
Computer Architecture and System
2012

Chung-Ho Chen
Computer Architecture and System Laboratory

Department of Electrical Engineering
National Cheng-Kung University

tony
戳記

2012/9/18 2

Course Focus
 Understanding the design techniques, machine

structures, technology factors, evaluation
methods that will determine the form of
computers in the 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

2012/9/18 3

Your Goals
• Computer architecture

– Power, dependability, multi CPU vs. 1 CPU performance.

• Mix of lecture vs. discussion
– Depends on how well reading is done before class

• Goal is to learn how to do good system research
– Learn a lot from looking at good work in the past.
– At commit point, you may choose to pursue your own new

idea instead.
– Learn the strategies in writing a good paper, paragraph by

paragraph, sentence by sentence.

2012/9/18 4

Research Paper Reading

• As graduate students, you are now researchers
• Most information of importance to you will be in

research papers
• Ability to rapidly scan and understand research papers

is key to your success

• So: you will read a few papers in this course
– Quick 1-2 paragraphs summary and questions

» Send Report PDF to TA.
– Will discuss papers in class using PDFs.

• Papers will be announced.

2012/9/18 5

Grading

• 15% Homeworks (work in three) for reading writeups
• 45% Examinations (3 Quizzes)
• 20% Class Participation, Presentation

– Paper discussions

• 20% Full system simulation project
– Learn how to design an ASIC or hardware of your choice
– Learn how to hook up your hardware into a Linux system which

runs on a ARM-based platform.
» Learn how to write a device driver and perform hardware-

software co-simulation and functional verification

2012/9/18 6

Performance Wall Ahead
• Power wall

– Power expensive, transistor free
(Can put more on chip than can afford to turn it on)

• ILP wall
– Instruction level parallelism diminishes on more HW for ILP

• Memory wall
– Memory, the legacy problem

• Previously uniprocessor performance 2X / 1.5 yrs
• Now: Power Wall + ILP Wall + Memory Wall

– Uniprocessor performance now 2X / 5(?) yrs

• Big change in direction: multiple cores
 (2X processors per chip / ~ 2 years)

2012/9/18 7

Power Formula
• Dynamic power = ½ x Capacitive load x voltage2 x

frequency switched (V2/R)

• Dynamic energy = Capacitive load x voltage2

– Capacitances come from transistors and wires.

• Static power = Static current x voltage

– More than 25 percent of the total power consumption resulting
from leakage current

2012/9/18 8

Computer Architecture is
Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Cost/performance

Creativity

Good Ideas
Mediocre Ideas Naive Ideas

2012/9/18 9

What Computer Architecture Brings to You

• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantify, and summarize relative performance
– Define and quantify relative cost
– Define and quantify dependability
– Define and quantify power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

New things
• From CUDA to OpenCL

2012/9/18 10

Terminology from Wiki
• CUDA

– Compute Unified Device Architecture (CUDA) is a parallel
computing architecture developed by Nvidia .

• OpenCL
– Open Computing Language (OpenCL) is a framework for writing

programs that execute across heterogeneous platforms consisting
of central processing unit (CPUs), graphics processing
unit (GPUs), and other processors.

– OpenCL includes a language for writing kernels (functions that
execute on OpenCL devices), plus application programming
interfaces (APIs) that are used to define and then control the
platforms.

– OpenCL provides parallel computing using task-based and data-
based parallelism. OpenCL is an open standard maintained by
the non-profit technology consortium Khronos Group. It has been
adopted by Intel, Advanced Micro Devices, Nvidia, and ARM
Holdings.

2012/9/18 11

http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Non-profit_organization
http://en.wikipedia.org/wiki/Khronos_Group
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/ARM_Holdings
http://en.wikipedia.org/wiki/ARM_Holdings

Terminology from Wiki-cont.

• PTX
– Parallel Thread Execution (PTX) is a pseudo-assembly

language used in Nvidia's CUDA programming environment.
The nvcc compiler translates code written in CUDA, a C-like
language, into PTX, and the graphics driver contains a compiler
which translates the PTX into a binary code which can be run on
the processing cores.

• LLVM
– LLVM (formerly Low Level Virtual Machine)

is compiler infrastructure written in C++; it is designed for compile-
time, link-time, run-time, and "idle-time" optimization of programs
written in arbitrary programming languages.

– Compile the source code to the intermediate
representation(LLVM-IR).

