
NCKU-CASLab 

ESL-Based Full System Simulation 
Platform 

Department of Electrical Engineering 
Institute of Computer and Communication 

Engineering 
National Cheng Kung University 

陳中和 
 



NCKU  EE CASLab 

Term Project-Preparation 
• Lab1: Building QEMU Experiment al Environment 
• LAB 2: Building Linux Operating System Environment 

− Create an environment that boots Linux kernel on ARM 
Realview EB modeled by QEMU. 

 
• LAB3: Virtual Machine & Linux Device Driver  

− Design a virtual hardware running in ARM Realview EB and 
interacting with Linux device driver and application 
 

• LAB4: SystemC Module & Full System Simulation using 
QEMU-SystemC 

 
• LAB5: Full System Simulation using QEMU & 

PlatformArchitect 
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Proposal  

• Due in three weeks. 
• Proposal report due (11/28) 

− and presentation on 11/29 (5-mins)  

• Final report and presentation  
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Electronic System Level Design 

• Traditional VLSI design flow 
− Software debug begins at late hour. 

 

System Design

Hardware Design

Hardware Verification 

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline
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ESL 

• Early interaction with software 

System Design

Hardware Design

Hardware Verification 

Prototype Build

Software Design

Software Coding

Software Debug

Project Deadline
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What is Full System Simulation 

• Full system simulation platform 
− Hardware : processor cores, memories, 

interconnection buses, and peripheral 
devices, ASICs, co-processor, etc. 

 
− Software : operating system, device 

drivers, and applications 
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Why full system simulation? 

• Higher abstraction level, higher productivity. 
• Make verification and optimization of complex systems possible. 

Function Verification Architecture Exploration 

HW/SW Partition 
& optimization 

Virtual Platform 
for SW development 

ESL 

Validate specification 
requirements 
Function & Performance 

Optimize HW architecture 
Interconnect topology, bus 
hierarchy, mem organization,… 

HW offload/acceleration 
or programs in DSP cores? 

Multi-thread programming 
in multi-core platform 
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One Example  
• TCP/IP offloads 

HOST - SA Interface 
 (  PCI - Express ,  IDE ,  …  ) 

Applications 

Operating System  

Device Driver 

I / O  
Port 

System Accelerator 
( SA ) 

DRAM 
I / O 

PHY 

Power 

Host System 

Host Bus Adapter 
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Limitation of Current ESL Simulation Tool 

• ESL SystemC simulation tool 
− CoWare Platform Architect 

• Advantages 
− Ready to use processor/bus models 
− Multiple level of abstractions 
 Transaction level 
 Register transfer level 

− Profiling tool 
 Bus utilization, reads/writes, etc. 

• However, 
− Unacceptable OS booting time  (half an hour) 
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Acceleration of OS Booting 
• Take apart OS and CPU from ESL tool (CoWare) 
• Use other tool to simulate CPU and to boot OS 
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Applications 
 

Operating System 
 
 

Virtual machine 

Device driver 

Bridge interface 

Bridge interface 

System-on-chip 

ESL tool (SystemC, HDL) 

Hardware design 
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What is a Virtual Machine 
• Broad definition includes all emulation methods that 

provide a standard software interface, such as the 
Java VM 

 
• “System Virtual Machines” provide a complete 

system level environment at binary ISA 
 

• VM  is an AP of the host OS  
 

• Underlying HW platform is called the host, and its 
resources are shared among the guest VMs 
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Virtual Machine 
• Virtual machine 

− VM-Ware 
− Virtual-PC 
− Parallel Desktop for Mac 
− QEMU (Quick Emulator) 

• QEMU (http://bellard.org/qemu) (C/C++) 
− Open source code  
− Different ISAs support (x86,ARM,MIPS…etc) 
− Fast simulation speed (Functional level) 

• QEMU-SystemC (Extension of QEMU) 
− Enable QEMU and SystemC modelling 

through AMBA interface in ARM versatile 
baseboard 
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QEMU Architecture 

• QEMU is made of several 
subsystems 
− CPU emulator (e.g. x86, ARM, MIPS) 
− Emulator devices (e.g. VGA, IDE HD) 
− Generic devices (e.g. network devices) 
 Connecting QEMU emulated devices to the 

corresponding host devices. 
− Machine descriptions  
Instantiating the emulated device. 

− Debugger 
− User interface 
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Add New Virtual Hardware 

• QEMU allows us to write a virtual 
hardware and emulate it 

•  Steps 
−  Design your virtual machine in C 

code 
 including initialization of the hardware , 

low level read/write (commands to 
hardware) functions for the hardware 

−  Design device driver for that hardware 
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A Fast Hybrid Full System Simulation Platform 

• QEMU 
− Boot and run OS with much less time (less 1 min) 
− Only functional simulation 

• CoWare 
− SystemC based simulator & design environment in 

addition to C/C++, HDL 
− Detailed profiling 
− Booting Linux OS – long booting time 

• Integration (QEMU & CoWare) 
− QEMU runs OS, upon which users develop AP 
− CoWare simulates hardware design 
 Accurate level (RTL) 
 Higher level 
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What is needed?  

