
NCKU-CASLab

ESL-Based Full System Simulation
Platform

Department of Electrical Engineering
Institute of Computer and Communication

Engineering
National Cheng Kung University

陳中和

NCKU EE CASLab

Term Project-Preparation
• Lab1: Building QEMU Experiment al Environment
• LAB 2: Building Linux Operating System Environment

− Create an environment that boots Linux kernel on ARM
Realview EB modeled by QEMU.

• LAB3: Virtual Machine & Linux Device Driver

− Design a virtual hardware running in ARM Realview EB and
interacting with Linux device driver and application

• LAB4: SystemC Module & Full System Simulation using
QEMU-SystemC

• LAB5: Full System Simulation using QEMU &

PlatformArchitect

2

NCKU EE CASLab

Proposal

• Due in three weeks.
• Proposal report due (11/28)

− and presentation on 11/29 (5-mins)

• Final report and presentation

3

NCKU EE CASLab 4

Electronic System Level Design

• Traditional VLSI design flow
− Software debug begins at late hour.

System Design

Hardware Design

Hardware Verification

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline

NCKU EE CASLab 5

ESL

• Early interaction with software

System Design

Hardware Design

Hardware Verification

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline

NCKU EE CASLab 6

What is Full System Simulation

• Full system simulation platform
− Hardware : processor cores, memories,

interconnection buses, and peripheral
devices, ASICs, co-processor, etc.

− Software : operating system, device

drivers, and applications

NCKU EE CASLab 7

Why full system simulation?

• Higher abstraction level, higher productivity.
• Make verification and optimization of complex systems possible.

Function Verification Architecture Exploration

HW/SW Partition
& optimization

Virtual Platform
for SW development

ESL

Validate specification
requirements
Function & Performance

Optimize HW architecture
Interconnect topology, bus
hierarchy, mem organization,…

HW offload/acceleration
or programs in DSP cores?

Multi-thread programming
in multi-core platform

NCKU EE CASLab 8

One Example
• TCP/IP offloads

HOST - SA Interface
 (PCI - Express , IDE , …)

Applications

Operating System

Device Driver

I / O
Port

System Accelerator
(SA)

DRAM
I / O

PHY

Power

Host System

Host Bus Adapter

NCKU EE CASLab 9

Limitation of Current ESL Simulation Tool

• ESL SystemC simulation tool
− CoWare Platform Architect

• Advantages
− Ready to use processor/bus models
− Multiple level of abstractions
 Transaction level
 Register transfer level

− Profiling tool
 Bus utilization, reads/writes, etc.

• However,
− Unacceptable OS booting time (half an hour)

9

NCKU EE CASLab 10

Acceleration of OS Booting
• Take apart OS and CPU from ESL tool (CoWare)
• Use other tool to simulate CPU and to boot OS

10

Applications

Operating System

Virtual machine

Device driver

Bridge interface

Bridge interface

System-on-chip

ESL tool (SystemC, HDL)

Hardware design

NCKU EE CASLab 11

What is a Virtual Machine
• Broad definition includes all emulation methods that

provide a standard software interface, such as the
Java VM

• “System Virtual Machines” provide a complete

system level environment at binary ISA

• VM is an AP of the host OS

• Underlying HW platform is called the host, and its
resources are shared among the guest VMs

11

NCKU EE CASLab 12

Virtual Machine
• Virtual machine

− VM-Ware
− Virtual-PC
− Parallel Desktop for Mac
− QEMU (Quick Emulator)

• QEMU (http://bellard.org/qemu) (C/C++)
− Open source code
− Different ISAs support (x86,ARM,MIPS…etc)
− Fast simulation speed (Functional level)

• QEMU-SystemC (Extension of QEMU)
− Enable QEMU and SystemC modelling

through AMBA interface in ARM versatile
baseboard

12

http://bellard.org/qemu�

NCKU EE CASLab 13

QEMU Architecture

• QEMU is made of several
subsystems
− CPU emulator (e.g. x86, ARM, MIPS)
− Emulator devices (e.g. VGA, IDE HD)
− Generic devices (e.g. network devices)
 Connecting QEMU emulated devices to the

corresponding host devices.
− Machine descriptions
Instantiating the emulated device.

− Debugger
− User interface

NCKU EE CASLab 14

Add New Virtual Hardware

• QEMU allows us to write a virtual
hardware and emulate it

• Steps
− Design your virtual machine in C

code
 including initialization of the hardware ,

low level read/write (commands to
hardware) functions for the hardware

− Design device driver for that hardware

NCKU EE CASLab 15

A Fast Hybrid Full System Simulation Platform

• QEMU
− Boot and run OS with much less time (less 1 min)
− Only functional simulation

• CoWare
− SystemC based simulator & design environment in

addition to C/C++, HDL
− Detailed profiling
− Booting Linux OS – long booting time

• Integration (QEMU & CoWare)
− QEMU runs OS, upon which users develop AP
− CoWare simulates hardware design
 Accurate level (RTL)
 Higher level

15

NCKU EE CASLab 16

What is needed?