2012/9/18 12

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/w/index.php?title=NVIDIA_CUDA_Compiler&action=edit&redlink=1
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Link-time
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Programming_language

Tracking Technology Performance Trends

• Drill down into 4 technologies for a 20-year+
span:

– Disks,
– Memory,
– Network,
– Processors

• Compare ~1980 vs. ~2000+ Modern
– Performance Milestones in each technology

• Compare for Bandwidth vs. Latency
improvements in performance over time

• Bandwidth: number of events per unit time
– E.g., M bits / second over network, M bytes / second from disk

• Latency: elapsed time for a single event
– E.g., one-way network delay in microseconds,

average disk access time in milliseconds

2012/9/18 13

Latency Lags Bandwidth (last ~20+
years)

2012/9/18 14

• Performance Milestones
• Processor: ‘286, ‘386,

‘486, Pentium, Pentium
Pro, Pentium 4 (21x,2250x), Core
i7

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s
(16x,1000x)

• Memory Module: 16bit
plain DRAM, Page Mode
DRAM, 32b, 64b, SDRAM,
DDR SDRAM (4x,120x) DDR3

• Disk : 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”) DDR 3

2012/9/18 15

A "Typical" RISC ISA

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
 CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

2012/9/18 16

Instruction Set Architecture

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

17

Register Bank

• ARM : 37 registers
– 31 general-purpose registers
– 6 status registers

• MIPS : 35 registers
– 32 general-purpose registers
– 3 Special-Purpose Registers

(PC, HI and LO)
MIPS

ARM

2012/9/18 18

Example: MIPS

Op
31 26 0 15 16 20 21 25

Rs1 Rd immediate

Op
31 26 0 25

Op
31 26 0 15 16 20 21 25

Rs1 Rs2

target

Rd Opx

Register-Register
5 6 10 11

Register-Immediate

Op
31 26 0 15 16 20 21 25

Rs1 Rs2/Opx immediate

Branch

Jump / Call

2012/9/18 19

Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data
path

– Based on desired function and signals

Datapath Controller

Control Points

signals

2012/9/18 20

 Processor Performance Equation

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

2012/9/18 21

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

2012/9/18 22

Wire delays dominate

• Gate delay
– 50ps (90nm)

• Long wire
– 1ns

• System bus
runs through
entire chip.

1cm

1.414 cm 1 cm

1.414 cm x 10-2/3 x 107

= 4.7 nsec

4 nsec

2012/9/18 23

Approaching an ISA (Implementing an ISA)

• Instruction Set Architecture
– Defines set of operations, instruction format, hardware

supported data types, named storage, addressing modes,
sequencing

• Meaning of each instruction is described by RTL
on architected registers and memory

• Given technology constraints assemble adequate
datapath

– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state

transition diagram (STD)
• Implement controller

2012/9/18 24

5 Steps of MIPS Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A
opIRop B Reg[IRrd] <= WB

WB <= rslt

2012/9/18 25

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddr if bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD
ST

2012/9/18 26

Control MIPS Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

2012/9/18 27

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

2012/9/18 28

Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of
instructions

– Data hazards: Instruction depends on result of prior instruction still
in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow (branches
and jumps).

2012/9/18 29

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB

latest instruction

First instruction

2012/9/18 30

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

2012/9/18 31

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

2012/9/18 32

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

2012/9/18 33

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Write at first half

Read at second half

2012/9/18 34

HW Change for Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?

2012/9/18 35

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

2012/9/18 36

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

2012/9/18 37

Data Hazard Even with Forwarding

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU

DMem Ifetch Reg

Reg Ifetch A
LU

DMem Reg Bubble

Ifetch A
LU

DMem Reg Bubble Reg

Ifetch

A
LU

DMem Bubble Reg

How is this detected?

2012/9/18 38

Try producing fast code for
 a = b + c;
 d = e – f;
assuming a, b, c, d ,e, and f in memory.
Slow code:
 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:
 LW Rb,b
 LW Rc,c
 LW Re,e
 ADD Ra,Rb,Rc
 LW Rf,f
 SW a,Ra
 SUB Rd,Re,Rf
 SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

stall

stall

2012/9/18 39

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?

2012/9/18 40

Branch Stall Impact

• If CPI = 1, 30% branch,
 Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

2012/9/18 41

A
dder

IF/ID

Branch result test at ID/RF stage
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

• Interplay of instruction set design and cycle time.

Next PC

A
ddress

RS1

RS2

Imm
M

U
X

ID
/EX

2012/9/18 42

Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

#4: Advanced processors use sophisticated
predictors

2012/9/18 43

Problems with Pipelining
• Exception: An unusual event happens to an

instruction during its execution
– Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the
processor to a new instruction stream

– Example: a sound card interrupts when it needs more audio
output samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or
interrupt must appear between 2 instructions (Ii
and Ii+1)

– The effect of all instructions up to and including Ii is totally
complete

– No effect of any instruction after Ii can take place
• The interrupt (exception) handler either aborts

program or restarts at instruction Ii+1
 Ii+1

Ii Ii-1

No effect takes

place
Complete exe.

