 
(“Memory 
Wall”) DDR 3 
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A "Typical" RISC ISA 

• 32-bit fixed format instruction (3 formats) 
• 32 32-bit GPR (R0 contains zero, DP take pair) 
• 3-address, reg-reg arithmetic instruction 
• Single address mode for load/store:  

base + displacement 
– no indirection 

• Simple branch conditions 
• Delayed branch 

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC, 
        CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3 
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Instruction Set Architecture 

instruction set 

software 

hardware 

• Properties of a good abstraction 
– Lasts through many generations (portability) 
– Used in many different ways (generality) 
– Provides convenient  functionality to higher levels 
– Permits an efficient implementation at lower levels 
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Register Bank 

• ARM : 37 registers 
–  31 general-purpose registers 
–  6 status registers  

• MIPS : 35 registers 
–  32 general-purpose registers 
–  3 Special-Purpose Registers  

(PC, HI and  LO) 
MIPS 

ARM 
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Example: MIPS  

Op 
31 26 0 15 16 20 21 25 

Rs1 Rd immediate 

Op 
31 26 0 25 

Op 
31 26 0 15 16 20 21 25 

Rs1 Rs2 

target 

Rd Opx 

Register-Register 
5 6 10 11 

Register-Immediate 

Op 
31 26 0 15 16 20 21 25 

Rs1 Rs2/Opx immediate 

Branch 

Jump / Call 
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Datapath vs Control 

• Datapath: Storage, FU, interconnect sufficient to perform the 
desired functions 

– Inputs are Control Points 
– Outputs are signals 

• Controller: State machine to orchestrate operation on the data 
path 

– Based on desired function and signals 
 

Datapath Controller 

Control Points 

signals 
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   Processor Performance Equation 

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds 
      Program     Program          Instruction       Cycle 

     Inst Count    CPI Clock Rate 
Program           X  
 
Compiler           X     (X) 
 
Inst. Set.           X      X 
 
Organization      X    X 
 
Technology      X 

inst count 

CPI 

Cycle time 
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What’s a Clock Cycle? 

• Old days: 10 levels of gates 
• Today: determined by numerous time-of-flight 

issues + gate delays 
– clock propagation, wire lengths, drivers 

Latch 
or 

register 

combinational 
logic 
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Wire delays dominate 

• Gate delay 
– 50ps (90nm) 

• Long wire 
–  1ns 

• System bus 
runs through 
entire chip. 

1cm 

1.414 cm 1 cm 

1.414 cm x 10-2/3 x 107 

= 4.7 nsec 

4 nsec 
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Approaching an ISA (Implementing an ISA) 

• Instruction Set Architecture 
– Defines set of operations, instruction format, hardware 

supported data types, named storage, addressing modes, 
sequencing 

• Meaning of each instruction is described by RTL 
on architected registers and memory 

• Given technology constraints assemble adequate 
datapath 

– Architected storage mapped to actual storage 
– Function units to do all the required operations 
– Possible additional storage (eg. MAR, …) 
– Interconnect to move information among regs and FUs 

• Map each instruction to sequence of RTLs 
• Collate sequences into symbolic controller state 

transition diagram (STD) 
• Implement controller 
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5 Steps of MIPS Datapath 
Memory 
Access 

Write 
Back 

Instruction 
Fetch 

Instr. Decode 
Reg. Fetch 

Execute 
Addr. Calc 

A
LU

 

M
em

ory 

Reg File 

M
U

X
 M

U
X

 

D
ata 

M
em

ory 

M
U

X
 

Sign 
Extend 

Zero? 

IF/ID
 

ID
/EX

 

M
EM

/W
B 

EX
/M

EM
 

4 

A
dder 

Next SEQ PC Next SEQ PC 

RD RD RD W
B 

D
at

a 

Next PC 

A
ddress 

RS1 

RS2 

Imm 

M
U

X
 

IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 
rslt <= A 
opIRop B Reg[IRrd] <= WB 

WB <= rslt 
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Inst. Set Processor Controller 

IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 

r <= A opIRop B 

Reg[IRrd] <= WB 

WB <= r 

Ifetch 

opFetch-DCD 

PC <= IRjaddr if bop(A,b) 

PC <= PC+IRim 

br jmp 
RR 

r <= A opIRop IRim 

Reg[IRrd] <= WB 

WB <= r 

RI 
r <= A + IRim 

WB <= Mem[r] 

Reg[IRrd] <= WB 

LD 
ST 
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Control MIPS Datapath 
Memory 
Access 

Write 
Back 

Instruction 
Fetch 

Instr. Decode 
Reg. Fetch 

Execute 
Addr. Calc 

A
LU

 

M
em

ory 

Reg File 

M
U

X
 M

U
X

 

D
ata 

M
em

ory 

M
U

X
 

Sign 
Extend 

Zero? 

