
Handout 3

HSAIL and A SIMT GPU Simulator

1

Outline

• Heterogeneous System

• Introduction of HSA Intermediate Language (HSAIL)

• A SIMT GPU Simulator

• Summary

2

Heterogeneous System

CPU & GPU

• CPU wants GPU’s capability (SIMD)
• Sequential thread with limited data

parallelism
• 8 ~ 16 cores

• GPU wants to have CPU’s
features (GPGPU)

• Data parallel processing
• 192 ~ cores (NV Kepler)

CPU GPU

3

Heterogeneous Computing
Acceleration based on data parallelism

4

Shared Memory or not
Challenge of Traditional Heterogeneous Systems

Support only dedicated address space
CPU1 GPU

CPU Memory GPU Memory

CPU2

• Require cumbersome copy operations

• Prevent the use of pointer

• DMA copy

5

Pointer addressable: load/store access

Heterogeneous Systems Architecture
CPU1 GPU

Unified Memory

CPU2

• Unified Memory Address Space (hMMU)

• HSA Intermediate Language

Both CPU and GPU and access the memory directly.

Remove the overhead due to memory copy.

1. Enable Unified address space access

2. Provide a unified intermediate language for

high-level languages and different hardware ISA

X

6

 Introduced by HSA Foundation

 A virtual ISA with many operations.

 A textual representation of instructions and a binary format called BRIG.

 ISA, programming model, memory model, machine model, profile…..

HSA INTERMEDIATE LANGUAGE

HSAIL Overview

7

HSAIL

COMPLIER

CPU ISA

C++ Java OpenCL

FINALIZER

GPU ISA Custom
ISA

BRIG

Programmers can program in languages they already

know, and with the features and tools they expect.

Complier that generates HSAIL can be assured that the

resulting code will be able to run on different target

platforms

HSAIL: Virtual ISA Abstraction
HSAIL: A virtual ISA abstraction for popular
programming languages.

The conversion from HSAIL to machine ISA is more of a
translation than a complex complier optimization.

8

Grids are divided into one or more work-groups.

Work-groups are composed of work-items.

HSAIL: Programming Model
Sequential program expanded in three dimensional parallel execution model.

Work-items in the same work-group can efficiently

communicate and synchronize with each other through

the “group” memory.

9

• When the parallel task is dispatched, the dispatch command

specifies the number of work-items that should be executed.

• Each work-item has a unique identifier specified with x, y, z

coordinate.

• HSAIL contains instructions so that each work-item can determine

its unique coordinate and operate on certain part of the data.

HSAIL: Single instruction Multiple Data
Sequential programming run in parallel

HSAIL itself specifies the instruction flow for a single “work-item” of execution.

10

When a grid executes, work-groups are distributed to one

or more compute units in the target device.

HSAIL: Example
Parallel workgroups, parallel work-items

Work-items in the same work-group then are dispatched

to each execution unit (processing element) in the

computing unit, and executed in parallel.
2D Grid

2D Work-group

Work-item

http://www.gamesaktuell.de/Crysis-Xbox360-237049/News/Crysis-3D-Support-und-Parallax-Occlusion-Mapping-fuer-die-Konsolen-Version-844757/
11

The grid is always scheduled in work-group-sized

granularity. Work-group thus encapsulates a piece of

parallel work.

HSAIL: Scheduling Granularity (1)
Top level dispatch example

Work-groups

Computing Unit 1 Computing Unit 2

SIMT
Execution Unit

12

• The wavefront is a hardware concept indicating the

number of work-items that are scheduled together.

HSAIL: Scheduling Granularity (2)
Warp or Wavefront: An independent instruction stream
which works on multiple data. Streaming Multiprocessor

Instruction Cache

Warp Scheduler
Instruction Decode

Dispatch Unit

Register File

Processing Elements

• Wavefront width is implementation dependent.

• HSAIL also provides cross-lane operations that

combine results from several work-items in the work-

group. (cross lane transfer of data…)

13

• Each work-item in the HSA execution model represents a single

thread of execution.

HSAIL: A RISC-like ISA, inherent for SIMT Operations

Effective Parallel Processing Comes from Machine.

Dispatch Unit

Processing Elements

• HSAIL thus looks like a sequential program.

Work-group

Work-items

• Parallelism is expressed by the grid and the work-groups, which

specify how many work-items to run, rather than expressed in

the HSAIL code itself.