44

Pipeline

ALU

MUL

Shifter

RegBank

IM

DM ALIGN

Control
Unit

IM

PC

PC

ALU

MUL

Shifter

RegBank
DM ALIGN

Control
Unit

IF/ID ID/EX EX/MEM MEM/WB

IF/ID ID/EX EX/MEM MEM/WB

L
O

H
I

ARM

MIPS

45

Processor Pipeline Model and Exception

Implement an in-order execution model :
a conventional five-stage pipeline

 Instruction fetch (IF)
 PC => ITLB => Instruction cache (physically addressed cache)

 Instruction decode (ID)
Execute (EXE)
Memory (MEM)

 Load/store logical address => DTLB => Data cache

Write back (WB).

Precise Exceptions in Static Pipelines

Key observation: architected state only
change in memory and register write
stages.

Instruction with

this PC is the

faulting instru.

MeM

47

Exception Process in ARM (v4)

• General process procedure
» When an exception occurs, the banked version of

R14 and the SPSR for the exception mode are used
to save the state.

R14_<exception_mode> = return address;
SPSR_<exception mode> = CPSR;
CPSR[4:0] = exception mode number;
If <exception mode> == reset or FIQ then

CPSR[6] = 1; /* disable fast interrupt *
 /* Else CPSR[6] is unchanged *

CPSR[7] = 1; /* disable normal interrupt */
PC = exception vector address

48

Reset
• Implementation

R14_svc = unpredictable value; SPSR_svc =
unpredictable;

CPSR[4:0] = 0b10011; /* Mode is supervisor. * /
CPSR[I:F:T]=CPSR[7:6:5] = 110; /* Disable interrupts

and execute ARM instructions */
If high vectors configured then

PC = 0xFFFF0000
Else

PC = 0x00000000.
– The above actions are done in Hardware. This is how

the processor fetches the first instruction. Set the
program counter to one of the above values by
checking the configuration pin.

49

• 4 condition code flags
– (N, Z, C, V) flags：Negative, Zero, Carry,

oVerflow
• 1 sticky overflow flag

– Q bit：DSP instruction overflow bit.
– In E variants of ARM architecture 5 and

above.
• 2 interrupt disable bits

– I bit：disable normal interrupt (IRQ)
– F bit：disable fast interrupt (FIQ)

• 1 bit which encodes whether ARM or Thumb
instructions are being executed.

– T bit

Program Status Register

50

• 5 bits that encode the current processor
mode.

– M[4:0] are the mode bits.

Program Status Register (cont.)

2012/9/18 51

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel is possible

– Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

2012/9/18 52

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM $

2012/9/18 53

3) Focus on the Common Case
• Common sense guides computer design

– Since it’s engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

2012/9/18 54

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() 







+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

2012/9/18 55

Amdahl’s Law Example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, it’s human nature to be attracted by 10X
faster, vs. keeping in perspective it’s just 1.6X
faster

2012/9/18 56

And In Conclusion

• Apply the simple and useful technology to high-end

applications
1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law

• Hazards limit performance

– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: branch prediction (speculation execution, recovery

technique)

• Exceptions and Interrupts add complexity

System Architecture of the
Application Processor?

2012/9/18 57

	Computer Architecture and System 2013
	Course Focus
	Your Goals
	Research Paper Reading
	Grading
	Performance Wall Ahead
	Power Formula
	Computer Architecture is �Design and Analysis
	What Computer Architecture Brings to You
	New things
	Terminology from Wiki
	Terminology from Wiki-cont.
	Tracking Technology Performance Trends
	Latency Lags Bandwidth (last ~20+ years)
	A "Typical" RISC ISA
	Instruction Set Architecture
	Register Bank
	Example: MIPS
	Datapath vs Control
	 Processor Performance Equation
	What’s a Clock Cycle?
	Wire delays dominate
	Approaching an ISA (Implementing an ISA)
	5 Steps of MIPS Datapath
	Inst. Set Processor Controller
	Control MIPS Datapath
	Visualizing Pipelining
	Pipelining is not quite that easy!
	Data Hazard on R1�
	Three Generic Data Hazards
	Three Generic Data Hazards
	Three Generic Data Hazards
	Forwarding to Avoid Data Hazard�
	HW Change for Forwarding�
	Forwarding to Avoid LW-SW Data Hazard
	Data Hazard Even with Forwarding�
	Data Hazard Even with Forwarding�
	Software Scheduling to Avoid Load Hazards
	Control Hazard on Branches�Three Stage Stall
	Branch Stall Impact
	Branch result test at ID/RF stage
	Branch Hazard Alternatives
	Problems with Pipelining
	Pipeline
	Processor Pipeline Model and Exception
	Precise Exceptions in Static Pipelines
	Exception Process in ARM (v4)
	Reset
	投影片編號 49
	投影片編號 50
	1) Taking Advantage of Parallelism
	2) The Principle of Locality
	3) Focus on the Common Case
	4) Amdahl’s Law
	Amdahl’s Law Example
	And In Conclusion
	System Architecture of the Application Processor?