IF/ID
 

ID
/EX

 

M
EM

/W
B 

EX
/M

EM
 

4 

A
dder 

Next SEQ PC Next SEQ PC 

RD RD RD W
B 

D
at

a 

•  Data stationary control 
– local decode for each instruction phase / pipeline stage 

Next PC 

A
ddress 

RS1 

RS2 

Imm 

M
U

X
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Visualizing Pipelining 

I 
n 
s 
t 
r.  
 

O 
r 
d 
e 
r 

Time (clock cycles) 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5 
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Pipelining is not quite that easy! 

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle 

– Structural hazards: HW cannot support this combination of 
instructions 

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline 

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps). 
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I 
n 
s 
t 
r.  
 

O 
r 
d 
e 
r 

add r1,r2,r3 
 

sub r4,r1,r3 
 

and r6,r1,r7 
 

or   r8,r1,r9 
 
xor r10,r1,r11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Data Hazard on R1 
 

Time (clock cycles) 

IF ID/RF EX MEM WB 

latest instruction 

First instruction 
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• Read After Write (RAW)  
InstrJ tries to read operand before InstrI writes it 
 
   
 
 
 

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication. 

Three Generic Data Hazards 

I: add r1,r2,r3 
J: sub r4,r1,r3 
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• Write After Read (WAR)  
InstrJ writes operand before InstrI reads it 
 
 
 
 

• Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1”. 
 

• Can’t happen in MIPS 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Reads are always in stage 2, and  
–  Writes are always in stage 5 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 

Three Generic Data Hazards 
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Three Generic Data Hazards 
 

• Write After Write (WAW)  
InstrJ writes operand before InstrI writes it. 
 
 
 
 

• Called an “output dependence” by compiler writers 
This also results from the reuse of name “r1”. 

• Can’t happen in MIPS 5 stage pipeline because:  
–  All instructions take 5 stages, and  
–  Writes are always in stage 5 

• Will see WAR and WAW in more complicated pipes 

I: sub r1,r4,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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Time (clock cycles) 

Forwarding to Avoid Data Hazard 
 

I 
n 
s 
t 

r.  
 

O 
r 
d 
e 
r 

add r1,r2,r3 
 

sub r4,r1,r3 
 

and r6,r1,r7 
 

or   r8,r1,r9 
 

xor r10,r1,r11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Write at first half 

Read at second half 
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HW Change for Forwarding 
 

M
EM

/W
R 

ID
/EX

 

EX
/M

EM
  

Data 
Memory 

A
LU

 

m
ux 

m
ux 

Registers 

NextPC 

Immediate 

m
ux 

What circuit detects and resolves this hazard? 
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Time (clock cycles) 

Forwarding to Avoid LW-SW Data Hazard 

I 
n 
s 
t 

r.  
 

O 
r 
d 
e 
r 

add r1,r2,r3 
 

lw r4, 0(r1) 
 

sw r4,12(r1) 
 

or   r8,r6,r9 
 

xor r10,r9,r11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 
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Time (clock cycles) 

I 
n 
s 
t 
r.  
 

O 
r 
d 
e 
r 

lw r1, 0(r2) 
 

sub r4,r1,r6 
 

and r6,r1,r7 
 

or   r8,r1,r9 
 

Data Hazard Even with Forwarding 
 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 
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Data Hazard Even with Forwarding 
 

Time (clock cycles) 

or   r8,r1,r9 
 
 

I 
n 
s 
t 
r. 
 