• Host Computer
− Personal computer with Linux OS

• CoWare
− Platform Architect v2007.1.2

• QEMU
− QEMU-SystemC v0.91

16

NCKU EE CASLab 17

Platform Overview

CoWare-SystemC Wrapper

On-Chip-Bus (AHB, AXI, OCP,…)

VM Access
Port

DRAM
SystemC Module

M S S

PAC

M S

Interrupt
Controller

S

Communication Mechanism

Communication Mechanism

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

QEMU
(C, C++)

CoWare PA
(SystemC, HDL)

Host OS

17

Socket (): for interprocess communication

AP

AP

VM bridge
interface

NCKU EE CASLab 18

QEMU Side Details
• Simulated machine

− ARM Versatile baseboard
− Debian Linux 2.6.18

• Integration schemes for QEMU and CoWare
− AHB interface virtual hardware
− Character device driver (API) for design in CoWare
− Interrupt service routine

18

Socket Interface (Client/Server)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
ARM926EJS

PL190 Vectored Interrupt Controller
Four PL011 UARTs

SMC 91c111 Ethernet adapter
PL050 KMI with PS/2 keyboard and mouse.

...

AHB Interface Virtual Hardware

Qemu
(C, C++)

NCKU EE CASLab 19

CoWare Side Details

• Hardware
− AHB Bus
− DSP/ASICs
− Other devices
− VM interface bridge

• VM interface bridge
− VM access port
 Read/write data from QEMU AP to slave

modules in CoWare

− Interrupt controller
 Bypass interrupt signal to QEMU OS

19

CoWare-SystemC Wrapper

On-Chip-Bus (AHB,AXI,OCP...)

VM
Access Port

SDRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server/Client)

CoWare
(SystemC, HDL)

PAC
M

PP

SS

NCKU EE CASLab 20

Communication Mechanism

• Socket call
− Easy to use
− Flexible
Other ESL simulation tool

− Multiple computer support

20

NCKU EE CASLab 21

System Memory Allocation
• Allocate physical memory space of CoWare

hardware into memory space of QEMU virtual
platform (simulated platform)

0

4G

Qemu Physical
Memory Space

CoWare-SystemC Wrapper

On-Chip-Bus (AHB, AXI, OCP,…)

VM Access
Port

DRAM
SystemC Module

M S S

PAC

M S

Interrupt
Controller

S

Socket Interface

Socket Interface

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)

AHB Interface Virtual Hardware

QEMU
(C, C++)

CoWare PA
(SystemC, HDL)

CoWare Physical
Memory Space

NCKU EE CASLab 22

Examples of Application

• Heterogeneous Multi-Core
− ARM + PAC (DSP)

• GPU (OpenGL/ES) + Multi-view
generation

• Network SCTP/IP offload design

NCKU EE CASLab 23

DSP Runs FFT Program

• Develop applications using driver API
• Use FFT program for example

− Functions for designer
We should open the device first and close the device

after using it.
 IO_init() /*standard I/O initialization operation*/
 IO_exit()

 After opening the device , the FFT main program can
use these functions to call APIs to read/write data
from/to hardware in CoWare.
 IO_read_byte , IO_read_half , IO_read_word
 IO_write_byte, IO_write_half, IO_write_word

23

NCKU EE CASLab 24

− FFT main program runs in QEMU OS
 First open device using IO_init()
 Send PAC binary and data(fft.img) to CoWare

 IO_write_word(0xa0000000, send_data)

 Call function fft()
 use IO_write_word to set PAC to run fft
 use IO_read_word to read data calculated by PAC

 Close the device, use IO_exit()
 Check FFT results

Heterogeneous Multi-Core

24

NCKU EE CASLab 25

FULL SYSTEM VERIFICATION PLATFORM FOR
MULTI-VIEW GPU

• QEMU
− OpenGL ES Application
− Customized device driver

• SystemC/RTL Co-Simulation
− GPU core

 Geometry module
 Rasterization module

− Multi-View generation
 Depth-Image Based

Rendering

Qemu-SystemC Wrapper

AHB

AHB
Master

SDRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry
Engine

M

PP

S

Rasterizer
Engine

M

P

S

DIBR
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

NCKU EE CASLab 26

GPU in System C

• GPU with SystemC
encapsulation

Qemu-SystemC Wrapper

AHB

AHB
Master

SDRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry
Engine

M

PP

S

Rasterizer
Engine

M

P

S

DIBR
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

SystemC

NCKU EE CASLab 27

GPU in fresh RTL modules

Qemu-SystemC Wrapper

AHB

AHB
Master

SDRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry
Engine

M

PP

S

Rasterizer
Engine

M

P

S

DIBR
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

• GPU with RTL
encapsulation

Debugging by

comparing with
SystemC models

NCKU EE CASLab 28

100 % FULL SYSTEM VERIFICATION

Qemu-SystemC Wrapper

AHB

AHB
Master

SDRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry
Engine

M

PP

S

Rasterizer
Engine

M

P

S

DIBR
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0);