• Host Computer 
− Personal computer with Linux OS 

• CoWare 
− Platform Architect v2007.1.2 

• QEMU 
− QEMU-SystemC v0.91 
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Platform Overview 

CoWare-SystemC Wrapper

On-Chip-Bus ( AHB, AXI, OCP,… )

VM Access
Port

DRAM
SystemC Module

M S S

PAC

M S

Interrupt 
Controller

S

Communication Mechanism

Communication Mechanism

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )

AHB Interface Virtual Hardware

QEMU
(C, C++)

CoWare PA
(SystemC, HDL)

Host OS
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Socket (): for  interprocess      communication 

AP 

AP 

VM bridge 
interface 



NCKU  EE CASLab 18 

QEMU Side Details  
• Simulated machine 

− ARM Versatile baseboard 
− Debian Linux 2.6.18 

• Integration schemes for QEMU and CoWare 
− AHB interface virtual hardware 
− Character device driver (API) for design in CoWare 
− Interrupt service routine 
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Socket Interface (Client/Server)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
ARM926EJS

PL190 Vectored Interrupt Controller 
Four PL011 UARTs 

SMC 91c111 Ethernet adapter 
PL050 KMI with PS/2 keyboard and mouse. 

...

AHB Interface Virtual Hardware

Qemu
(C, C++)
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CoWare Side Details 

• Hardware 
− AHB Bus 
− DSP/ASICs 
− Other devices 
− VM interface bridge 

• VM interface bridge 
− VM access port 
 Read/write data from QEMU AP to slave 

modules in CoWare 

− Interrupt controller 
 Bypass interrupt signal to QEMU OS 
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CoWare-SystemC Wrapper

On-Chip-Bus (AHB,AXI,OCP...)

VM
Access Port

SDRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server/Client)

CoWare
(SystemC, HDL)

PAC
M

PP

SS
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Communication Mechanism 

• Socket call 
− Easy to use 
− Flexible 
Other ESL simulation tool 

− Multiple computer support 
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System Memory Allocation 
• Allocate physical memory space of CoWare 

hardware into memory space of QEMU virtual 
platform (simulated platform) 

0

4G

Qemu Physical
Memory Space

CoWare-SystemC Wrapper

On-Chip-Bus ( AHB, AXI, OCP,… )

VM Access
Port

DRAM
SystemC Module

M S S

PAC

M S

Interrupt 
Controller

S

Socket Interface

Socket Interface

QEMU-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )

AHB Interface Virtual Hardware

QEMU
(C, C++)

CoWare PA
(SystemC, HDL)

CoWare Physical
Memory Space
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Examples of Application 

• Heterogeneous Multi-Core  
− ARM + PAC (DSP) 

• GPU (OpenGL/ES) + Multi-view 
generation  

• Network SCTP/IP offload design 
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DSP Runs FFT Program 

• Develop applications using driver API  
• Use FFT program for example 

− Functions for designer 
We should open the device first and close the device 

after using it. 
 IO_init()  /*standard I/O initialization operation*/ 
 IO_exit() 

 After opening the device , the FFT main program can 
use  these functions to call APIs to read/write data 
from/to hardware in CoWare. 
 IO_read_byte , IO_read_half , IO_read_word 
 IO_write_byte, IO_write_half, IO_write_word 
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− FFT main program runs in QEMU OS 
 First open device using IO_init() 
 Send PAC binary and data(fft.img) to CoWare 

 IO_write_word(0xa0000000, send_data)  

 Call function fft() 
 use IO_write_word to set PAC to run fft 
 use IO_read_word to read data calculated by PAC 

 Close the device, use IO_exit() 
 Check FFT results 

 

Heterogeneous Multi-Core 
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FULL SYSTEM VERIFICATION PLATFORM FOR 
MULTI-VIEW GPU 

• QEMU 
− OpenGL ES Application 
− Customized device driver 

• SystemC/RTL Co-Simulation  
− GPU core 

 Geometry module  
 Rasterization module 

− Multi-View generation  
 Depth-Image Based 

Rendering  

 

Qemu-SystemC Wrapper

AHB

AHB 
Master

SDRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry 
Engine

M

PP

S

Rasterizer 
Engine

M

P

S

DIBR 
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver



NCKU  EE CASLab 26 

GPU in System C  

• GPU with SystemC 
encapsulation 

 

Qemu-SystemC Wrapper

AHB

AHB 
Master

SDRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry 
Engine

M

PP

S

Rasterizer 
Engine

M

P

S

DIBR 
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0); 
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT); 
… 
glTranslatef(0.5, 0.0, -2.0); 
… 
ugSolidSpheref(1.0f, 24, 24); 
eglSwapBuffers(eglDisplay,eglSurface); 