14

• Writing HSAIL code is similar to writing in assembly language for a RISC CPU

• The HSAIL language provides about 140 operations :

Fundamental arithmetic operations (integer/floating point)

Load/Store operations

Branch operations (call, ret….)

Multi-media operations (image operations..)

Synchronization operations (barrier, atomic, …)

Cross-lane operations (get register value from other lane, e.g.,)

Special operations (get work-item ID…..)

HSAIL: ISA

add_s32 $s0,$s2,$s6;

15

• Base Data Types :

• Floating point (single, double, half), Integer (32-bit, 64-bit), Bit data

type

• Packed data type (SIMD)

• Opaque Data Type (incomplete defined data type, image handle, for

image object)

HSAIL: Data Type

16

HSAIL provides 7 segments of memory :

HSAIL: Memory Model
Segment address, flat address

• Global Segment : Visible to all HSA agents and work-items

• Group Segment : Shared among all work-items in the same work-group

• Private: Per work item

• Spill, Argument Segments: (not part of flat address space, meaning: using segment addressing mode)

• Kernarg Segment : Programmers use this segment to pass arguments to kernel (not part of flat address

space)

• Read-only Segment : const. (not part of flat address space)

Global Group Spill Private Arg. Kernarg Read-Only
17

• HSAIL uses a fixed-size register pool.

• HSAIL provides 4 classes of registers:

C Register : 1-bit control registers which are used to store the output of the comparison operations

S Register : 32-bit registers that can store a 32-bit integer or a single-precision floating point value

D Register : 64-bit registers that can store a 64-bit integer or a double-precision floating point value

Q Register :128-bit registers that store packed values (8*16bit / 4*32bit)

HSAIL Register: 128 32-bits per work-item

• HSAIL provides up to 8 “C registers”.

• The “S”, ”D”, “Q” registers share a single pool of resources which support up to 128 “S” registers

18

HSAIL: Machine Model & Profile
• HSAIL intends to support a wide arrange of devices. To make sure that HSAIL can be

implemented efficiently on multiple market segments, the HSA Foundation introduced

the concepts of machine models and profiles.

• Machine model specifies which machine model is used during finalization.

• Profiles focus on features and precision requirements.

Small model : 32-bit address space

Large model : 64-bit address space

Base profile : Smaller systems having power efficiency without sacrificing performance

Full profile : Larger systems having higher precision without sacrificing performance

19

A SIMT GPU Simulator Based on HSAIL
BRIG

H S A
FOUNDATION

Processor Designed by Computer Architecture and System LAB
National Cheng-Kung University

NCKUEE dual-core pipelined CPU
Boot Linux Successfully.

20

Get started with a GPU SIMULATOR

OTHER
DEVICE

Custom ISA

OpenCL application

Unified Memory Address Space

GPU SIMULATOR

CPU(s)

HSAIL

OpenCL runtime

OpenCL application

OpenCL runtime

HSAIL runtime

HSAIL finalizer

First step: a GPU ISS, which defines correct

operations for SIMT.

Second: a soft GPU IP.

Third: a GPU IC.

21

GPU Binary ISA

• Our custom ISA is based on HSAIL BRIG (140 x variants = huge #), binary representation of

HSAIL textual)

• The instructions are 64-bit long.

• Every instruction has common Opcode and Conditional field. Number of modifier and

operand fields tailor to the definition in HSAIL.

• Currently in our custom ISA, there are 7 groups of instructions including : Arithmetic

Operations, Memory Operations (flat address model), Branch Operations, Image (Multi-

Media) Operations, Synchronization Operations, Cross-lane Operations and Special

Operations.

DETAIL OF THE SIMULATOR – CUSTOM ISA

OPcode Cond Modifiers Operand0 Operand1 Operand2 Operand3
63 56 55 52 51 40 39 32 31 24 23 16 15 8

Operand4
7 0

22

Add Predicate to Instructions
DETAIL OF THE SIMULATOR – CUSTOM ISA (Conditional Field)

OPcode Cond Modifiers Operand0 Operand1 Operand2 Operand3
63 56 55 52 51 40 39 32 31 24 23 16 15 8

Operand4
7 0

Our custom ISA has an additional field called “conditional field”, which does not appear

in HSAIL.

 The Parallel Thread Execution (PTX) language used in Nvidia’s CUDA

programming environment supports conditional field.

 One can use predicate flag to deal with divergence control flow.