O 
r 
d 
e 
r 

lw r1, 0(r2) 
 

sub r4,r1,r6 
 

and r6,r1,r7 
 

Reg A
LU

 

DMem Ifetch Reg 

Reg Ifetch A
LU

 

DMem Reg Bubble 

Ifetch A
LU

 

DMem Reg Bubble Reg 

Ifetch 

A
LU

 

DMem Bubble Reg 

How is this detected? 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 
assuming a, b, c, d ,e, and f in memory.  
Slow code: 
  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW d,Rd 

Software Scheduling to Avoid Load 
Hazards 

Fast code: 
  LW  Rb,b 
  LW  Rc,c 
  LW  Re,e  
  ADD  Ra,Rb,Rc 
  LW  Rf,f 
  SW   a,Ra  
  SUB  Rd,Re,Rf 
  SW d,Rd 

Compiler optimizes for performance.  Hardware checks for safety. 

stall 

stall 



2012/9/18 39 

Control Hazard on Branches 
Three Stage Stall 

10: beq r1,r3,36 
 

14: and r2,r3,r5  
 

18: or  r6,r1,r7 
 

22: add r8,r1,r9 
 
36: xor r10,r1,r11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch 

What do you do with the 3 instructions in between? 

How do you do it? 

Where is the “commit”? 
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Branch Stall Impact 

• If CPI = 1, 30% branch,  
 Stall 3 cycles => new CPI = 1.9! 

• Two part solution: 
– Determine branch taken or not sooner, AND 
– Compute taken branch address earlier 

• MIPS branch tests if register = 0 or ≠ 0 
• MIPS Solution: 

– Move Zero test to ID/RF stage 
– Adder to calculate new PC in ID/RF stage 
– 1 clock cycle penalty for branch versus 3 
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A
dder 

IF/ID
 

Branch result test at ID/RF stage 
Memory 
Access 

Write 
Back 

Instruction 
Fetch 

Instr. Decode 
Reg. Fetch 

Execute 
Addr. Calc 

A
LU

 

M
em

ory 

Reg File 

M
U

X
 

D
ata 

M
em

ory 

M
U

X
 

Sign 
Extend 

Zero? 

M
EM

/W
B 

EX
/M

EM
 

4 

A
dder 

Next 
SEQ PC 

RD RD RD W
B 

D
at

a 

• Interplay of instruction set design and cycle time. 

Next PC 

A
ddress 

RS1 

RS2 

Imm 
M

U
X

 

ID
/EX
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Branch Hazard Alternatives 

#1: Stall until branch direction is clear 
#2: Predict Branch Not Taken 

– Execute successor instructions in sequence 
– “Squash” instructions in pipeline if branch actually taken 
– Advantage of late pipeline state update 
– 47% MIPS branches not taken on average 
– PC+4 already calculated, so use it to get next instruction 

#3: Predict Branch Taken 
– 53% MIPS branches taken on average 
– But haven’t calculated branch target address in MIPS 
 

#4: Advanced processors use sophisticated 
predictors 
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Problems with Pipelining 
• Exception:  An unusual event happens to an 

instruction during its execution   
– Examples: divide by zero, undefined opcode 

• Interrupt:  Hardware signal to switch the 
processor to a new instruction stream   

– Example: a sound card interrupts when it needs more audio 
output samples (an audio “click” happens if it is left waiting) 

• Problem: It must appear that the exception or 
interrupt must appear between 2 instructions (Ii 
and Ii+1) 

– The effect of all instructions up to and including Ii is totally 
complete 

–  No effect of any instruction after Ii can take place  
• The interrupt (exception) handler either aborts 

program or restarts at instruction Ii+1 
 Ii+1 

Ii          Ii-1 

No effect takes 

place 
Complete exe. 
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Pipeline 

ALU

MUL

Shifter

RegBank

IM

DM ALIGN

Control 
Unit

IM

PC

PC

ALU

MUL

Shifter

RegBank
DM ALIGN

Control 
Unit

IF/ID ID/EX EX/MEM MEM/WB

IF/ID ID/EX EX/MEM MEM/WB

L
O

H
I

ARM

MIPS
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Processor Pipeline Model and Exception 

Implement an in-order execution model : 
a conventional five-stage pipeline 
  

 Instruction fetch (IF) 
 PC => ITLB => Instruction cache (physically addressed cache) 

 Instruction decode (ID) 
Execute (EXE) 
Memory (MEM) 

 Load/store logical address => DTLB => Data cache 

Write back (WB).  



Precise Exceptions in Static Pipelines 

Key observation: architected state only 
change in memory and register write 
stages. 

Instruction with 

this PC is the  

faulting instru. 

MeM 
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Exception Process in ARM (v4) 

• General process procedure 
» When an exception occurs, the banked version of 

R14 and the SPSR for the exception mode are used 
to save the state. 