SystemC 
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GPU in fresh RTL modules 

Qemu-SystemC Wrapper

AHB

AHB 
Master

SDRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry 
Engine

M

PP

S

Rasterizer 
Engine

M

P

S

DIBR 
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0); 
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT); 
… 
glTranslatef(0.5, 0.0, -2.0); 
… 
ugSolidSpheref(1.0f, 24, 24); 
eglSwapBuffers(eglDisplay,eglSurface); 

• GPU with RTL 
encapsulation 
 

 
Debugging by 

comparing with  
SystemC models 
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100 % FULL SYSTEM VERIFICATION  

Qemu-SystemC Wrapper

AHB

AHB 
Master

SDRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry 
Engine

M

PP

S

Rasterizer 
Engine

M

P

S

DIBR 
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver glFrustumf(-1.0, 1.0, -1.0, 1.0, 1.0, 20.0); 

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_
BIT); 
… 
glTranslatef(0.5, 0.0, -2.0); 
… 
ugSolidSpheref(1.0f, 24, 24); 
eglSwapBuffers(eglDisplay,eglSurface); 

• GPU with RTL 
encapsulation 

• RTL verification confirmed 
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Flexibility  

Qemu-SystemC Wrapper

AHB

AHB 
Master

SRAM
Module

M

S

Interrupt 
Controller

Socket Interface (Server)

Socket Interface (Client)

Qemu-SystemC Wrapper

ARM System Emulator (ARM Versatile baseboard )
AHB Interface Virtual Hardware

Qemu
(C, C++)

CoWare
(SystemC, HDL)

Geometry 
Engine

M

PP

S

Rasterizer 
Engine

M

P

S

DIBR 
Engine

M

P

S

OpenGL|ES Application

Debian GNU/Linux OS
Device driver

• QEMU (fast emulator) 
− OpenGL ES benchmark 

suite 
− Customized device driver 

 For GPU + DIBR 

• Co-simulation  
 Module name Design level 

AMBA AHB Timed TLM 

AMBA bridge  Timed TLM  

SRAM  Untimed TLM  

Geometry Engine RTL 

Rasterizer Engine RTL 

DIBR Engine RTL 
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SCTP/IP Offload System  

1. Functional 
verification 

2. Connection with 
real world 
(path1) 

3. Performance 
evaluation for 
10 Gb (path 2)  
 

Qemu-SystemC 
Interface

Network Offload 
Engine

Virtual Host 1
( O/S, Driver, Application… )

Virtual MAC

NIC (Network Interface Card) NIC

Physical Host 2
( O/S, Driver, 

Application… )

QEMU

Qemu-SystemC 
Interface

Network Offload 
Engine

Virtual Host 2
( O/S, Driver, Application… )

Virtual MAC

QEMU

CoWare (SystemC, C/C++, HDL)

Computer 2Computer 1
Physical Host 1

1

2

Ethernet

Virtual Network

Raw Socket API

SCTP: Stream Control Transmission Protocol  
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SCTP/IP  Offload System 
• CoWare on PC 1, Host QEMU on PC 2 

− Network Offload Engine  (SCTP, IP, MAC) 
− FTP client (run on your design) talks to FTP server (real 

world) 
− Virtual MAC (model bit rates) 

Qemu-SystemC 
Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC 
Interface

FTP Server

FTP Client

Virtual Host

Ethernet
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Network Offload System 

• The FTP client in the virtual platform was uploading files to the 
server.  

 
• The FTP server in the real world computer was receiving data 

from the client.  
 
• Finally, the files had been received completely at the server. 

Qemu-SystemC 
Interface

Network Offload Engine

Virtual MAC

Network Interface Card

CoWare PA

Computer 2Computer 1

QEMU

Network Interface Card

Qemu-SystemC 
Interface

FTP Server

FTP Client

Virtual Host

Ethernet

FTP client 

FTP server 
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Portability 
• The same memory allocation and OS 

− No need to change device driver and 
application 

• Different OS 
− Only need to change device driver 
Header files, different system calls 

− No need to change application 

• Different memory allocation 
− Need to change device driver and 

application but only address dependent 
statements 
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Performance Issue 

• Simulation overhead 
− Use socket call for communication 

between QEMU and CoWare 
− Hardware implementation (FPGA) uses no 

socket call 

• Performance improvement 
− Reduce communication 
 Rbyte+Rbyte+Rbyte+Rbyte => Rword 
 Reconstruct Data flow 
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And in conclusion…… 

• A full system simulation platform that enables   
Application, Linux operating system, Host processor, 
and RTL/SystemC design simulation. 

• A convenient and easy-to-use integrated platform 
for software/hardware debugging and verification. 
− Applications, drivers, RTLs. 

• An ESL tool that can tackle with designs of high 
complexity.  

• Instruction profiling in QEMU 
− Instruction count (PID-based), type, user/kernel mode 

• Power estimation 
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