23

Build Core ISS First

Custom ISA

GPU SIMULATOR

HSAIL

Preprocessor

Memory

STREAMING MULTIPROCESSOR

Warp scheduler
Dispatch Unit

Register File

16 Execution Units

Develop custom Binary ISA based on HSAIL BRIG

The GPU Simulator includes:

• Preprocessor Unit which passes hsail binary code (.hbin)

to GPU memory.

• A simple memory model for our GPU simulation.

• A shader core includes warp scheduler, dispatch unit,

register file, and 16 execution units.

SIMULATOR ARCHITECTURE

24

Group work-items (thread) into wavefront (warp)

Before GPU runs, the programmer specifies the number

of work-items required in the kernel (work-group).

DETAIL OF THE SIMULATOR – WARP SCHEDULER

The GPU simulator then encapsulates work-items into

several warps based on the wavefront size.

WARP 0

ID Enable PC Barrier

WARP 1

ID Enable PC Barrier

WARP 2

ID Enable PC Barrier

25

Run warp by warp

Every cycle, warp scheduler selects a

warp which is ready for execution.

The selected warp then goes

through the Instruction Fetch and

Decode stage.

Each of the work-items in the same

warp is dispatched to a lane,

Processing Element (execution unit)

in dispatch unit.

DETAIL OF THE SIMULATOR – WARP SCHEDULER & DISPATCH UNIT

WARP 0 E PC
WARP 1 E PC

WARP 2 E PC
WARP 3 - -

Work-item 0-15

Dispatch WORK-ITEMs

BARRIER
BARRIER
BARRIER
BARRIERDECODE

Streaming Multi-processor

WARP SCHEDULER

INSTURCTION FETCH

DISPATCH UNIT

REGISTER FILE

DATA FETCH

EXECUTION
UNIT

WRITE BACK

WORK
ITEM

WORK
ITEM

WORK
ITEM

WORK
ITEM

E ID E ID

E ID E ID

26

Sufficient to Run HSAIL Benchmarks (HSA)

Each work-item is dispatched to a SIMD execution unit (processing

element) then executed simultaneously.

Our simulator now supports most of the instructions defined by

HSAIL, including Arithmetic Operations, Memory Operations, Branch

Operation, Synchronization Operations and Special Operations.

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DATA FETCH

EXECUTION
UNIT

WRITE BACK

DISPATCH
UNIT

27

Custom Assembler (HSAIL Symbolic to Binary)
used at the moment

Each work-ite

Custom ISA

GPU SIMULATOR

HSAIL

Preprocessor

Memory

STREAMING MULTIPROCESSOR

Warp scheduler
Dispatch Unit

Register File

16 Execution Units

testbench.hsail
HSAIL to Binary

Assembler testbench.hbin

WARP 0 E PC
WARP 1 E PC

WARP 2 E PC
WARP 3 - -

BARRIER
BARRIER
BARRIER
BARRIER

DECODE

INSTURCTION FETCH

28

ISSUE– BRANCH OPERATIONS in SIMT

 1: Predicate execution
 2: Execute both paths and then

re-converge, but…..

Big issue since many possible structures:
if-else, nested if-else, loop,
break, continue…

29

Remove Simple branch with predicate execution

OPcode Cond Modifiers Operand0 Operand1 Operand2 Operand3
63 56 55 52 51 40 39 32 31 24 23 16 15 8

Operand4
7 0

Without
Conditional Field

With
Conditional Field

30

Divergence
DIVERGENCE

If (condition == true)

else

wavefront Use stack-based mechanism to
resolve the branch divergence
problem (ex: Program counter
stack, active lane mask stack)

Push (mask, else block address)
Complement (~mask, else block)
Pop. (Convergence)

active lane mask stack

31

EXAMPLE-BRANCH INSTRUCTION EXECUTION FLOW
Shader Assembly:
1. @__OpenCL_vec_copy_kernel_entry:
2. mov_b32 $s0, 1;
3. mov_b32 $s1, 3;
4. mov_b32 $s3, 0;
5. workitemabsid_u32 $s2, 0 ;
6. cmp_ge_b1_u32 $c0, $s2, $s1 ;
7. cbr $c0, @Btag1 ;
8. add_u32 $s3, $s0, $s1 ;
9. brn @Btag2
10. @Btag1:
11. sub_u32 $s3, $s2, $s1 ;
12. @Btag2:
13. endbranch;
14. mov_b32 $s4, 7;
15. };