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT);
…
glTranslatef(0.5, 0.0, -2.0);
…
ugSolidSpheref(1.0f, 24, 24);
eglSwapBuffers(eglDisplay,eglSurface);

• GPU with RTL
encapsulation

• RTL verification confirmed

NCKU EE CASLab 29

Flexibility

Qemu-SystemC Wrapper

AHB

AHB
Master

SRAM
Module

M

S

Interrupt
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard)
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry
Engine

M

PP

S

Rasterizer
Engine

M

P

S

DIBR
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

• QEMU (fast emulator)
− OpenGL ES benchmark

suite
− Customized device driver

 For GPU + DIBR

• Co-simulation
 Module name Design level

AMBA AHB Timed TLM

AMBA bridge Timed TLM

SRAM Untimed TLM

Geometry Engine RTL

Rasterizer Engine RTL

DIBR Engine RTL

NCKU EE CASLab 30

SCTP/IP Offload System

1. Functional
verification

2. Connection with
real world
(path1)

3. Performance
evaluation for
10 Gb (path 2)

Qemu-SystemC
Interface

Network Offload
Engine

Virtual Host 1
(O/S, Driver, Application…)

Virtual MAC

NIC (Network Interface Card) NIC

Physical Host 2
(O/S, Driver,

Application…)

QEMU

Qemu-SystemC
Interface

Network Offload
Engine

Virtual Host 2
(O/S, Driver, Application…)

Virtual MAC

QEMU

CoWare (SystemC, C/C++, HDL)

Computer 2Computer 1
Physical Host 1

1

2

Ethernet

Virtual Network

Raw Socket API

SCTP: Stream Control Transmission Protocol

NCKU EE CASLab 31

SCTP/IP Offload System
• CoWare on PC 1, Host QEMU on PC 2

− Network Offload Engine (SCTP, IP, MAC)
− FTP client (run on your design) talks to FTP server (real

world)
− Virtual MAC (model bit rates)

Qemu-SystemC
Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC
Interface

FTP Server

FTP Client

Virtual Host

Ethernet

NCKU EE CASLab 32

Network Offload System

• The FTP client in the virtual platform was uploading files to the
server.

• The FTP server in the real world computer was receiving data

from the client.

• Finally, the files had been received completely at the server.

Qemu-SystemC
Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC
Interface

FTP Server

FTP Client

Virtual Host

Ethernet

FTP client

FTP server

NCKU EE CASLab 33

Portability
• The same memory allocation and OS

− No need to change device driver and
application

• Different OS
− Only need to change device driver
Header files, different system calls

− No need to change application

• Different memory allocation
− Need to change device driver and

application but only address dependent
statements

NCKU EE CASLab 34

Performance Issue

• Simulation overhead
− Use socket call for communication

between QEMU and CoWare
− Hardware implementation (FPGA) uses no

socket call

• Performance improvement
− Reduce communication
 Rbyte+Rbyte+Rbyte+Rbyte => Rword
 Reconstruct Data flow

34

NCKU EE CASLab 35

And in conclusion……

• A full system simulation platform that enables
Application, Linux operating system, Host processor,
and RTL/SystemC design simulation.

• A convenient and easy-to-use integrated platform
for software/hardware debugging and verification.
− Applications, drivers, RTLs.

• An ESL tool that can tackle with designs of high
complexity.

• Instruction profiling in QEMU
− Instruction count (PID-based), type, user/kernel mode

• Power estimation

35

	ESL-Based Full System Simulation Platform
	Term Project-Preparation
	Proposal
	Electronic System Level Design
	ESL
	What is Full System Simulation
	Why full system simulation?
	One Example
	Limitation of Current ESL Simulation Tool
	Acceleration of OS Booting
	What is a Virtual Machine
	Virtual Machine
	QEMU Architecture
	Add New Virtual Hardware
	A Fast Hybrid Full System Simulation Platform
	What is needed?
	Platform Overview
	QEMU Side Details
	CoWare Side Details
	Communication Mechanism
	System Memory Allocation
	Examples of Application
	DSP Runs FFT Program
	Heterogeneous Multi-Core
	FULL SYSTEM VERIFICATION PLATFORM FOR MULTI-VIEW GPU
	GPU in System C
	GPU in fresh RTL modules
	100 % FULL SYSTEM VERIFICATION
	Flexibility
	SCTP/IP Offload System
	SCTP/IP Offload System
	Network Offload System
	Portability
	Performance Issue
	And in conclusion……