R14_<exception_mode> = return address; 
SPSR_<exception mode> = CPSR; 
CPSR[4:0] = exception mode number; 
If <exception mode> == reset or FIQ then 

CPSR[6] = 1;   /* disable fast interrupt * 
    /* Else CPSR[6] is unchanged * 

CPSR[7] = 1;  /* disable normal interrupt */ 
PC = exception vector address  
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Reset  
• Implementation 

R14_svc = unpredictable value; SPSR_svc = 
unpredictable; 

CPSR[4:0] = 0b10011;  /* Mode is supervisor. * / 
CPSR[I:F:T]=CPSR[7:6:5] = 110;  /* Disable interrupts 

and execute ARM instructions */ 
If high vectors configured then  

PC = 0xFFFF0000 
Else 

PC = 0x00000000. 
– The above actions are done in Hardware. This is how 

the processor fetches the first instruction. Set the 
program counter to one of the above values by 
checking the configuration pin. 
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• 4 condition code flags 
–  (N, Z, C, V) flags：Negative, Zero, Carry, 

oVerflow 
• 1 sticky overflow flag 

–  Q bit：DSP instruction overflow bit. 
–  In E variants of ARM architecture 5 and 

above. 
• 2 interrupt disable bits 

–  I bit：disable normal interrupt (IRQ) 
–  F bit：disable fast interrupt (FIQ) 

• 1 bit which encodes whether ARM or Thumb 
instructions are being executed.  

–  T bit   

Program Status Register 
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• 5 bits that encode the current processor 
mode. 

–  M[4:0] are the mode bits. 
 

Program Status Register (cont.) 
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1) Taking Advantage of Parallelism 
• Increasing throughput of server computer via 

multiple processors or multiple disks 
• Detailed HW design 

– Carry lookahead adders uses parallelism to speed up computing 
sums from linear to logarithmic in number of bits per operand 

– Multiple memory banks searched in parallel in set-associative 
caches 

• Pipelining: overlap instruction execution to reduce 
the total time to complete an instruction sequence 

– Not every instruction depends on immediate predecessor ⇒  
executing instructions completely/partially in parallel is possible 

– Classic 5-stage pipeline:  
1) Instruction Fetch (Ifetch),  
2) Register Read (Reg),  
3) Execute (ALU),  
4) Data Memory Access (Dmem),  
5) Register Write (Reg) 
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2) The Principle of Locality 

• The Principle of Locality: 
– Program access a relatively small portion of the address space at 

any instant of time. 

• Two Different Types of Locality: 
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse) 
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon  
(e.g., straight-line code, array access) 

• Last 30 years, HW  relied on locality for memory perf. 

P MEM $ 
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3) Focus on the Common Case 
• Common sense guides computer design 

– Since it’s engineering, common sense is valuable 
• In making a design trade-off, favor the frequent 

case over the infrequent case 
– E.g., Instruction fetch and decode unit used more frequently 

than multiplier, so optimize it 1st 
– E.g., If database server has 50 disks / processor, storage 

dependability dominates system dependability, so optimize it 1st 
• Frequent case is often simpler and can be done 

faster than the infrequent case 
– E.g., overflow is rare when adding 2 numbers, so improve 

performance by optimizing more common case of no overflow  
– May slow down overflow, but overall performance improved by 

optimizing for the normal case 
• What is frequent case and how much performance 

improved by making case faster => Amdahl’s Law  
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4) Amdahl’s Law 

( )
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overall

Speedup
Fraction  Fraction 

1  
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do: 

( )enhanced
maximum Fraction - 1

1  Speedup =

( ) 







+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime  ExTime 1
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Amdahl’s Law Example 
• New CPU 10X faster 
• I/O bound server, so 60% time waiting for I/O 

 

( )

( )
56.1

64.0
1  

10
0.4  0.4 1

1  

Speedup
Fraction  Fraction 1

1  Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, it’s human nature to be attracted by 10X 
faster, vs. keeping in perspective it’s just 1.6X 
faster 
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And In Conclusion 
 
• Apply the simple and useful technology to high-end 

applications 
1. Take Advantage of Parallelism 
2. Principle of Locality 
3. Focus on the Common Case 
4. Amdahl’s Law 
 

• Hazards limit performance  
 

– Structural: need more HW resources 
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling 
– Control: branch prediction (speculation execution, recovery 

technique) 
 

• Exceptions and Interrupts add complexity 
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