Instruction Execution flow:
Active workitem : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#2 mov_32 : X X X X X X X X X X X X X X X X
#3 mov_32 : X X X X X X X X X X X X X X X X
#4 mov_32 : X X X X X X X X X X X X X X X X
#5 workitemabsid : X X X X X X X X X X X X X X X X
#6 cmp_ge_b1_u32 : X X X X X X X X X X X X X X X X
#7 cbr : X X X X X X X X X X X X X
#11 sub_u32 : X X X X X X X X X X X X X
#13 endbranch : X X X X X X X X X X X X X
#8 add_u32 : X X X
#9 brn : X X X
#13 endbranch : X X X
#14 mov_u32 : X X X X X X X X X X X X X X X X

1.Push stack (Save active lane mask , PC of Else block), and go to @Btag1 (

2. Complement the masked control register and go to
the PC for else block 3. Recover the masked control register, and pop stack

Event:

32

Divergence Control Schemes

Common Control Divergence
Structure

• If-else
• Nested if else
• Indirect jump (switch, case)
• For loop, while
• Break or continue in loop

Synchronization
ISSUE2: SYNCHRONIZATION

BARRIER operations provide an approach to synchronize all work-items in the same work-group.

barrier

barrier

35

Exchange data without synchronization

WARP 0 (0-15) WARP 1 (16-31) WARP 2 (32-47) WARP 3 (48-63)

1 2 3 4

LD data

ST data

Assume store memory x, load from memory x (group or global)

Assume wavefront size = 16,

Load data before the data are written, which is incorrect!
36

Exchange data with barrier

WARP 0 (0-15) WARP 1 (16-31) WARP 2 (32-47) WARP 3 (48-63)

1 2 3 4

9 10 11 12

LD data

ST data

5 6 7 8

Assume wavefront size = 16,

37

Scheduling ready warp or that reaching barrier count

Barrier operations can not be used in divergent control flow.

Barrier operations must be wavefront uniform.

WARP 0 E PC
WARP 1 E PC

WARP 2 E PC
WARP 3 E PC

BARRIER
BARRIER
BARRIER
BARRIER

BARRIER COUNTWARP SIZE WARP SCHEDULER

BARRIER OPERATION

WARP [ID] . BARRIER = 1

BARRIER COUNT + 1

If (WARP SIZE = BARRIER COUNT)
Reset BARRIER (free to go)

WARP 0
WARP 0
WARP 0
BARRIER
WARP 1
WARP 1
WARP 1
BARRIER
WARP 2

SCHEDULING MECHANISM

38

Fine-grained barrier
Fine-grained barriers (FBARRIERs) are used to synchronize some of the work-items within a work-group.
Wavefront uniform (all work-items in a wavefront join or not)

FBARRIER OP. Valid member_count
FBARRIER TABLE

arrive_count wait_set member_set
1 0 0 0 0
- +1 - - +ID
- - +1 +ID -
- - +1 - -
- -1 - - -ID

INITFBARRIER
JOINFBARRIER

WAITFBARRIER
ARRIVEFBARRIER
LEAVEFBARRIER

RELEASEFBARRIER 0 - - - -

INITFBARRIER : Before fbarrier can be used, it must be initialized.
fbarrier can not be initialized twice.

WAITFBARRIER These three operations should check if (member_count = arrive_count)
ARRIVEFBARRIER : The fbarrier should be reset if the above condition is true.
LEAVEFBARRIER (release membership)
RELEASEFBARRIER : All fbarriers must be released before work group exits.

fbarrier can not be released twice. 39

Fbarrier example

WARP 0 (0-15) WARP 1 (16-31) WARP 2 (32-47) WARP 3 (48-63)

1 2 3 4

initfbar

5 6 7 8joinfbar joinfbar joinfbar joinfbar

leavefbar leavefbar leavefbar leavefbar

waitfbar

10

waitfbar

11

waitfbar

12

131415

16 17 18 19
releasefbar

LD data LD data LD data LD data

ST data ST data ST data ST data

ST data

9
Run leave here

Run leave here

40

Summary

1. We have developed a custom binary ISA based on the HSAIL BRIG.

2. Developed a SIMT simulator including warp scheduler, dispatch unit, and SIMD

execution units for parallel computing .

3. Provided approaches to deal with divergence control and synchronization

operations.

41

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	投影片編號 22
	投影片編號 23
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 27
	投影片編號 28
	投影片編號 29
	投影片編號 30
	投影片編號 31
	投影片編號 32
	Divergence Control Schemes
	Common Control Divergence Structure
	投影片編號 35
	投影片編號 36
	投影片編號 37
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41

